File: srv0srv.cc

package info (click to toggle)
mysql-8.0 8.0.44-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,272,892 kB
  • sloc: cpp: 4,685,345; ansic: 412,712; pascal: 108,395; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; python: 21,816; sh: 17,285; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,083; makefile: 1,793; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (3268 lines) | stat: -rw-r--r-- 104,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
/*****************************************************************************

Copyright (c) 1995, 2025, Oracle and/or its affiliates.
Copyright (c) 2008, 2009 Google Inc.
Copyright (c) 2009, Percona Inc.

Portions of this file contain modifications contributed and copyrighted by
Google, Inc. Those modifications are gratefully acknowledged and are described
briefly in the InnoDB documentation. The contributions by Google are
incorporated with their permission, and subject to the conditions contained in
the file COPYING.Google.

Portions of this file contain modifications contributed and copyrighted
by Percona Inc.. Those modifications are
gratefully acknowledged and are described briefly in the InnoDB
documentation. The contributions by Percona Inc. are incorporated with
their permission, and subject to the conditions contained in the file
COPYING.Percona.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.

This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA

*****************************************************************************/

/** @file srv/srv0srv.cc
 The database server main program

 Created 10/8/1995 Heikki Tuuri
 *******************************************************/

#ifndef UNIV_HOTBACKUP
#include <mysqld.h>
#include <sys/types.h>
#include <time.h>

#include <chrono>
#include <limits>

#include "btr0sea.h"
#include "buf0flu.h"
#include "buf0lru.h"
#include "clone0api.h"
#include "dict0boot.h"
#include "dict0load.h"
#include "dict0stats_bg.h"
#include "fsp0sysspace.h"
#include "ha_prototypes.h"
#endif /* !UNIV_HOTBACKUP */
#include "ibuf0ibuf.h"
#ifndef UNIV_HOTBACKUP
#include "lock0lock.h"
#include "log0buf.h"
#include "log0chkp.h"
#include "log0encryption.h"
#include "log0recv.h"
#include "log0write.h"
#include "mem0mem.h"
#include "os0proc.h"
#include "os0thread-create.h"
#include "pars0pars.h"
#include "que0que.h"
#include "row0mysql.h"
#include "sql_thd_internal_api.h"
#include "srv0mon.h"

#include "my_dbug.h"
#include "my_psi_config.h"

#endif /* !UNIV_HOTBACKUP */
#include "srv0srv.h"
#include "srv0start.h"
#include "sync0sync.h"
#ifndef UNIV_HOTBACKUP
#include "trx0i_s.h"
#include "trx0purge.h"
#include "usr0sess.h"
#include "ut0crc32.h"
#endif /* !UNIV_HOTBACKUP */
#include "ut0mem.h"

#ifdef UNIV_HOTBACKUP
#include "page0size.h"
#else
/** Structure with state of srv background threads. */
Srv_threads srv_threads;

/** Structure with cpu usage information. */
Srv_cpu_usage srv_cpu_usage;
#endif /* UNIV_HOTBACKUP */

#ifdef INNODB_DD_TABLE
/* true when upgrading. */
bool srv_is_upgrade_mode = false;
bool srv_downgrade_logs = false;
bool srv_upgrade_old_undo_found = false;
#endif /* INNODB_DD_TABLE */

/* Revert to old partition file name if upgrade fails. */
bool srv_downgrade_partition_files = false;

/* The following is the maximum allowed duration of a lock wait. */
ulong srv_fatal_semaphore_wait_threshold = 600;
std::atomic<int> srv_fatal_semaphore_wait_extend{0};

std::chrono::seconds get_srv_fatal_semaphore_wait_threshold() {
  return std::chrono::seconds{srv_fatal_semaphore_wait_threshold};
}

/* How much data manipulation language (DML) statements need to be delayed,
in microseconds, in order to reduce the lagging of the purge thread. */
ulint srv_dml_needed_delay = 0;

const char *srv_main_thread_op_info = "";

/* Server parameters which are read from the initfile */

/* The following three are dir paths which are concatenated before file
names, where the file name itself may also contain a path */

char *srv_data_home = nullptr;

/** Separate directory for doublewrite files, if it is not NULL */
char *srv_doublewrite_dir = nullptr;

/** The innodb_directories variable value. This a list of directories
deliminated by ';', i.e the FIL_PATH_SEPARATOR. */
char *srv_innodb_directories = nullptr;

/** Number of threads spawned for initializing rollback segments
in parallel */
uint32_t srv_rseg_init_threads = 1;

/** Undo tablespace directories.  This can be multiple paths
separated by ';' and can also be absolute paths. */
char *srv_undo_dir = nullptr;

/** The number of implicit undo tablespaces to use for rollback
segments. */
ulong srv_undo_tablespaces = FSP_IMPLICIT_UNDO_TABLESPACES;

#ifndef UNIV_HOTBACKUP
/* The number of rollback segments per tablespace */
ulong srv_rollback_segments = TRX_SYS_N_RSEGS;

/* Used for the deprecated setting innodb_undo_logs. This will still get
put into srv_rollback_segments if it is set to a non-default value. */
ulong srv_undo_logs = 0;
const char *deprecated_undo_logs =
    "The parameter innodb_undo_logs is deprecated"
    " and may be removed in future releases."
    " Please use innodb_rollback_segments instead."
    " See " REFMAN "innodb-undo-logs.html";

/** Rate at which UNDO records should be purged. */
ulong srv_purge_rseg_truncate_frequency =
    static_cast<ulong>(undo::TRUNCATE_FREQUENCY);
#endif /* !UNIV_HOTBACKUP */

/** Enable or Disable Truncate of UNDO tablespace.
Note: If enabled then UNDO tablespace will be selected for truncate.
While Server waits for undo-tablespace to truncate if user disables
it, truncate action is completed but no new tablespace is marked
for truncate (action is never aborted). */
bool srv_undo_log_truncate = false;

/** Enable or disable Encrypt of UNDO tablespace. */
bool srv_undo_log_encrypt = false;

/** Maximum size of undo tablespace. */
unsigned long long srv_max_undo_tablespace_size;

/** Maximum number of recently truncated undo tablespace IDs for
the same undo number. */
const size_t CONCURRENT_UNDO_TRUNCATE_LIMIT =
    dict_sys_t::s_undo_space_id_range / 8;

/** Set if InnoDB must operate in read-only mode. We don't do any
recovery and open all tables in RO mode instead of RW mode. We don't
sync the max trx id to disk either. */
bool srv_read_only_mode;

/** store to its own file each table created by an user; data
dictionary tables are in the system tablespace 0 */
bool srv_file_per_table;

/** Sort buffer size in index creation */
ulong srv_sort_buf_size = 1048576;
/** Maximum modification log file size for online index creation */
unsigned long long srv_online_max_size;
/** Set if InnoDB operates in read-only mode or innodb-force-recovery
is greater than SRV_FORCE_NO_TRX_UNDO. */
bool high_level_read_only;

/** Number of threads to use for parallel reads. */
ulong srv_parallel_read_threads;

/** If this flag is true, then we will use the native aio of the
OS (provided we compiled Innobase with it in), otherwise we will
use simulated aio we build below with threads. */
bool srv_use_native_aio = false;

bool srv_numa_interleave = false;

#ifdef UNIV_DEBUG
/** Force all user tables to use page compression. */
ulong srv_debug_compress;
/** Set when InnoDB has invoked exit(). */
bool innodb_calling_exit;
/** Used by SET GLOBAL innodb_master_thread_disabled_debug = X. */
bool srv_master_thread_disabled_debug;
#ifndef UNIV_HOTBACKUP
/** Event used to inform that master thread is disabled. */
static os_event_t srv_master_thread_disabled_event;
#endif /* !UNIV_HOTBACKUP */
#endif /* UNIV_DEBUG */

/*------------------------- LOG FILES ------------------------ */
char *srv_log_group_home_dir = nullptr;

/** Enable or disable Encrypt of REDO tablespace. */
bool srv_redo_log_encrypt = false;

ulong srv_log_n_files = 100; /* Deprecated (used only for deprecated sysvar). */

ulonglong srv_log_file_size; /* Deprecated (used only for deprecated sysvar). */

ulonglong srv_redo_log_capacity, srv_redo_log_capacity_used;

#ifdef UNIV_DEBUG_DEDICATED
ulong srv_debug_system_mem_size;
#endif /* UNIV_DEBUG_DEDICATED */

/** Space for log buffer, expressed in bytes. Note, that log buffer
will use only the largest power of two, which is not greater than
the assigned space. */
ulong srv_log_buffer_size;

/** Size of block, used for writing ahead to avoid read-on-write. */
ulong srv_log_write_ahead_size;

/** Whether to activate/pause the log writer threads. */
bool srv_log_writer_threads;

/** Minimum absolute value of cpu time for which spin-delay is used. */
uint srv_log_spin_cpu_abs_lwm;

