1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
/*****************************************************************************
Copyright (c) 2013, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file include/ib0mutex.h
Policy based mutexes.
Created 2013-03-26 Sunny Bains.
***********************************************************************/
#ifndef ib0mutex_h
#define ib0mutex_h
#include "os0atomic.h"
#include "os0event.h"
#include "sync0policy.h"
#include "ut0rnd.h"
#include "ut0ut.h"
#include <atomic>
/** OS mutex for tracking lock/unlock for debugging */
template <template <typename> class Policy = NoPolicy>
struct OSTrackMutex {
typedef Policy<OSTrackMutex> MutexPolicy;
explicit OSTrackMutex(bool destroy_mutex_at_exit = true) UNIV_NOTHROW {
ut_d(m_freed = true);
ut_d(m_locked = false);
ut_d(m_destroy_at_exit = destroy_mutex_at_exit);
}
~OSTrackMutex() UNIV_NOTHROW { ut_ad(!m_destroy_at_exit || !m_locked); }
/** Initialise the mutex.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(latch_id_t id, const char *filename, uint32_t line) UNIV_NOTHROW {
ut_ad(m_freed);
ut_ad(!m_locked);
m_mutex.init();
ut_d(m_freed = false);
m_policy.init(*this, id, filename, line);
}
/** Destroy the mutex */
void destroy() UNIV_NOTHROW {
ut_ad(!m_locked);
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.destroy();
ut_d(m_freed = true);
m_policy.destroy();
}
/** Release the mutex. */
void exit() UNIV_NOTHROW {
ut_ad(m_locked);
ut_d(m_locked = false);
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.exit();
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(uint32_t max_spins [[maybe_unused]],
uint32_t max_delay [[maybe_unused]],
const char *filename [[maybe_unused]],
uint32_t line [[maybe_unused]]) UNIV_NOTHROW {
ut_ad(innodb_calling_exit || !m_freed);
m_mutex.enter();
ut_ad(!m_locked);
ut_d(m_locked = true);
}
void lock() { enter(); }
void unlock() { exit(); }
/** @return true if locking succeeded */
bool try_lock() UNIV_NOTHROW {
ut_ad(innodb_calling_exit || !m_freed);
bool locked = m_mutex.try_lock();
if (locked) {
ut_ad(!m_locked);
ut_d(m_locked = locked);
}
return (locked);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW {
return (m_locked && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy &policy() UNIV_NOTHROW { return (m_policy); }
/** @return the const version of the policy */
const MutexPolicy &policy() const UNIV_NOTHROW { return (m_policy); }
private:
#ifdef UNIV_DEBUG
/** true if the mutex has not be initialized */
bool m_freed;
/** true if the mutex has been locked. */
bool m_locked;
/** Do/Dont destroy mutex at exit */
bool m_destroy_at_exit;
#endif /* UNIV_DEBUG */
/** OS Mutex instance */
OSMutex m_mutex;
/** Policy data */
MutexPolicy m_policy;
};
#ifdef HAVE_IB_LINUX_FUTEX
#include <linux/futex.h>
#include <sys/syscall.h>
/** Mutex implementation that used the Linux futex. */
template <template <typename> class Policy = NoPolicy>
struct TTASFutexMutex {
typedef Policy<TTASFutexMutex> MutexPolicy;
/** The type of second argument to syscall(SYS_futex, uint32_t *uaddr,...)*/
using futex_word_t = uint32_t;
/** Mutex states. */
enum class mutex_state_t : futex_word_t {
/** Mutex is free */
UNLOCKED = 0,
/** Mutex is acquired by some thread. */
LOCKED = 1,
/** Mutex is contended and there are threads waiting on the lock. */
LOCKED_WITH_WAITERS = 2
};
using lock_word_t = mutex_state_t;
TTASFutexMutex() UNIV_NOTHROW : m_lock_word(mutex_state_t::UNLOCKED) {
/* The futex API operates on uint32_t futex words, aligned to 4 byte
boundaries. OTOH we want the luxury of accessing it via std::atomic<>.
