File: ut0math.h

package info (click to toggle)
mysql-8.0 8.0.44-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,272,892 kB
  • sloc: cpp: 4,685,345; ansic: 412,712; pascal: 108,395; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; python: 21,816; sh: 17,285; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,083; makefile: 1,793; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (330 lines) | stat: -rw-r--r-- 12,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*****************************************************************************

Copyright (c) 2021, 2025, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.

This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA

*****************************************************************************/

/** @file include/ut0math.h
 Math functions.

 ***********************************************************************/

#ifndef ut0math_h
#define ut0math_h

#include <atomic>
#include <cstdint>
#include "ut0class_life_cycle.h"
#include "ut0dbg.h"
#include "ut0seq_lock.h"

namespace ut {
/** Portable replacement for std::countr_zero(uint64_t) from C++20
@param x  the number you wish to count least significant zeros of
@return number of least significant zeros, which can be between 0 and 64
inclusive. */
static inline int countr_zero(uint64_t x) {
  /*  ~  changes trailing 0s to 1s, and the least significant 1 to 0
     +1  causes 1s to flip to 0s again, but carry over changes 0 to 1
     x&  will not match anywhere except that least significant 1
  Note: it could be entirely missing if x==0, which is fine. */
  x &= ~x + 1;
  /* The bit sequence of this constant is such, that each 6-bit window
  of it (with wrap-around) is different. It is an Euler's cycle in the
  graph with 32 5-bit nodes, and 64 1-bit edges, found by:
     void dfs(int n){
       for(int i=0;i<2;++i){
         if(!passed[n][i]){
           passed[n][i]=true;
           dfs(((n<<1)|i)&31); // add i to node label, drop highest bit
           backtrack.push_back(i); // edge label
         }
       }
     }
  Of all rotations of such cycle we pick starting with 6 zeros. This
  way each shift of this constant has a different topmost 6 bits. */
  constexpr uint64_t de_brujin_sequence = 151050438420815295u;
  /* should fit one cache line in data section */
  constexpr static uint8_t ans[64] = {
      0,  1,  2,  7,  3,  13, 8,  19, 4,  25, 14, 28, 9,  34, 20, 40,
      5,  17, 26, 38, 15, 46, 29, 48, 10, 31, 35, 54, 21, 50, 41, 57,
      63, 6,  12, 18, 24, 27, 33, 39, 16, 37, 45, 47, 30, 53, 49, 56,
      62, 11, 23, 32, 36, 44, 52, 55, 61, 22, 43, 51, 60, 42, 59, 58,
  };
  return x == 0 ? 64 : ans[(x * de_brujin_sequence >> (64 - 6)) & 63];
}

/** Computes the result of division rounded towards positive infinity.
@param[in] numerator     The number you want to be divided
@param[in] denominator   The number you want to divide by
@return ceil(numerator/denominator). */
template <typename T>
constexpr T div_ceil(T numerator, T denominator) {
  static_assert(std::is_integral_v<T>, "div_ceil<T> needs integral T");
  /* see https://gist.github.com/Eisenwave/2a7d7a4e74e99bbb513984107a6c63ef
  for list of common pitfalls, and this beautiful solution which compiles to
  - branchless code with one division operation for unsigned ints,
  - branchless (but longer) code with one division operation for signed ints,
  - branchless code with just shifts and adds for constant d=constexpr 2^k,
  - branchless code with multiplication instead of division for constexpr d
  All that correctly handling negative numerators, denominators, and values
  close to or equal to the max() or min(). */
  const bool quotient_not_negative{(numerator < 0) == (denominator < 0)};
  return numerator / denominator +
         (quotient_not_negative && numerator % denominator != 0);
}

/** Calculates the 128bit result of multiplication of the two specified 64bit
integers. May use CPU native instructions for speed of standard uint64_t
multiplication.
@param[in] x First number to multiply.
@param[in] y Second number to multiply.
@param[out] hi A reference to 64bit integer that will store higher 64bits of the
result.
@return The lower 64bit of the result. */
[[nodiscard]] static inline uint64_t multiply_uint64(uint64_t x, uint64_t y,
                                                     uint64_t &hi);