/** Maximum percentage of cpu time for which spin-delay is used. */
uint srv_log_spin_cpu_pct_hwm;

/** Maximum value of average log flush time for which spin-delay is used.
When flushing takes longer, user threads no longer spin when waiting for
flushed redo. Expressed in microseconds. */
ulong srv_log_wait_for_flush_spin_hwm;

/* EXPERIMENTAL sys vars below - we need defaults set explicitly here. */

/** When log writer follows links in the log recent written buffer,
it stops when it has reached at least that many bytes to write,
limiting how many bytes can be written in single call. */
ulong srv_log_write_max_size = INNODB_LOG_WRITE_MAX_SIZE_DEFAULT;

/** Number of events used for notifications about redo write. */
ulong srv_log_write_events = INNODB_LOG_EVENTS_DEFAULT;

/** Number of events used for notifications about redo flush. */
ulong srv_log_flush_events = INNODB_LOG_EVENTS_DEFAULT;

/** Number of slots in a small buffer, which is used to allow concurrent
writes to log buffer. The slots are addressed by LSN values modulo number
of the slots. */
ulong srv_log_recent_written_size = INNODB_LOG_RECENT_WRITTEN_SIZE_DEFAULT;

/** Number of slots in a small buffer, which is used to break requirement
for total order of dirty pages, when they are added to flush lists.
The slots are addressed by LSN values modulo number of the slots. */
ulong srv_log_recent_closed_size = INNODB_LOG_RECENT_CLOSED_SIZE_DEFAULT;

/** Number of spin iterations, when spinning and waiting for log buffer
written up to given LSN, before we fallback to loop with sleeps.
This is not used when user thread has to wait for log flushed to disk. */
ulong srv_log_wait_for_write_spin_delay =
    INNODB_LOG_WAIT_FOR_WRITE_SPIN_DELAY_DEFAULT;

/** Timeout used when waiting for redo write (microseconds). */
ulong srv_log_wait_for_write_timeout =
    INNODB_LOG_WAIT_FOR_WRITE_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_wait_for_write_timeout() {
  return std::chrono::microseconds{srv_log_wait_for_write_timeout};
}

/** Number of spin iterations, when spinning and waiting for log flushed. */
ulong srv_log_wait_for_flush_spin_delay =
    INNODB_LOG_WAIT_FOR_FLUSH_SPIN_DELAY_DEFAULT;

/** Timeout used when waiting for redo flush (microseconds). */
ulong srv_log_wait_for_flush_timeout =
    INNODB_LOG_WAIT_FOR_FLUSH_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_wait_for_flush_timeout() {
  return std::chrono::microseconds{srv_log_wait_for_flush_timeout};
}

/** Number of spin iterations, for which log writer thread is waiting
for new data to write or flush without sleeping. */
ulong srv_log_writer_spin_delay = INNODB_LOG_WRITER_SPIN_DELAY_DEFAULT;

/** Initial timeout used to wait on writer_event. */
ulong srv_log_writer_timeout = INNODB_LOG_WRITER_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_writer_timeout() {
  return std::chrono::microseconds{srv_log_writer_timeout};
}

/** Number of milliseconds every which a periodical checkpoint is written
by the log checkpointer thread (unless periodical checkpoints are disabled,
which is a case during initial phase of startup). */
ulong srv_log_checkpoint_every = INNODB_LOG_CHECKPOINT_EVERY_DEFAULT;

std::chrono::milliseconds get_srv_log_checkpoint_every() {
  return std::chrono::milliseconds{srv_log_checkpoint_every};
}

/** Number of spin iterations, for which log flusher thread is waiting
for new data to flush, without sleeping. */
ulong srv_log_flusher_spin_delay = INNODB_LOG_FLUSHER_SPIN_DELAY_DEFAULT;

/** Initial timeout used to wait on flusher_event. */
ulong srv_log_flusher_timeout = INNODB_LOG_FLUSHER_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_flusher_timeout() {
  return std::chrono::microseconds{srv_log_flusher_timeout};
}

/** Number of spin iterations, for which log write notifier thread is waiting
for advanced flushed_to_disk_lsn without sleeping. */
ulong srv_log_write_notifier_spin_delay =
    INNODB_LOG_WRITE_NOTIFIER_SPIN_DELAY_DEFAULT;

/** Initial timeout used to wait on write_notifier_event. */
ulong srv_log_write_notifier_timeout =
    INNODB_LOG_WRITE_NOTIFIER_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_write_notifier_timeout() {
  return std::chrono::microseconds{srv_log_write_notifier_timeout};
}

/** Number of spin iterations, for which log flush notifier thread is waiting
for advanced flushed_to_disk_lsn without sleeping. */
ulong srv_log_flush_notifier_spin_delay =
    INNODB_LOG_FLUSH_NOTIFIER_SPIN_DELAY_DEFAULT;

/** Initial timeout used to wait on flush_notifier_event. */
ulong srv_log_flush_notifier_timeout =
    INNODB_LOG_FLUSH_NOTIFIER_TIMEOUT_DEFAULT;

std::chrono::microseconds get_srv_log_flush_notifier_timeout() {
  return std::chrono::microseconds{srv_log_flush_notifier_timeout};
}

/* End of EXPERIMENTAL sys vars */

/** Whether to generate and require checksums on the redo log pages. */
bool srv_log_checksums;

#ifdef UNIV_DEBUG

bool srv_checkpoint_disabled = false;

bool srv_inject_too_many_concurrent_trxs = false;

#endif /* UNIV_DEBUG */

ulong srv_flush_log_at_trx_commit = 1;
uint srv_flush_log_at_timeout = 1;
std::chrono::seconds get_srv_flush_log_at_timeout() {
  return std::chrono::seconds(srv_flush_log_at_timeout);
}
ulong srv_page_size = UNIV_PAGE_SIZE_DEF;
ulong srv_page_size_shift = UNIV_PAGE_SIZE_SHIFT_DEF;

page_size_t univ_page_size(0, 0, false);

/* Try to flush dirty pages so as to avoid IO bursts at
the checkpoints. */
bool srv_adaptive_flushing = true;

/* Allow IO bursts at the checkpoints ignoring io_capacity setting. */
bool srv_flush_sync = true;

/** Maximum number of times allowed to conditionally acquire
mutex before switching to blocking wait on the mutex */
#define MAX_MUTEX_NOWAIT 20

/** Check whether the number of failed nonblocking mutex
acquisition attempts exceeds maximum allowed value. If so,
srv_printf_innodb_monitor() will request mutex acquisition
with mutex_enter(), which will wait until it gets the mutex. */
#define MUTEX_NOWAIT(mutex_skipped) ((mutex_skipped) < MAX_MUTEX_NOWAIT)

/** Dedicated server setting */
bool srv_dedicated_server = true;
/** Requested size in bytes */
ulint srv_buf_pool_size = ULINT_MAX;
/** Minimum pool size in bytes */
const ulint srv_buf_pool_min_size = 5 * 1024 * 1024;
/** Default pool size in bytes */
const ulint srv_buf_pool_def_size = 128 * 1024 * 1024;
/** Maximum pool size in bytes */
const longlong srv_buf_pool_max_size = LLONG_MAX;
/** Requested buffer pool chunk size. Each buffer pool instance consists
of one or more chunks. */
ulonglong srv_buf_pool_chunk_unit;
/** Minimum buffer pool chunk size. */
const ulonglong srv_buf_pool_chunk_unit_min = (1024 * 1024);
/** The buffer pool chunk size must be a multiple of this number. */
const ulonglong srv_buf_pool_chunk_unit_blk_sz = (1024 * 1024);
/** Maximum buffer pool chunk size. */
const ulonglong srv_buf_pool_chunk_unit_max =
    srv_buf_pool_max_size / MAX_BUFFER_POOLS;
/** Requested number of buffer pool instances */
ulong srv_buf_pool_instances;
/** Default number of buffer pool instances */
const ulong srv_buf_pool_instances_default = 0;
/** Number of locks to protect buf_pool->page_hash */
ulong srv_n_page_hash_locks = 16;
/** Whether to validate InnoDB tablespace paths on startup */
bool srv_validate_tablespace_paths = true;
/** Use fdatasync() instead of fsync(). */
bool srv_use_fdatasync = false;
/** Scan depth for LRU flush batch i.e.: number of blocks scanned*/
ulong srv_LRU_scan_depth = 1024;
/** Whether or not to flush neighbors of a block */
ulong srv_flush_neighbors = 1;
/** Previously requested size. Accesses protected by memory barriers. */
ulint srv_buf_pool_old_size = 0;
/** Current size as scaling factor for the other components */
ulint srv_buf_pool_base_size = 0;
/** Current size in bytes */
long long srv_buf_pool_curr_size = 0;
/** Dump this % of each buffer pool during BP dump */
ulong srv_buf_pool_dump_pct;
/** Lock table size in bytes */
ulint srv_lock_table_size = ULINT_MAX;

const ulong srv_idle_flush_pct_default = 100;
ulong srv_idle_flush_pct = srv_idle_flush_pct_default;