Thus we need to verify that std::atomic doesn't add any extra fluff,
and is properly aligned */
using m_lock_word_t = decltype(m_lock_word);
static_assert(m_lock_word_t::is_always_lock_free);
static_assert(sizeof(m_lock_word_t) == sizeof(futex_word_t));
#ifdef UNIV_DEBUG
const auto addr = reinterpret_cast<std::uintptr_t>(&m_lock_word);
ut_a(addr % alignof(m_lock_word_t) == 0);
ut_a(addr % 4 == 0);
#endif
}
~TTASFutexMutex() { ut_a(m_lock_word == mutex_state_t::UNLOCKED); }
/** Called when the mutex is "created". Note: Not from the constructor
but when the mutex is initialised.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(latch_id_t id, const char *filename, uint32_t line) UNIV_NOTHROW {
ut_a(m_lock_word == mutex_state_t::UNLOCKED);
m_policy.init(*this, id, filename, line);
}
/** Destroy the mutex. */
void destroy() UNIV_NOTHROW {
/* The destructor can be called at shutdown. */
ut_a(m_lock_word == mutex_state_t::UNLOCKED);
m_policy.destroy();
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(uint32_t max_spins, uint32_t max_delay, const char *filename,
uint32_t line) UNIV_NOTHROW {
uint32_t n_spins;
lock_word_t lock = ttas(max_spins, max_delay, n_spins);
/* If there were no waiters when this thread tried
to acquire the mutex then set the waiters flag now.
Additionally, when this thread set the waiters flag it is
possible that the mutex had already been released
by then. In this case the thread can assume it
was granted the mutex. */
const uint32_t n_waits = (lock == mutex_state_t::LOCKED_WITH_WAITERS ||
(lock == mutex_state_t::LOCKED && !set_waiters()))
? wait()
: 0;
m_policy.add(n_spins, n_waits);
}
/** Release the mutex. */
void exit() UNIV_NOTHROW {
/* If there are threads waiting then we have to wake
them up. Reset the lock state to unlocked so that waiting
threads can test for success. */
std::atomic_thread_fence(std::memory_order_acquire);
if (state() == mutex_state_t::LOCKED_WITH_WAITERS) {
m_lock_word = mutex_state_t::UNLOCKED;
} else if (unlock() == mutex_state_t::LOCKED) {
/* No threads waiting, no need to signal a wakeup. */
return;
}
signal();
}
/** Try and lock the mutex.
@return the old state of the mutex */
lock_word_t trylock() UNIV_NOTHROW {
lock_word_t unlocked = mutex_state_t::UNLOCKED;
m_lock_word.compare_exchange_strong(unlocked, mutex_state_t::LOCKED);
return unlocked;
}
/** Try and lock the mutex.
@return true if successful */
bool try_lock() UNIV_NOTHROW {
lock_word_t unlocked = mutex_state_t::UNLOCKED;
return m_lock_word.compare_exchange_strong(unlocked, mutex_state_t::LOCKED);
}
/** @return true if mutex is unlocked */
bool is_locked() const UNIV_NOTHROW {
return (state() != mutex_state_t::UNLOCKED);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW {
return (is_locked() && m_policy.is_owned());
}
#endif /* UNIV_DEBUG */
/** @return non-const version of the policy */
MutexPolicy &policy() UNIV_NOTHROW { return (m_policy); }
/** @return const version of the policy */
const MutexPolicy &policy() const UNIV_NOTHROW { return (m_policy); }
private:
/** @return the lock state. */
lock_word_t state() const UNIV_NOTHROW { return (m_lock_word); }
/** Release the mutex.
@return the old state of the mutex */
lock_word_t unlock() UNIV_NOTHROW {
return m_lock_word.exchange(mutex_state_t::UNLOCKED);
}
/** Note that there are threads waiting and need to be woken up.
@return true if state was mutex_state_t::UNLOCKED (ie. granted) */
bool set_waiters() UNIV_NOTHROW {
return m_lock_word.exchange(mutex_state_t::LOCKED_WITH_WAITERS) ==
mutex_state_t::UNLOCKED;
}
/** Wait if the lock is contended.
@return the number of waits */
uint32_t wait() UNIV_NOTHROW {
uint32_t n_waits = 0;
/* Use FUTEX_WAIT_PRIVATE because our mutexes are
not shared between processes. */
do {
++n_waits;
syscall(SYS_futex, &m_lock_word, FUTEX_WAIT_PRIVATE,
mutex_state_t::LOCKED_WITH_WAITERS, 0, 0, 0);
// Since we are retrying the operation the return
// value doesn't matter.
} while (!set_waiters());
return (n_waits);
}
/** Wakeup a waiting thread */
void signal() UNIV_NOTHROW {
syscall(SYS_futex, &m_lock_word, FUTEX_WAKE_PRIVATE, 1, 0, 0, 0);
}
/** Poll waiting for mutex to be unlocked.