/*Calculates the 64bit result of division of the specified 128bit integer by the
specified 64bit integer. The result must fit in 64bit or else the behavior is
undefined. Currently does not use native CPU instructions and can be quite slow.
@param[in] high High 64bits of the number to divide.
@param[in] low Low 64bits of the number to divide.
@param[in] div The number to divide by.
@return The lower 64bit of the result. */
[[nodiscard]] static inline uint64_t divide_128(uint64_t high, uint64_t low,
                                                uint64_t div);
class fast_modulo_t;

/** Looks for a prime number slightly greater than the given argument.
The prime is chosen so that it is not near any power of 2.
@param[in]	n  positive number > 100
@return prime */
[[nodiscard]] uint64_t find_prime(uint64_t n);

namespace detail {
/** Calculates the 128bit result of multiplication of the two specified 64bit
integers.
@param[in] x First number to multiply.
@param[in] y Second number to multiply.
@param[out] hi A reference to 64bit integer that will store higher 64bits of the
result.
@return The lower 64bit of the result. */
[[nodiscard]] constexpr uint64_t multiply_uint64_portable(uint64_t x,
                                                          uint64_t y,
                                                          uint64_t &hi) {
  uint32_t x_hi = static_cast<uint32_t>(x >> 32);
  uint32_t x_lo = static_cast<uint32_t>(x);
  uint32_t y_hi = static_cast<uint32_t>(y >> 32);
  uint32_t y_lo = static_cast<uint32_t>(y);

  uint64_t hi_lo = static_cast<uint64_t>(x_hi) * y_lo;

  uint64_t low = static_cast<uint64_t>(x_lo) * y_lo;
  /* This will not overflow, as (2^32 -1)^2 = 2^64 - 1 - 2 * 2^32, so there is
  still a place for two 32bit integers to be added. */
  uint64_t mid = (low >> 32) + static_cast<uint64_t>(x_lo) * y_hi +
                 static_cast<uint32_t>(hi_lo);
  hi = (mid >> 32) + static_cast<uint64_t>(x_hi) * y_hi + (hi_lo >> 32);
  return static_cast<uint32_t>(low) + (mid << 32);
}
}  // namespace detail

#if defined(_MSC_VER) && defined(_M_X64) && !defined(_M_ARM64EC)
/* MSVC x86 supports native uint64_t -> uint128_t multiplication */
#include <intrin.h>
#pragma intrinsic(_umul128)
[[nodiscard]] static inline uint64_t multiply_uint64(uint64_t x, uint64_t y,
                                                     uint64_t &hi) {
  return _umul128(x, y, &hi);
}
#elif defined(__SIZEOF_INT128__)
/* Compiler supports 128-bit values (GCC/Clang) */

[[nodiscard]] static inline uint64_t multiply_uint64(uint64_t x, uint64_t y,
                                                     uint64_t &hi) {
  unsigned __int128 res = (unsigned __int128)x * y;
  hi = static_cast<uint64_t>(res >> 64);
  return static_cast<uint64_t>(res);
}
#else
[[nodiscard]] static inline uint64_t multiply_uint64(uint64_t x, uint64_t y,
                                                     uint64_t &hi) {
  return detail::multiply_uint64_portable(x, y, hi);
}
#endif

[[nodiscard]] static inline uint64_t divide_128(uint64_t high, uint64_t low,
                                                uint64_t div) {
  uint64_t res = 0;
  for (auto current_bit = 63; current_bit >= 0; current_bit--) {
    const auto div_hi = current_bit ? (div >> (64 - current_bit)) : 0;
    const auto div_lo = div << current_bit;
    if (div_hi < high || (div_hi == high && div_lo <= low)) {
      high -= div_hi;
      if (low < div_lo) {
        high--;
      }
      low -= div_lo;
      res += 1ULL << current_bit;
    }
  }
  return res;
}

/** Allows to execute x % mod for a specified mod in a fast way, without using a
slow operation of division. The additional cost is hidden in constructor to
preprocess the mod constant. */
class fast_modulo_t {
  /* Idea behind this implementation is following: (division sign in all
  equations below is to be treated as mathematical division on reals)

      x  % mod =  x - floor(x/mod)*mod

  and...

      x / mod  =  x * 1/mod =  (x *  (BIG/mod)) /BIG

  and..

      floor(x/mod) =  x / mod  - epsilon, where 0<=epsilon<1

  Now, lets define:

      M = floor(BIG/mod)