/* This parameter is deprecated. Use srv_n_io_[read|write]_threads
instead. */
ulong srv_n_read_io_threads;
ulong srv_n_write_io_threads;

/* Switch to enable random read ahead. */
bool srv_random_read_ahead = false;
/* User settable value of the number of pages that must be present
in the buffer cache and accessed sequentially for InnoDB to trigger a
readahead request. */
ulong srv_read_ahead_threshold = 56;

/** Maximum on-disk size of change buffer in terms of percentage
of the buffer pool. */
uint srv_change_buffer_max_size = CHANGE_BUFFER_DEFAULT_SIZE;

#ifndef _WIN32
enum srv_unix_flush_t srv_unix_file_flush_method = SRV_UNIX_FSYNC;
#else
enum srv_win_flush_t srv_win_file_flush_method = SRV_WIN_IO_UNBUFFERED;
#endif /* _WIN32 */

/* Number of IO operations per second the server can do */
ulong srv_io_capacity = 200;
ulong srv_max_io_capacity = 400;

/* The number of page cleaner threads to use.*/
ulong srv_n_page_cleaners = 4;

/* The InnoDB main thread tries to keep the ratio of modified pages
in the buffer pool to all database pages in the buffer pool smaller than
the following number. But it is not guaranteed that the value stays below
that during a time of heavy update/insert activity. */

double srv_max_buf_pool_modified_pct = 75.0;
double srv_max_dirty_pages_pct_lwm = 0.0;

/* This is the percentage of log capacity at which adaptive flushing,
if enabled, will kick in. */
ulong srv_adaptive_flushing_lwm = 10;

/* Number of iterations over which adaptive flushing is averaged. */
ulong srv_flushing_avg_loops = 30;

/* The number of purge threads to use.*/
ulong srv_n_purge_threads = 4;

/* the number of pages to purge in one batch */
ulong srv_purge_batch_size = 20;

/* Internal setting for "innodb_stats_method". Decides how InnoDB treats
NULL value when collecting statistics. By default, it is set to
SRV_STATS_NULLS_EQUAL(0), ie. all NULL value are treated equal */
ulong srv_innodb_stats_method = SRV_STATS_NULLS_EQUAL;

bool tbsp_extend_and_initialize = true;

#ifndef UNIV_HOTBACKUP
srv_stats_t srv_stats;
#endif /* !UNIV_HOTBACKUP */

/* structure to pass status variables to MySQL */
export_var_t export_vars;

/** Normally 0. When nonzero, skip some phases of crash recovery,
starting from SRV_FORCE_IGNORE_CORRUPT, so that data can be recovered
by SELECT or mysqldump. When this is nonzero, we do not allow any user
modifications to the data. */
ulong srv_force_recovery;
#ifdef UNIV_DEBUG
/** Inject a crash at different steps of the recovery process.
This is for testing and debugging only. */
ulong srv_force_recovery_crash;
#endif /* UNIV_DEBUG */

/** Print all user-level transactions deadlocks to mysqld stderr */
bool srv_print_all_deadlocks = false;

/** Print all DDL logs to mysqld stderr */
bool srv_print_ddl_logs = false;

/** Enable INFORMATION_SCHEMA.innodb_cmp_per_index */
bool srv_cmp_per_index_enabled = false;

/** If innodb redo logging is enabled. */
bool srv_redo_log = true;

/** The value of the configuration parameter innodb_fast_shutdown,
controlling the InnoDB shutdown.

If innodb_fast_shutdown=0, InnoDB shutdown will purge all undo log
records (except XA PREPARE transactions) and complete the merge of the
entire change buffer, and then shut down the redo log.

If innodb_fast_shutdown=1, InnoDB shutdown will only flush the buffer
pool to data files, cleanly shutting down the redo log.

If innodb_fast_shutdown=2, shutdown will effectively 'crash' InnoDB
(but lose no committed transactions). */
ulong srv_fast_shutdown;

/* Generate a innodb_status.<pid> file */
bool srv_innodb_status = false;

/* When estimating number of different key values in an index, sample
this many index pages, there are 2 ways to calculate statistics:
* persistent stats that are calculated by ANALYZE TABLE and saved
  in the innodb database.
* quick transient stats, that are used if persistent stats for the given
  table/index are not found in the innodb database */
unsigned long long srv_stats_transient_sample_pages = 8;
bool srv_stats_persistent = true;
bool srv_stats_include_delete_marked = false;
unsigned long long srv_stats_persistent_sample_pages = 20;
bool srv_stats_auto_recalc = true;

ulong srv_replication_delay = 0;
std::chrono::milliseconds get_srv_replication_delay() {
  return std::chrono::milliseconds{srv_replication_delay};
}

/*-------------------------------------------*/
ulong srv_n_spin_wait_rounds = 30;
ulong srv_spin_wait_delay = 6;
bool srv_priority_boost = true;

#ifndef UNIV_HOTBACKUP
static ulint srv_n_rows_inserted_old = 0;
static ulint srv_n_rows_updated_old = 0;
static ulint srv_n_rows_deleted_old = 0;
static ulint srv_n_rows_read_old = 0;

static ulint srv_n_system_rows_inserted_old = 0;
static ulint srv_n_system_rows_updated_old = 0;
static ulint srv_n_system_rows_deleted_old = 0;
static ulint srv_n_system_rows_read_old = 0;
#endif /* !UNIV_HOTBACKUP */

ulint srv_truncated_status_writes = 0;

bool srv_print_innodb_monitor = false;
std::atomic_uint32_t srv_innodb_needs_monitoring{0};
bool srv_print_innodb_lock_monitor = false;

/* Array of English strings describing the current state of an
i/o handler thread */

const char *srv_io_thread_op_info[SRV_MAX_N_IO_THREADS];
const char *srv_io_thread_function[SRV_MAX_N_IO_THREADS];

#ifndef UNIV_HOTBACKUP
static std::chrono::steady_clock::time_point srv_monitor_stats_refreshed_at;
#endif /* !UNIV_HOTBACKUP */

static ib_mutex_t srv_innodb_monitor_mutex;

/** Mutex protecting page_zip_stat_per_index */
ib_mutex_t page_zip_stat_per_index_mutex;

/* Mutex for locking srv_monitor_file. Not created if srv_read_only_mode */
ib_mutex_t srv_monitor_file_mutex;

/** Temporary file for innodb monitor output */
FILE *srv_monitor_file;
/** Mutex for locking srv_misc_tmpfile. Not created if srv_read_only_mode.
This mutex has a very low rank; threads reserving it should not
acquire any further latches or sleep before releasing this one. */
ib_mutex_t srv_misc_tmpfile_mutex;
/** Temporary file for miscellaneous diagnostic output */
FILE *srv_misc_tmpfile;

#ifndef UNIV_HOTBACKUP
static ulint srv_main_thread_process_no = 0;
static std::thread::id srv_main_thread_id{};

/* The following counts are used by the srv_master_thread. */

/** Iterations of the loop bounded by 'srv_active' label. */
static ulint srv_main_active_loops = 0;
/** Iterations of the loop bounded by the 'srv_idle' label. */
static ulint srv_main_idle_loops = 0;
/** Iterations of the loop bounded by the 'srv_shutdown' label. */
static ulint srv_main_shutdown_loops = 0;
/** Log writes involving flush. */
static ulint srv_log_writes_and_flush = 0;

#endif /* !UNIV_HOTBACKUP */

/* Interval in seconds at which various tasks are performed by the
master thread when server is active. In order to balance the workload,
we should try to keep intervals such that they are not multiple of
each other. For example, if we have intervals for various tasks
defined as 5, 10, 15, 60 then all tasks will be performed when
current_time % 60 == 0 and no tasks will be performed when
current_time % 5 != 0. */

constexpr std::chrono::seconds SRV_MASTER_DICT_LRU_INTERVAL{47};

/** Acquire the system_mutex. */
#define srv_sys_mutex_enter()     \
  do {                            \
    mutex_enter(&srv_sys->mutex); \
  } while (0)

/** Test if the system mutex is owned. */
#define srv_sys_mutex_own() (mutex_own(&srv_sys->mutex) && !srv_read_only_mode)

/** Release the system mutex. */
#define srv_sys_mutex_exit()     \
  do {                           \
    mutex_exit(&srv_sys->mutex); \
  } while (0)

#ifndef UNIV_HOTBACKUP
/*
        IMPLEMENTATION OF THE SERVER MAIN PROGRAM
        =========================================

There is the following analogue between this database
server and an operating system kernel:

DB concept                      equivalent OS concept
----------                      ---------------------
transaction             --      process;

query thread            --      thread;

lock                    --      semaphore;

kernel                  --      kernel;

query thread execution:
(a) without lock mutex
reserved                --      process executing in user mode;
(b) with lock mutex reserved
                        --      process executing in kernel mode;

The server has several backgroind threads all running at the same
priority as user threads. It periodically checks if here is anything
happening in the server which requires intervention of the master
thread. Such situations may be, for example, when flushing of dirty
blocks is needed in the buffer pool or old version of database rows
have to be cleaned away (purged). The user can configure a separate
dedicated purge thread(s) too, in which case the master thread does not
do any purging.