@param[in] max_spins max spins
@param[in] max_delay max delay per spin
@param[out] n_spins retries before acquire
@return value of lock word before locking. */
lock_word_t ttas(uint32_t max_spins, uint32_t max_delay,
uint32_t &n_spins) UNIV_NOTHROW {
std::atomic_thread_fence(std::memory_order_acquire);
for (n_spins = 0; n_spins < max_spins; ++n_spins) {
if (!is_locked()) {
lock_word_t lock = trylock();
if (lock == mutex_state_t::UNLOCKED) {
/* Lock successful */
return (lock);
}
}
ut_delay(ut::random_from_interval_fast(0, max_delay));
}
return (trylock());
}
private:
/** Policy data */
MutexPolicy m_policy;
alignas(4) std::atomic<lock_word_t> m_lock_word;
};
#endif /* HAVE_IB_LINUX_FUTEX */
template <template <typename> class Policy = NoPolicy>
struct TTASEventMutex {
typedef Policy<TTASEventMutex> MutexPolicy;
TTASEventMutex() UNIV_NOTHROW {
/* Check that m_owner is aligned. */
using m_owner_t = decltype(m_owner);
ut_ad(reinterpret_cast<std::uintptr_t>(&m_owner) % alignof(m_owner_t) == 0);
static_assert(m_owner_t::is_always_lock_free);
}
~TTASEventMutex() UNIV_NOTHROW { ut_ad(!is_locked()); }
/** If the lock is locked, returns the current owner of the lock, otherwise
returns the default std::thread::id{} */
std::thread::id peek_owner() const UNIV_NOTHROW { return m_owner.load(); }
/** Called when the mutex is "created". Note: Not from the constructor
but when the mutex is initialised.
@param[in] id Mutex ID
@param[in] filename File where mutex was created
@param[in] line Line in filename */
void init(latch_id_t id, const char *filename, uint32_t line) UNIV_NOTHROW {
ut_a(m_event == nullptr);
ut_a(!is_locked());
m_event = os_event_create();
m_policy.init(*this, id, filename, line);
}
/** This is the real destructor. This mutex can be created in BSS and
its destructor will be called on exit(). We can't call
os_event_destroy() at that stage. */
void destroy() UNIV_NOTHROW {
ut_ad(!is_locked());
/* We have to free the event before InnoDB shuts down. */
os_event_destroy(m_event);
m_event = nullptr;
m_policy.destroy();
}
/** Try and lock the mutex. Note: POSIX returns 0 on success.
@return true on success */
bool try_lock() UNIV_NOTHROW {
auto expected = std::thread::id{};
return m_owner.compare_exchange_strong(expected,
std::this_thread::get_id());
}
/** Release the mutex. */
void exit() UNIV_NOTHROW {
m_owner.store(std::thread::id{});
if (m_waiters.load()) {
signal();
}
}
/** Acquire the mutex.
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void enter(uint32_t max_spins, uint32_t max_delay, const char *filename,
uint32_t line) UNIV_NOTHROW {
if (!try_lock()) {
spin_and_try_lock(max_spins, max_delay, filename, line);
}
}
/** The event that the mutex will wait in sync0arr.cc
@return even instance */
os_event_t event() UNIV_NOTHROW { return (m_event); }
/** @return true if locked by some thread */
bool is_locked() const UNIV_NOTHROW {
return peek_owner() != std::thread::id{};
}
/** @return true if the calling thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW {
return peek_owner() == std::this_thread::get_id();
}
/** @return non-const version of the policy */
MutexPolicy &policy() UNIV_NOTHROW { return (m_policy); }
/** @return const version of the policy */
const MutexPolicy &policy() const UNIV_NOTHROW { return (m_policy); }
private:
/** Wait in the sync array.
@param[in] filename from where it was called
@param[in] line line number in file
@param[in] spin retry this many times again
@return true if the mutex acquisition was successful. */
bool wait(const char *filename, uint32_t line, uint32_t spin) UNIV_NOTHROW;
/** Spin and wait for the mutex to become free.