  And take a look at the value of following expression:

      floor( x*M / BIG) * mod =

          floor(x * floor(BIG/mod) / BIG) * mod =
          floor(x * ((BIG/mod)-epsilon1) / BIG) * mod =
          ((x*((BIG/mod)-epsilon1)/BIG - epsilon2) * mod

  This sure looks ugly, but it has interesting properties:
    (1) is divisible by mod, which you can see, because it has a form (...)*
  mod
    (2) is smaller or equal to x, which you can see by setting epsilons to 0
    (3) assuming BIG>x, the expression is strictly larger than x - 2*mod,
  because it must be larger than the value for epsilons=1, which is:
          ((x*((BIG/mod)-1))/BIG - 1) * mod  =
             ((x*BIG/mod - x)/BIG -1) * mod =
             ((x/mod - x/BIG) - 1) * mod =
             (x - x/BIG*mod - mod)
    (4) we can compute it without using division at all, if BIG is 1<<k,
       as it simplifies to
       (( x * M ) >> k ) * mod

  So, assuming BIG>x, and is a power of two (say BIG=1<<64), we get an
  expression, which is divisible by mod, and if we subtract it from x, we get
  something in the range [0...,2mod). What is left is to compare against mod,
  and subtract it if it is higher.
  */

 public:
  fast_modulo_t() = default;
  explicit fast_modulo_t(uint64_t mod)
      : m_mod(mod), m_inv(precompute_inv(mod)) {}
  explicit fast_modulo_t(uint64_t mod, uint64_t inv) : m_mod(mod), m_inv(inv) {}

  /** Computes the value of x % mod. */
  uint64_t compute(uint64_t x) const {
    uint64_t hi;
    (void)multiply_uint64(x, m_inv, hi);

    const uint64_t guess = hi * m_mod;
    const uint64_t rest = x - guess;

    return rest - (m_mod <= rest) * m_mod;
  }

  /** Gets the precomputed value of inverse. */
  uint64_t get_inverse() const { return m_inv; }

  /** Gets the modulo value. */
  uint64_t get_mod() const { return m_mod; }

  /** Precomputes the inverse needed for fast modulo operations. */
  static uint64_t precompute_inv(uint64_t mod) {
    /* pedantic matter: for mod=1 -- you can remove it if you never plan to use
    it for 1. */
    if (mod == 1) {
      /* According to equations we want M to be 1<<64, but this overflows
      uint64_t, so, let's do the second best thing we can, which is 1<<64-1,
      this means that our `guess` will be  ((x<<64 - x) >> 64)*mod, which for
      x=0, is 0 (good), and for x>0 is (x-1)*mod = (x-1)*1 = x-1, and then
      rest=1, which is also good enough (<2*mod). */
      return ~uint64_t{0};
    } else {
      return divide_128(1, 0, mod);
    }
  }

 private:
  uint64_t m_mod{0};
  uint64_t m_inv{0};
};

/** A class that allows to atomically set new modulo value for fast modulo
computations. */
class mt_fast_modulo_t : private Non_copyable {
 public:
  mt_fast_modulo_t() : m_data{0ULL, 0ULL} {}
  explicit mt_fast_modulo_t(uint64_t mod)
      : m_data{mod, fast_modulo_t::precompute_inv(mod)} {}
  /* This class can be made copyable, but this requires additional constructors.
   */

  fast_modulo_t load() const {
    return m_data.read([](const data_t &stored_data) {
      return fast_modulo_t{stored_data.m_mod.load(std::memory_order_relaxed),
                           stored_data.m_inv.load(std::memory_order_relaxed)};
    });
  }

  void store(uint64_t new_mod) {
    const fast_modulo_t new_fast_modulo{new_mod};
    const auto inv = new_fast_modulo.get_inverse();
    m_data.write([&](data_t &data) {
      data.m_mod.store(new_mod, std::memory_order_relaxed);
      data.m_inv.store(inv, std::memory_order_relaxed);
    });
  }

 private:
  struct data_t {
    std::atomic<uint64_t> m_mod;
    std::atomic<uint64_t> m_inv;
  };

  Seq_lock<data_t> m_data;
};

}  // namespace ut

static inline uint64_t operator%(uint64_t x, const ut::fast_modulo_t &fm) {
  return fm.compute(x);
}

#endif