The threads which we call user threads serve the queries of the MySQL
server. They run at normal priority.

When there is no activity in the system, also the master thread
suspends itself to wait for an event making the server totally silent.

There is still one complication in our server design. If a
background utility thread obtains a resource (e.g., mutex) needed by a user
thread, and there is also some other user activity in the system,
the user thread may have to wait indefinitely long for the
resource, as the OS does not schedule a background thread if
there is some other runnable user thread. This problem is called
priority inversion in real-time programming.

One solution to the priority inversion problem would be to keep record
of which thread owns which resource and in the above case boost the
priority of the background thread so that it will be scheduled and it
can release the resource.  This solution is called priority inheritance
in real-time programming.  A drawback of this solution is that the overhead
of acquiring a mutex increases slightly, maybe 0.2 microseconds on a 100
MHz Pentium, because the thread has to call std::this_thread::get_id().  This
may be compared to 0.5 microsecond overhead for a mutex lock-unlock pair. Note
that the thread cannot store the information in the resource , say mutex,
itself, because competing threads could wipe out the information if it is
stored before acquiring the mutex, and if it stored afterwards, the
information is outdated for the time of one machine instruction, at least.
(To be precise, the information could be stored to lock_word in mutex if
the machine supports atomic swap.)

The above solution with priority inheritance may become actual in the
future, currently we do not implement any priority twiddling solution.
Our general aim is to reduce the contention of all mutexes by making
them more fine grained.

The thread table contains information of the current status of each
thread existing in the system, and also the event semaphores used in
suspending the master thread and utility threads when they have nothing
to do.  The thread table can be seen as an analogue to the process table
in a traditional Unix implementation. */

/** The server system struct */
struct srv_sys_t {
  ib_mutex_t tasks_mutex; /*!< variable protecting the
                          tasks queue */
  UT_LIST_BASE_NODE_T(que_thr_t, queue)
  tasks; /*!< task queue */

  ib_mutex_t mutex;    /*!< variable protecting the
                       fields below. */
  ulint n_sys_threads; /*!< size of the sys_threads
                       array */

  srv_slot_t *sys_threads; /*!< server thread table */

  ulint n_threads_active[SRV_MASTER + 1];
  /*!< number of threads active
  in a thread class */

  srv_stats_t::ulint_ctr_1_t activity_count; /*!< For tracking server
                                             activity */
};

static srv_sys_t *srv_sys = nullptr;

/** Event to signal the monitor thread. */
os_event_t srv_monitor_event;

/** Event to signal the error thread */
os_event_t srv_error_event;

/** Event to signal the buffer pool dump/load thread */
os_event_t srv_buf_dump_event;

/** Event to signal the buffer pool resize thread */
os_event_t srv_buf_resize_event;

/** The buffer pool dump/load file name */
char *srv_buf_dump_filename;

/** Boolean config knobs that tell InnoDB to dump the buffer pool at shutdown
and/or load it during startup. */
bool srv_buffer_pool_dump_at_shutdown = true;
bool srv_buffer_pool_load_at_startup = true;

/** Slot index in the srv_sys->sys_threads array for the purge thread. */
static const ulint SRV_PURGE_SLOT = 1;

/** Slot index in the srv_sys->sys_threads array for the master thread. */
static const ulint SRV_MASTER_SLOT = 0;

#ifdef HAVE_PSI_STAGE_INTERFACE
/** Performance schema stage event for monitoring ALTER TABLE progress
everything after flush log_make_latest_checkpoint(). */
PSI_stage_info srv_stage_alter_table_end = {
    0, "alter table (end)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress
log_make_latest_checkpoint(). */
PSI_stage_info srv_stage_alter_table_flush = {
    0, "alter table (flush)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress. */
PSI_stage_info srv_stage_alter_table_insert = {
    0, "alter table (insert)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress
row_log_apply(). */
PSI_stage_info srv_stage_alter_table_log_index = {
    0, "alter table (log apply index)", PSI_FLAG_STAGE_PROGRESS,
    PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress
row_log_table_apply(). */
PSI_stage_info srv_stage_alter_table_log_table = {
    0, "alter table (log apply table)", PSI_FLAG_STAGE_PROGRESS,
    PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress. */
PSI_stage_info srv_stage_alter_table_merge_sort = {
    0, "alter table (merge sort)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLE progress. */
PSI_stage_info srv_stage_alter_table_read_pk_internal_sort = {
    0, "alter table (read PK and internal sort)", PSI_FLAG_STAGE_PROGRESS,
    PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring ALTER TABLESPACE
ENCRYPTION progress. */
PSI_stage_info srv_stage_alter_tablespace_encryption = {
    0, "alter tablespace (encryption)", PSI_FLAG_STAGE_PROGRESS,
    PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring buffer pool load progress. */
PSI_stage_info srv_stage_buffer_pool_load = {
    0, "buffer pool load", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};
#endif /* HAVE_PSI_STAGE_INTERFACE */

/** Performance schema stage event for monitoring clone file copy progress. */
PSI_stage_info srv_stage_clone_file_copy = {
    0, "clone (file copy)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring clone redo copy progress. */
PSI_stage_info srv_stage_clone_redo_copy = {
    0, "clone (redo copy)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Performance schema stage event for monitoring clone page copy progress. */
PSI_stage_info srv_stage_clone_page_copy = {
    0, "clone (page copy)", PSI_FLAG_STAGE_PROGRESS, PSI_DOCUMENT_ME};

/** Prints counters for work done by srv_master_thread. */
static void srv_print_master_thread_info(FILE *file) /* in: output stream */
{
  fprintf(file,
          "srv_master_thread loops: " ULINTPF " srv_active, " ULINTPF
          " srv_shutdown, " ULINTPF " srv_idle\n",
          srv_main_active_loops, srv_main_shutdown_loops, srv_main_idle_loops);
  fprintf(file, "srv_master_thread log flush and writes: " ULINTPF "\n",
          srv_log_writes_and_flush);
}
#endif /* !UNIV_HOTBACKUP */

/** Sets the info describing an i/o thread current state.
@param[in] i The 'segment' of the i/o thread
@param[in] str Constant char string describing the state */
void srv_set_io_thread_op_info(ulint i, const char *str) {
  ut_a(i < SRV_MAX_N_IO_THREADS);

  srv_io_thread_op_info[i] = str;
}

/** Resets the info describing an i/o thread current state. */
void srv_reset_io_thread_op_info() {
  for (ulint i = 0; i < UT_ARR_SIZE(srv_io_thread_op_info); ++i) {
    srv_io_thread_op_info[i] = "not started yet";
  }
}

#ifndef UNIV_HOTBACKUP
#ifdef UNIV_DEBUG
/** Validates the type of a thread table slot.
 @return true if ok */
static bool srv_thread_type_validate(
    srv_thread_type type) /*!< in: thread type */
{
  switch (type) {
    case SRV_NONE:
      break;
    case SRV_WORKER:
    case SRV_PURGE:
    case SRV_MASTER:
      return true;
  }
  ut_error;
}
#endif /* UNIV_DEBUG */

/** Gets the type of a thread table slot.
 @return thread type */
static srv_thread_type srv_slot_get_type(
    const srv_slot_t *slot) /*!< in: thread slot */
{
  srv_thread_type type = slot->type;
  ut_ad(srv_thread_type_validate(type));
  return (type);
}

/** Reserves a slot in the thread table for the current thread.
 @return reserved slot */
static srv_slot_t *srv_reserve_slot(
    srv_thread_type type) /*!< in: type of the thread */
{
  srv_slot_t *slot = nullptr;

  srv_sys_mutex_enter();

  ut_ad(srv_thread_type_validate(type));

  switch (type) {
    case SRV_MASTER:
      slot = &srv_sys->sys_threads[SRV_MASTER_SLOT];
      break;

    case SRV_PURGE:
      slot = &srv_sys->sys_threads[SRV_PURGE_SLOT];
      break;

    case SRV_WORKER:
      /* Find an empty slot, skip the master and purge slots. */
      for (slot = &srv_sys->sys_threads[2]; slot->in_use; ++slot) {
        ut_a(slot < &srv_sys->sys_threads[srv_sys->n_sys_threads]);
      }
      break;

    case SRV_NONE:
      ut_error;
  }

  ut_a(!slot->in_use);

  slot->in_use = true;
  slot->suspended = false;
  slot->type = type;

  ut_ad(srv_slot_get_type(slot) == type);