@param[in] max_spins max spins
@param[in] max_delay max delay per spin
@param[in,out] n_spins spin start index
@return true if unlocked */
bool is_free(uint32_t max_spins, uint32_t max_delay,
uint32_t &n_spins) const UNIV_NOTHROW {
ut_ad(n_spins <= max_spins);
/* Spin waiting for the lock word to become zero. Note
that we do not have to assume that the read access to
the lock word is atomic, as the actual locking is always
committed with atomic test-and-set. In reality, however,
all processors probably have an atomic read of a memory word. */
do {
if (!is_locked()) {
return (true);
}
ut_delay(ut::random_from_interval_fast(0, max_delay));
++n_spins;
} while (n_spins < max_spins);
return (false);
}
/** Spin while trying to acquire the mutex
@param[in] max_spins max number of spins
@param[in] max_delay max delay per spin
@param[in] filename from where called
@param[in] line within filename */
void spin_and_try_lock(uint32_t max_spins, uint32_t max_delay,
const char *filename, uint32_t line) UNIV_NOTHROW {
uint32_t n_spins = 0;
uint32_t n_waits = 0;
const uint32_t step = max_spins;
for (;;) {
/* If the lock was free then try and acquire it. */
if (is_free(max_spins, max_delay, n_spins)) {
if (try_lock()) {
break;
} else {
continue;
}
} else {
max_spins = n_spins + step;
}
++n_waits;
std::this_thread::yield();
/* The 4 below is a heuristic that has existed for a
very long time now. It is unclear if changing this
value will make a difference.
NOTE: There is a delay that happens before the retry,
finding a free slot in the sync arary and the yield
above. Otherwise we could have simply done the extra
spin above. */
if (wait(filename, line, 4)) {
n_spins += 4;
break;
}
}
/* Waits and yields will be the same number in our
mutex design */
m_policy.add(n_spins, n_waits);
}
/** Note that there are threads waiting on the mutex */
void set_waiters() UNIV_NOTHROW { m_waiters.store(true); }
/** Note that there are no threads waiting on the mutex */
void clear_waiters() UNIV_NOTHROW { m_waiters.store(false); }
/** Wakeup any waiting thread(s). */
void signal() UNIV_NOTHROW;
private:
/** Disable copying */
TTASEventMutex(TTASEventMutex &&) = delete;
TTASEventMutex(const TTASEventMutex &) = delete;
TTASEventMutex &operator=(TTASEventMutex &&) = delete;
TTASEventMutex &operator=(const TTASEventMutex &) = delete;
/** Set to owner's thread's id when locked, and reset to the default
std::thread::id{} when unlocked. */
std::atomic<std::thread::id> m_owner{std::thread::id{}};
/** Used by sync0arr.cc for the wait queue */
os_event_t m_event{};
/** Policy data */
MutexPolicy m_policy;
/** true if there are (or may be) threads waiting
in the global wait array for this mutex to be released. */
std::atomic_bool m_waiters{false};
};
/** Mutex interface for all policy mutexes. This class handles the interfacing
with the Performance Schema instrumentation. */
template <typename MutexImpl>
struct PolicyMutex {
typedef MutexImpl MutexType;
typedef typename MutexImpl::MutexPolicy Policy;
PolicyMutex() UNIV_NOTHROW : m_impl() {
#ifdef UNIV_PFS_MUTEX
m_ptr = nullptr;
#endif /* UNIV_PFS_MUTEX */
}
~PolicyMutex() = default;
/** @return non-const version of the policy */
Policy &policy() UNIV_NOTHROW { return (m_impl.policy()); }
/** @return const version of the policy */
const Policy &policy() const UNIV_NOTHROW { return (m_impl.policy()); }
/** Release the mutex. */
void exit() UNIV_NOTHROW {
#ifdef UNIV_PFS_MUTEX
pfs_exit();
#endif /* UNIV_PFS_MUTEX */
policy().release(m_impl);
m_impl.exit();
}
/** Acquire the mutex.
@param n_spins max number of spins
@param n_delay max delay per spin
@param name filename where locked
@param line line number where locked */
void enter(uint32_t n_spins, uint32_t n_delay, const char *name,
uint32_t line) UNIV_NOTHROW {
#ifdef UNIV_PFS_MUTEX
/* Note: locker is really an alias for state. That's why
it has to be in the same scope during pfs_end(). */
PSI_mutex_locker_state state;
PSI_mutex_locker *locker;
locker = pfs_begin_lock(&state, name, line);
#endif /* UNIV_PFS_MUTEX */
policy().enter(m_impl, name, line);
m_impl.enter(n_spins, n_delay, name, line);
policy().locked(m_impl, name, line);
#ifdef UNIV_PFS_MUTEX
pfs_end(locker, 0);
#endif /* UNIV_PFS_MUTEX */
}
/** Try and lock the mutex, return 0 on SUCCESS and 1 otherwise.