  ++srv_sys->n_threads_active[type];

  srv_sys_mutex_exit();

  return (slot);
}

/** Suspends the calling thread to wait for the event in its thread slot.
 @return the current signal count of the event. */
static int64_t srv_suspend_thread_low(
    srv_slot_t *slot) /*!< in/out: thread slot */
{
  ut_ad(!srv_read_only_mode);
  ut_ad(srv_sys_mutex_own());

  ut_ad(slot->in_use);

  srv_thread_type type = srv_slot_get_type(slot);

  switch (type) {
    case SRV_NONE:
      ut_error;

    case SRV_MASTER:
      /* We have only one master thread and it
      should be the first entry always. */
      ut_a(srv_sys->n_threads_active[type] == 1);
      break;

    case SRV_PURGE:
      /* We have only one purge coordinator thread
      and it should be the second entry always. */
      ut_a(srv_sys->n_threads_active[type] == 1);
      break;

    case SRV_WORKER:
      ut_a(srv_n_purge_threads > 1);
      ut_a(srv_sys->n_threads_active[type] > 0);
      break;
  }

  ut_a(!slot->suspended);
  slot->suspended = true;

  ut_a(srv_sys->n_threads_active[type] > 0);

  srv_sys->n_threads_active[type]--;

  return (os_event_reset(slot->event));
}

/** Suspends the calling thread to wait for the event in its thread slot.
 @return the current signal count of the event. */
static int64_t srv_suspend_thread(srv_slot_t *slot) /*!< in/out: thread slot */
{
  srv_sys_mutex_enter();

  int64_t sig_count = srv_suspend_thread_low(slot);

  srv_sys_mutex_exit();

  return (sig_count);
}

/** Releases threads of the type given from suspension in the thread table.
 NOTE! The server mutex has to be reserved by the caller!
 @return number of threads released: this may be less than n if not
         enough threads were suspended at the moment. */
ulint srv_release_threads(srv_thread_type type, /*!< in: thread type */
                          ulint n) /*!< in: number of threads to release */
{
  ulint i;
  ulint count = 0;

  ut_ad(srv_thread_type_validate(type));
  ut_ad(n > 0);

  srv_sys_mutex_enter();

  for (i = 0; i < srv_sys->n_sys_threads; i++) {
    srv_slot_t *slot;

    slot = &srv_sys->sys_threads[i];

    if (slot->in_use && srv_slot_get_type(slot) == type && slot->suspended) {
      switch (type) {
        case SRV_NONE:
          ut_error;

        case SRV_MASTER:
          /* We have only one master thread and it
          should be the first entry always. */
          ut_a(n == 1);
          ut_a(i == SRV_MASTER_SLOT);
          ut_a(srv_sys->n_threads_active[type] == 0);
          break;

        case SRV_PURGE:
          /* We have only one purge coordinator thread
          and it should be the second entry always. */
          ut_a(n == 1);
          ut_a(i == SRV_PURGE_SLOT);
          ut_a(srv_n_purge_threads > 0);
          ut_a(srv_sys->n_threads_active[type] == 0);
          break;

        case SRV_WORKER:
          ut_a(srv_n_purge_threads > 1);
          ut_a(srv_sys->n_threads_active[type] < srv_n_purge_threads - 1);
          break;
      }

      slot->suspended = false;

      ++srv_sys->n_threads_active[type];

      os_event_set(slot->event);

      if (++count == n) {
        break;
      }
    }
  }

  srv_sys_mutex_exit();

  return (count);
}

/** Release a thread's slot. */
static void srv_free_slot(srv_slot_t *slot) /*!< in/out: thread slot */
{
  srv_sys_mutex_enter();

  if (!slot->suspended) {
    /* Mark the thread as inactive. */
    srv_suspend_thread_low(slot);
  }

  /* Free the slot for reuse. */
  ut_ad(slot->in_use);
  slot->in_use = false;

  srv_sys_mutex_exit();
}

/** Initializes the server. */
static void srv_init(void) {
  ulint n_sys_threads = 0;
  ulint srv_sys_sz = sizeof(*srv_sys);

  /* Create mutex to protect encryption master_key_id. */
  {
    /* This is defined in ha_innodb.cc and used during create_log_files(), which
    we call after calling srv_boot() which defines types of mutexes, so we have
    to create this mutex in between the two calls. */
    extern ib_mutex_t master_key_id_mutex;

    mutex_create(LATCH_ID_MASTER_KEY_ID_MUTEX, &master_key_id_mutex);
  }

  mutex_create(LATCH_ID_SRV_INNODB_MONITOR, &srv_innodb_monitor_mutex);

  ut_d(srv_threads.m_shutdown_cleanup_dbg = os_event_create());

  srv_threads.m_master_ready_for_dd_shutdown = os_event_create();

  srv_threads.m_purge_coordinator = {};

  srv_threads.m_purge_workers_n = srv_n_purge_threads;

  srv_threads.m_purge_workers = ut::new_arr_withkey<IB_thread>(
      UT_NEW_THIS_FILE_PSI_KEY, ut::Count{srv_threads.m_purge_workers_n});

  if (!srv_read_only_mode) {
    /* Number of purge threads + master thread */
    n_sys_threads = srv_n_purge_threads + 1;

    srv_sys_sz += n_sys_threads * sizeof(*srv_sys->sys_threads);
  }

  srv_threads.m_page_cleaner_coordinator = {};

  srv_threads.m_page_cleaner_workers_n = srv_n_page_cleaners;

  srv_threads.m_page_cleaner_workers = ut::new_arr_withkey<IB_thread>(
      UT_NEW_THIS_FILE_PSI_KEY,
      ut::Count{srv_threads.m_page_cleaner_workers_n});

  srv_sys = static_cast<srv_sys_t *>(
      ut::zalloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, srv_sys_sz));

  srv_sys->n_sys_threads = n_sys_threads;

  /* Even in read-only mode we flush pages related to intrinsic table
  and so mutex creation is needed. */
  {
    mutex_create(LATCH_ID_SRV_SYS, &srv_sys->mutex);

    mutex_create(LATCH_ID_SRV_SYS_TASKS, &srv_sys->tasks_mutex);

    srv_sys->sys_threads = (srv_slot_t *)&srv_sys[1];

    for (ulint i = 0; i < srv_sys->n_sys_threads; ++i) {
      srv_slot_t *slot = &srv_sys->sys_threads[i];

      slot->event = os_event_create();

      slot->in_use = false;

      ut_a(slot->event);
    }

    srv_error_event = os_event_create();

    srv_monitor_event = os_event_create();

    srv_buf_dump_event = os_event_create();

    buf_flush_event = os_event_create();

    buf_flush_tick_event = os_event_create();

    UT_LIST_INIT(srv_sys->tasks);
  }

  srv_buf_resize_event = os_event_create();

  ut_d(srv_master_thread_disabled_event = os_event_create());

  /* page_zip_stat_per_index_mutex is acquired from:
  1. page_zip_compress() (after SYNC_FSP)
  2. page_zip_decompress()
  3. i_s_cmp_per_index_fill_low() (where SYNC_DICT is acquired)
  4. innodb_cmp_per_index_update(), no other latches
  since we do not acquire any other latches while holding this mutex,
  it can have very low level. We pick SYNC_ANY_LATCH for it. */
  mutex_create(LATCH_ID_PAGE_ZIP_STAT_PER_INDEX,
               &page_zip_stat_per_index_mutex);

  /* Create dummy indexes for infimum and supremum records */

  dict_ind_init();

  /* Initialize some INFORMATION SCHEMA internal structures */
  trx_i_s_cache_init(trx_i_s_cache);

  ut_crc32_init();

  dict_mem_init();
}

/** Frees the data structures created in srv_init(). */
void srv_free(void) {
  mutex_free(&srv_innodb_monitor_mutex);
  mutex_free(&page_zip_stat_per_index_mutex);

  {
    mutex_free(&srv_sys->mutex);
    mutex_free(&srv_sys->tasks_mutex);

    for (ulint i = 0; i < srv_sys->n_sys_threads; ++i) {
      srv_slot_t *slot = &srv_sys->sys_threads[i];

      os_event_destroy(slot->event);
    }

    os_event_destroy(srv_error_event);
    os_event_destroy(srv_monitor_event);
    os_event_destroy(srv_buf_dump_event);
    os_event_destroy(buf_flush_event);
    os_event_destroy(buf_flush_tick_event);
  }

  os_event_destroy(srv_buf_resize_event);

#ifdef UNIV_DEBUG
  os_event_destroy(srv_master_thread_disabled_event);
  srv_master_thread_disabled_event = nullptr;
#endif /* UNIV_DEBUG */

  trx_i_s_cache_free(trx_i_s_cache);

  ut::free(srv_sys);

  srv_sys = nullptr;

  if (srv_threads.m_page_cleaner_workers != nullptr) {
    for (size_t i = 0; i < srv_threads.m_page_cleaner_workers_n; ++i) {
      srv_threads.m_page_cleaner_workers[i] = {};
    }
    ut::delete_arr(srv_threads.m_page_cleaner_workers);
    srv_threads.m_page_cleaner_workers = nullptr;
  }

  if (srv_threads.m_purge_workers != nullptr) {
    for (size_t i = 0; i < srv_threads.m_purge_workers_n; ++i) {
      srv_threads.m_purge_workers[i] = {};
    }
    ut::delete_arr(srv_threads.m_purge_workers);
    srv_threads.m_purge_workers = nullptr;
  }

  os_event_destroy(srv_threads.m_master_ready_for_dd_shutdown);

  ut_d(os_event_destroy(srv_threads.m_shutdown_cleanup_dbg));

  srv_threads = {};
}

/** Initializes the synchronization primitives, memory system, and the thread
 local storage. */
static void srv_general_init() {
  sync_check_init(srv_max_n_threads);
  /* Reset the system variables in the recovery module. */
  recv_sys_var_init();
  os_thread_open();
  trx_pool_init();
  que_init();
  row_mysql_init();
  undo_spaces_init();
}

/** Boots the InnoDB server. */
void srv_boot(void) {
  /* Initialize synchronization primitives, memory management, and thread
  local storage */

  srv_general_init();

  /* Initialize this module */

  srv_init();
}

/** Refreshes the values used to calculate per-second averages. */
static void srv_refresh_innodb_monitor_stats(void) {
  mutex_enter(&srv_innodb_monitor_mutex);

  srv_monitor_stats_refreshed_at = std::chrono::steady_clock::now();

  os_aio_refresh_stats();

  btr_cur_n_sea_old = btr_cur_n_sea;
  btr_cur_n_non_sea_old = btr_cur_n_non_sea;

  log_refresh_stats(*log_sys);

  buf_refresh_io_stats_all();

  srv_n_rows_inserted_old = srv_stats.n_rows_inserted;
  srv_n_rows_updated_old = srv_stats.n_rows_updated;
  srv_n_rows_deleted_old = srv_stats.n_rows_deleted;
  srv_n_rows_read_old = srv_stats.n_rows_read;

  srv_n_system_rows_inserted_old = srv_stats.n_system_rows_inserted;
  srv_n_system_rows_updated_old = srv_stats.n_system_rows_updated;
  srv_n_system_rows_deleted_old = srv_stats.n_system_rows_deleted;
  srv_n_system_rows_read_old = srv_stats.n_system_rows_read;

  mutex_exit(&srv_innodb_monitor_mutex);
}

/**
Prints info summary and info about all transactions to the file, recording the
position where the part about transactions starts.
@param[in]    file            output stream
@param[out]   trx_start_pos   file position of the start of the list of active
                              transactions
*/
static void srv_printf_locks_and_transactions(FILE *file,
                                              ulint *trx_start_pos) {
  ut_ad(locksys::owns_exclusive_global_latch());
  lock_print_info_summary(file);
  if (trx_start_pos) {
    long t = ftell(file);
    if (t < 0) {
      *trx_start_pos = ULINT_UNDEFINED;
    } else {
      *trx_start_pos = (ulint)t;
    }
  }
  lock_print_info_all_transactions(file);
}

bool srv_printf_innodb_monitor(FILE *file, bool nowait, ulint *trx_start_pos,
                               ulint *trx_end) {
  ulint n_reserved;
  bool ret;

  mutex_enter(&srv_innodb_monitor_mutex);

  const auto current_time = std::chrono::steady_clock::now();

  /* We add 0.001 seconds to time_elapsed to prevent division
  by zero if two users happen to call SHOW ENGINE INNODB STATUS at the
  same time */

  const auto time_elapsed = std::chrono::duration_cast<std::chrono::seconds>(
                                current_time - srv_monitor_stats_refreshed_at)
                                .count() +
                            0.001;

  srv_monitor_stats_refreshed_at = current_time;

  fputs("\n=====================================\n", file);

  ut_print_timestamp(file);
  fprintf(file,
          " INNODB MONITOR OUTPUT\n"
          "=====================================\n"
          "Per second averages calculated from the last %lu seconds\n",
          (ulong)time_elapsed);

  fputs(
      "-----------------\n"
      "BACKGROUND THREAD\n"
      "-----------------\n",
      file);
  srv_print_master_thread_info(file);

  fputs(
      "----------\n"
      "SEMAPHORES\n"
      "----------\n",
      file);

  sync_print(file);

  /* Conceptually, srv_innodb_monitor_mutex has a very high latching
  order level in sync0sync.h, while dict_foreign_err_mutex has a very
  low level 135. Therefore we can reserve the latter mutex here without
  a danger of a deadlock of threads. */

  mutex_enter(&dict_foreign_err_mutex);

  if (!srv_read_only_mode && ftell(dict_foreign_err_file) != 0L) {
    fputs(
        "------------------------\n"
        "LATEST FOREIGN KEY ERROR\n"
        "------------------------\n",
        file);
    ut_copy_file(file, dict_foreign_err_file);
  }

  mutex_exit(&dict_foreign_err_mutex);

  ret = true;
  if (nowait) {
    locksys::Global_exclusive_try_latch guard{UT_LOCATION_HERE};
    if (guard.owns_lock()) {
      srv_printf_locks_and_transactions(file, trx_start_pos);
    } else {
      fputs("FAIL TO OBTAIN LOCK MUTEX, SKIP LOCK INFO PRINTING\n", file);
      ret = false;
    }
  } else {
    locksys::Global_exclusive_latch_guard guard{UT_LOCATION_HERE};
    srv_printf_locks_and_transactions(file, trx_start_pos);
  }

  if (ret) {
    ut_ad(lock_validate());

    if (trx_end) {
      long t = ftell(file);
      if (t < 0) {
        *trx_end = ULINT_UNDEFINED;
      } else {
        *trx_end = (ulint)t;
      }
    }
  }

  fputs(
      "--------\n"
      "FILE I/O\n"
      "--------\n",
      file);
  os_aio_print(file);

  fputs(
      "-------------------------------------\n"
      "INSERT BUFFER AND ADAPTIVE HASH INDEX\n"
      "-------------------------------------\n",
      file);
  ibuf_print(file);

  for (ulint i = 0; i < btr_ahi_parts; ++i) {
    auto &part = btr_search_sys->parts[i];
    rw_lock_s_lock(&part.latch, UT_LOCATION_HERE);
    ha_print_info(file, part.hash_table);
    rw_lock_s_unlock(&part.latch);
  }

  fprintf(file, "%.2f hash searches/s, %.2f non-hash searches/s\n",
          (btr_cur_n_sea - btr_cur_n_sea_old) / time_elapsed,
          (btr_cur_n_non_sea - btr_cur_n_non_sea_old) / time_elapsed);
  btr_cur_n_sea_old = btr_cur_n_sea;
  btr_cur_n_non_sea_old = btr_cur_n_non_sea;

  fputs(
      "---\n"
      "LOG\n"
      "---\n",
      file);
  log_print(*log_sys, file);

  fputs(
      "----------------------\n"
      "BUFFER POOL AND MEMORY\n"
      "----------------------\n",
      file);
  fprintf(file,
          "Total large memory allocated " ULINTPF
          "\n"
          "Dictionary memory allocated %zu\n",
          os_total_large_mem_allocated.load(), dict_sys->size);

  buf_print_io(file);

  fputs(
      "--------------\n"
      "ROW OPERATIONS\n"
      "--------------\n",
      file);
  fprintf(file,
          "%" PRId32 " queries inside InnoDB, %" PRId32 " queries in queue\n",
          srv_conc_get_active_threads(), srv_conc_get_waiting_threads());