@param name filename where locked
@param line line number where locked */
int trylock(const char *name, uint32_t line) UNIV_NOTHROW {
#ifdef UNIV_PFS_MUTEX
/* Note: locker is really an alias for state. That's why
it has to be in the same scope during pfs_end(). */
PSI_mutex_locker_state state;
PSI_mutex_locker *locker;
locker = pfs_begin_trylock(&state, name, line);
#endif /* UNIV_PFS_MUTEX */
/* There is a subtlety here, we check the mutex ordering
after locking here. This is only done to avoid add and
then remove if the trylock was unsuccessful. */
int ret = m_impl.try_lock() ? 0 : 1;
if (ret == 0) {
policy().enter(m_impl, name, line);
policy().locked(m_impl, name, line);
}
#ifdef UNIV_PFS_MUTEX
pfs_end(locker, ret);
#endif /* UNIV_PFS_MUTEX */
return (ret);
}
#ifdef UNIV_DEBUG
/** @return true if the thread owns the mutex. */
bool is_owned() const UNIV_NOTHROW { return (m_impl.is_owned()); }
#endif /* UNIV_DEBUG */
/**
Initialise the mutex.
@param[in] id Mutex ID
@param[in] filename file where created
@param[in] line line number in file where created */
void init(latch_id_t id, const char *filename, uint32_t line) UNIV_NOTHROW {
#ifdef UNIV_PFS_MUTEX
pfs_add(sync_latch_get_pfs_key(id));
#endif /* UNIV_PFS_MUTEX */
m_impl.init(id, filename, line);
}
/** Free resources (if any) */
void destroy() UNIV_NOTHROW {
#ifdef UNIV_PFS_MUTEX
pfs_del();
#endif /* UNIV_PFS_MUTEX */
m_impl.destroy();
}
/** Required for os_event_t */
operator sys_mutex_t *() UNIV_NOTHROW {
return (m_impl.operator sys_mutex_t *());
}
#ifdef UNIV_PFS_MUTEX
/** Performance schema monitoring - register mutex with PFS.
Note: This is public only because we want to get around an issue
with registering a subset of buffer pool pages with PFS when
PFS_GROUP_BUFFER_SYNC is defined. Therefore this has to then
be called by external code (see buf0buf.cc).
@param key - Performance Schema key. */
void pfs_add(mysql_pfs_key_t key) UNIV_NOTHROW {
ut_ad(m_ptr == nullptr);
m_ptr = PSI_MUTEX_CALL(init_mutex)(key.m_value, this);
}
private:
/** Performance schema monitoring.
@param state - PFS locker state
@param name - file name where locked
@param line - line number in file where locked */
PSI_mutex_locker *pfs_begin_lock(PSI_mutex_locker_state *state,
const char *name,
uint32_t line) UNIV_NOTHROW {
if (m_ptr != nullptr) {
if (m_ptr->m_enabled) {
return (PSI_MUTEX_CALL(start_mutex_wait)(state, m_ptr, PSI_MUTEX_LOCK,
name, (uint)line));
}
}
return (nullptr);
}
/** Performance schema monitoring.
@param state - PFS locker state
@param name - file name where locked
@param line - line number in file where locked */
PSI_mutex_locker *pfs_begin_trylock(PSI_mutex_locker_state *state,
const char *name,
uint32_t line) UNIV_NOTHROW {
if (m_ptr != nullptr) {
if (m_ptr->m_enabled) {
return (PSI_MUTEX_CALL(start_mutex_wait)(
state, m_ptr, PSI_MUTEX_TRYLOCK, name, (uint)line));
}
}
return (nullptr);
}
/** Performance schema monitoring
@param locker - PFS identifier
@param ret - 0 for success and 1 for failure */
void pfs_end(PSI_mutex_locker *locker, int ret) UNIV_NOTHROW {
if (locker != nullptr) {
PSI_MUTEX_CALL(end_mutex_wait)(locker, ret);
}
}
/** Performance schema monitoring - register mutex release */
void pfs_exit() {
if (m_ptr != nullptr) {
if (m_ptr->m_enabled) {
PSI_MUTEX_CALL(unlock_mutex)(m_ptr);
}
}
}
/** Performance schema monitoring - deregister */
void pfs_del() {
if (m_ptr != nullptr) {
PSI_MUTEX_CALL(destroy_mutex)(m_ptr);
m_ptr = nullptr;
}
}
#endif /* UNIV_PFS_MUTEX */
private:
/** The mutex implementation */
MutexImpl m_impl;
#ifdef UNIV_PFS_MUTEX
/** The performance schema instrumentation hook. */
PSI_mutex *m_ptr;
#endif /* UNIV_PFS_MUTEX */
};
#endif /* ib0mutex_h */
|