  /* This is a dirty read, without holding trx_sys->mutex. */
  fprintf(file, ULINTPF " read views open inside InnoDB\n",
          trx_sys->mvcc->size());

  n_reserved = fil_space_get_n_reserved_extents(0);
  if (n_reserved > 0) {
    fprintf(file,
            ULINTPF
            " tablespace extents now reserved for"
            " B-tree split operations\n",
            n_reserved);
  }

  std::ostringstream msg;

  msg << "Process ID=" << srv_main_thread_process_no
      << ", Main thread ID=" << srv_main_thread_id
      << " , state=" << srv_main_thread_op_info;

  fprintf(file, "%s\n", msg.str().c_str());

  fprintf(file,
          "Number of rows inserted " ULINTPF ", updated " ULINTPF
          ", deleted " ULINTPF ", read " ULINTPF "\n",
          (ulint)srv_stats.n_rows_inserted, (ulint)srv_stats.n_rows_updated,
          (ulint)srv_stats.n_rows_deleted, (ulint)srv_stats.n_rows_read);
  fprintf(
      file,
      "%.2f inserts/s, %.2f updates/s,"
      " %.2f deletes/s, %.2f reads/s\n",
      ((ulint)srv_stats.n_rows_inserted - srv_n_rows_inserted_old) /
          time_elapsed,
      ((ulint)srv_stats.n_rows_updated - srv_n_rows_updated_old) / time_elapsed,
      ((ulint)srv_stats.n_rows_deleted - srv_n_rows_deleted_old) / time_elapsed,
      ((ulint)srv_stats.n_rows_read - srv_n_rows_read_old) / time_elapsed);

  fprintf(file,
          "Number of system rows inserted " ULINTPF ", updated " ULINTPF
          ", deleted " ULINTPF ", read " ULINTPF "\n",
          (ulint)srv_stats.n_system_rows_inserted,
          (ulint)srv_stats.n_system_rows_updated,
          (ulint)srv_stats.n_system_rows_deleted,
          (ulint)srv_stats.n_system_rows_read);
  fprintf(
      file,
      "%.2f inserts/s, %.2f updates/s,"
      " %.2f deletes/s, %.2f reads/s\n",
      ((ulint)srv_stats.n_system_rows_inserted -
       srv_n_system_rows_inserted_old) /
          time_elapsed,
      ((ulint)srv_stats.n_system_rows_updated - srv_n_system_rows_updated_old) /
          time_elapsed,
      ((ulint)srv_stats.n_system_rows_deleted - srv_n_system_rows_deleted_old) /
          time_elapsed,
      ((ulint)srv_stats.n_system_rows_read - srv_n_system_rows_read_old) /
          time_elapsed);

  srv_n_rows_inserted_old = srv_stats.n_rows_inserted;
  srv_n_rows_updated_old = srv_stats.n_rows_updated;
  srv_n_rows_deleted_old = srv_stats.n_rows_deleted;
  srv_n_rows_read_old = srv_stats.n_rows_read;

  srv_n_system_rows_inserted_old = srv_stats.n_system_rows_inserted;
  srv_n_system_rows_updated_old = srv_stats.n_system_rows_updated;
  srv_n_system_rows_deleted_old = srv_stats.n_system_rows_deleted;
  srv_n_system_rows_read_old = srv_stats.n_system_rows_read;

  fputs(
      "----------------------------\n"
      "END OF INNODB MONITOR OUTPUT\n"
      "============================\n",
      file);
  mutex_exit(&srv_innodb_monitor_mutex);
  fflush(file);

  return (ret);
}

/** Function to pass InnoDB status variables to MySQL */
void srv_export_innodb_status(void) {
  buf_pool_stat_t stat;
  buf_pools_list_size_t buf_pools_list_size;
  ulint LRU_len;
  ulint free_len;
  ulint flush_list_len;

  buf_get_total_stat(&stat);
  buf_get_total_list_len(&LRU_len, &free_len, &flush_list_len);
  buf_get_total_list_size_in_bytes(&buf_pools_list_size);

  mutex_enter(&srv_innodb_monitor_mutex);

  export_vars.innodb_data_pending_reads = os_n_pending_reads;

  export_vars.innodb_data_pending_writes = os_n_pending_writes;

  export_vars.innodb_data_pending_fsyncs =
      log_pending_flushes() + fil_n_pending_tablespace_flushes.load();

  // Check against unsigned underflow in debug - values close to max value
  // may be result of mismatched increment/decrement or data race; investigate
  // on failure
  ut_ad(export_vars.innodb_data_pending_fsyncs <=
        std::numeric_limits<ulint>::max() - 1000);

  export_vars.innodb_data_fsyncs = os_n_fsyncs;

  export_vars.innodb_data_read = srv_stats.data_read;

  export_vars.innodb_data_reads = os_n_file_reads;

  export_vars.innodb_data_writes = os_n_file_writes;

  export_vars.innodb_data_written = srv_stats.data_written;

  export_vars.innodb_buffer_pool_read_requests =
      Counter::total(stat.m_n_page_gets);

  export_vars.innodb_buffer_pool_write_requests =
      srv_stats.buf_pool_write_requests;

  export_vars.innodb_buffer_pool_wait_free = srv_stats.buf_pool_wait_free;

  export_vars.innodb_buffer_pool_pages_flushed = srv_stats.buf_pool_flushed;

  export_vars.innodb_buffer_pool_reads = srv_stats.buf_pool_reads;

  export_vars.innodb_buffer_pool_read_ahead_rnd = stat.n_ra_pages_read_rnd;

  export_vars.innodb_buffer_pool_read_ahead = stat.n_ra_pages_read;

  export_vars.innodb_buffer_pool_read_ahead_evicted = stat.n_ra_pages_evicted;

  export_vars.innodb_buffer_pool_pages_data = LRU_len;

  export_vars.innodb_buffer_pool_bytes_data =
      buf_pools_list_size.LRU_bytes + buf_pools_list_size.unzip_LRU_bytes;

  export_vars.innodb_buffer_pool_pages_dirty = flush_list_len;

  export_vars.innodb_buffer_pool_bytes_dirty =
      buf_pools_list_size.flush_list_bytes;

  export_vars.innodb_buffer_pool_pages_free = free_len;

  export_vars.innodb_buffer_pool_pages_total = buf_pool_get_n_pages();

  export_vars.innodb_buffer_pool_pages_misc =
      buf_pool_get_n_pages() - LRU_len - free_len;

  export_vars.innodb_buffer_pool_resize_status_code =
      buf_pool_resize_status_code.load();

  export_vars.innodb_buffer_pool_resize_status_progress =
      buf_pool_resize_status_progress.load();

  export_vars.innodb_page_size = UNIV_PAGE_SIZE;

  export_vars.innodb_log_waits = srv_stats.log_waits;

  export_vars.innodb_os_log_written = srv_stats.os_log_written;

  export_vars.innodb_os_log_fsyncs = log_total_flushes();

  export_vars.innodb_os_log_pending_fsyncs = log_pending_flushes();

  export_vars.innodb_os_log_pending_writes = srv_stats.os_log_pending_writes;

  export_vars.innodb_log_write_requests = srv_stats.log_write_requests;

  export_vars.innodb_log_writes = srv_stats.log_writes;

  export_vars.innodb_dblwr_pages_written = srv_stats.dblwr_pages_written;

  export_vars.innodb_dblwr_writes = srv_stats.dblwr_writes;

  export_vars.innodb_pages_created = stat.n_pages_created;

  export_vars.innodb_pages_read = stat.n_pages_read;

  export_vars.innodb_pages_written = stat.n_pages_written;

  export_vars.innodb_redo_log_enabled = srv_redo_log;

  export_vars.innodb_row_lock_waits = srv_stats.n_lock_wait_count;

  export_vars.innodb_row_lock_current_waits =
      srv_stats.n_lock_wait_current_count;

  export_vars.innodb_row_lock_time = srv_stats.n_lock_wait_time / 1000;

  if (srv_stats.n_lock_wait_count > 0) {
    export_vars.innodb_row_lock_time_avg =
        (ulint)(srv_stats.n_lock_wait_time / 1000 /
                srv_stats.n_lock_wait_count);

  } else {
    export_vars.innodb_row_lock_time_avg = 0;
  }

  export_vars.innodb_row_lock_time_max =
      std::chrono::duration_cast<std::chrono::milliseconds>(
          lock_sys->n_lock_max_wait_time)
          .count();

  export_vars.innodb_rows_read = srv_stats.n_rows_read;

  export_vars.innodb_rows_inserted = srv_stats.n_rows_inserted;

  export_vars.innodb_rows_updated = srv_stats.n_rows_updated;

  export_vars.innodb_rows_deleted = srv_stats.n_rows_deleted;

  export_vars.innodb_system_rows_read = srv_stats.n_system_rows_read;

  export_vars.innodb_system_rows_inserted = srv_stats.n_system_rows_inserted;

  export_vars.innodb_system_rows_updated = srv_stats.n_system_rows_updated;

  export_vars.innodb_system_rows_deleted = srv_stats.n_system_rows_deleted;

  export_vars.innodb_sampled_pages_read = srv_stats.n_sampled_pages_read;

  export_vars.innodb_sampled_pages_skipped = srv_stats.n_sampled_pages_skipped;

  export_vars.innodb_num_open_files = fil_n_files_open;

  export_vars.innodb_truncated_status_writes = srv_truncated_status_writes;

  export_vars.innodb_undo_tablespaces_implicit = FSP_IMPLICIT_UNDO_TABLESPACES;

  undo::spaces->s_lock();

  export_vars.innodb_undo_tablespaces_total = undo::spaces->size();

  export_vars.innodb_undo_tablespaces_explicit =
      export_vars.innodb_undo_tablespaces_total - FSP_IMPLICIT_UNDO_TABLESPACES;

  export_vars.innodb_undo_tablespaces_active = 0;

  for (auto undo_space : undo::spaces->m_spaces) {
    if (undo_space->is_active()) {
      export_vars.innodb_undo_tablespaces_active++;
    }
  }
  undo::spaces->s_unlock();

#ifdef UNIV_DEBUG
  rw_lock_s_lock(&purge_sys->latch, UT_LOCATION_HERE);
  trx_id_t done_trx_no = purge_sys->done.trx_no;

  /* Purge always deals with transaction end points represented by
  transaction number. We are allowed to purge transactions with number
  below the low limit. */
  ReadView oldest_view;
  trx_sys->mvcc->clone_oldest_view(&oldest_view);
  trx_id_t low_limit_no = oldest_view.view_low_limit_no();

  rw_lock_s_unlock(&purge_sys->latch);

  trx_sys_serialisation_mutex_enter();
  /* Maximum transaction number added to history list for purge. */
  trx_id_t max_trx_no = trx_sys->rw_max_trx_no;
  trx_sys_serialisation_mutex_exit();

  if (done_trx_no == 0 || max_trx_no < done_trx_no) {
    export_vars.innodb_purge_trx_id_age = 0;
  } else {
    /* Add 1 as done_trx_no always points to the next transaction ID. */
    export_vars.innodb_purge_trx_id_age = (ulint)(max_trx_no - done_trx_no + 1);
  }

  if (low_limit_no == 0 || max_trx_no < low_limit_no) {
    export_vars.innodb_purge_view_trx_id_age = 0;
  } else {
    /* Add 1 as low_limit_no always points to the next transaction ID. */
    export_vars.innodb_purge_view_trx_id_age =
        (ulint)(max_trx_no - low_limit_no + 1);
  }
#endif /* UNIV_DEBUG */

  mutex_exit(&srv_innodb_monitor_mutex);
}

/** A thread which prints the info output by various InnoDB monitors. */
void srv_monitor_thread() {
  uint16_t mutex_skipped{0};
  bool last_srv_print_monitor = srv_print_innodb_monitor;

  ut_ad(!srv_read_only_mode);

  srv_monitor_stats_refreshed_at = std::chrono::steady_clock::now();
  const auto sleep_interval = std::chrono::seconds{15};
  while (0 != os_event_wait_time(srv_monitor_event, sleep_interval)) {
    if (srv_print_innodb_monitor || 0 < srv_innodb_needs_monitoring.load()) {
      /* Reset mutex_skipped counter every time the condition above becomes
      true. This is to ensure we will not be blocked by lock_sys global
      latch for short duration information printing, such as requested by
      sync_array_print_long_waits() */
      if (!last_srv_print_monitor) {
        mutex_skipped = 0;
        last_srv_print_monitor = true;
      }

      if (!srv_printf_innodb_monitor(stderr, MUTEX_NOWAIT(mutex_skipped),
                                     nullptr, nullptr)) {
        mutex_skipped++;
      } else {
        /* Reset the counter */
        mutex_skipped = 0;
      }
    } else {
      last_srv_print_monitor = false;
    }

    /* We don't create the temp files or associated mutexes in read-only-mode */

    if (!srv_read_only_mode && srv_innodb_status) {
      mutex_enter(&srv_monitor_file_mutex);
      rewind(srv_monitor_file);
      if (!srv_printf_innodb_monitor(srv_monitor_file,
                                     MUTEX_NOWAIT(mutex_skipped), nullptr,
                                     nullptr)) {
        mutex_skipped++;
      } else {
        mutex_skipped = 0;
      }

      os_file_set_eof(srv_monitor_file);
      mutex_exit(&srv_monitor_file_mutex);
    }

    if (srv_monitor_stats_refreshed_at + std::chrono::minutes{1} <
        std::chrono::steady_clock::now() + sleep_interval) {
      /* We refresh InnoDB Monitor values so that averages are printed from at
      most 60 last seconds and at least 15 seconds*/

      srv_refresh_innodb_monitor_stats();
    }
  }
  ut_ad(SRV_SHUTDOWN_CLEANUP <= srv_shutdown_state.load());
}

/** A thread which prints warnings about semaphore waits which have lasted
too long. These can be used to track bugs which cause hangs. */
void srv_error_monitor_thread() {
  /* number of successive fatal timeouts observed */
  ulint fatal_cnt = 0;
  lsn_t old_lsn;
  lsn_t new_lsn;
  int64_t sig_count;
  /* longest waiting thread for a semaphore */
  auto waiter = std::this_thread::get_id();
  auto old_waiter = waiter;
  /* the semaphore that is being waited for */
  const void *sema = nullptr;
  const void *old_sema = nullptr;

  ut_ad(!srv_read_only_mode);

  old_lsn = log_get_lsn(*log_sys);

loop:
  /* Try to track a strange bug reported by Harald Fuchs and others,
  where the lsn seems to decrease at times */

  new_lsn = log_get_lsn(*log_sys);

  if (new_lsn < old_lsn) {
    ib::error(ER_IB_MSG_1046, ulonglong{old_lsn}, ulonglong{new_lsn});
    ut_d(ut_error);
  }

  old_lsn = new_lsn;

  /* Update the statistics collected for deciding LRU eviction policy.
  NOTE: While this doesn't relate to error monitoring, it's here for historical
  reasons, as it depends on being called ~1Hz. It is lock-free, so can't cause a
  deadlock itself. */
  buf_LRU_stat_update();

  /* In case mutex_exit is not a memory barrier, it is
  theoretically possible some threads are left waiting though
  the semaphore is already released. Wake up those threads: */
  sync_arr_wake_threads_if_sema_free();

  sync_array_detect_deadlock();

  if (sync_array_print_long_waits(&waiter, &sema) && sema == old_sema &&
      waiter == old_waiter) {
    fatal_cnt++;
    if (fatal_cnt > 10) {
      ib::fatal(UT_LOCATION_HERE, ER_IB_MSG_1047,
                ulonglong{srv_fatal_semaphore_wait_threshold});
    }
  } else {
    fatal_cnt = 0;
    old_waiter = waiter;
    old_sema = sema;
  }

  /* Flush stderr so that a database user gets the output
  to possible MySQL error file */

  fflush(stderr);

  sig_count = os_event_reset(srv_error_event);

  os_event_wait_time_low(srv_error_event, std::chrono::seconds{1}, sig_count);

  if (srv_shutdown_state.load() < SRV_SHUTDOWN_CLEANUP) {
    goto loop;
  }
}

/** Increment the server activity count. */
void srv_inc_activity_count(void) { srv_sys->activity_count.inc(); }

/** Check whether the master thread is active.
This is polled during the final phase of shutdown.
The first phase of server shutdown must have already been executed
(or the server must not have been fully started up).
@see srv_pre_dd_shutdown()
@retval true    if any thread is active
@retval false   if no thread is active */
bool srv_master_thread_is_active() {
  return (srv_thread_is_active(srv_threads.m_master));
}

/** Tells the InnoDB server that there has been activity in the database
 and wakes up the master thread if it is suspended (not sleeping). Used
 in the MySQL interface. Note that there is a small chance that the master
 thread stays suspended (we do not protect our operation with the
 srv_sys_t->mutex, for performance reasons). */
void srv_active_wake_master_thread_low() {
  ut_ad(!srv_read_only_mode);
  ut_ad(!srv_sys_mutex_own());

  srv_inc_activity_count();

  if (srv_sys->n_threads_active[SRV_MASTER] == 0) {
    srv_slot_t *slot;

    srv_sys_mutex_enter();

    slot = &srv_sys->sys_threads[SRV_MASTER_SLOT];

    /* Only if the master thread has been started. */

    if (slot->in_use) {
      ut_a(srv_slot_get_type(slot) == SRV_MASTER);

      if (slot->suspended) {
        slot->suspended = false;

        ++srv_sys->n_threads_active[SRV_MASTER];

        os_event_set(slot->event);
      }
    }

    srv_sys_mutex_exit();
  }
}

/** Tells the purge thread that there has been activity in the database
 and wakes up the purge thread if it is suspended (not sleeping).  Note
 that there is a small chance that the purge thread stays suspended
 (we do not protect our check with the srv_sys_t:mutex and the
 purge_sys->latch, for performance reasons). */
void srv_wake_purge_thread_if_not_active(void) {
  ut_ad(!srv_sys_mutex_own());

  if (purge_sys->state == PURGE_STATE_RUN &&
      srv_sys->n_threads_active[SRV_PURGE] == 0) {
    srv_release_threads(SRV_PURGE, 1);
  }
}

/** Wakes up the master thread if it is suspended or being suspended. */
void srv_wake_master_thread(void) {
  ut_ad(!srv_sys_mutex_own());

  srv_inc_activity_count();

  srv_release_threads(SRV_MASTER, 1);
}

/** Get current server activity count. We don't hold srv_sys::mutex while
 reading this value as it is only used in heuristics.
 @return activity count. */
ulint srv_get_activity_count(void) {
  return (srv_sys == nullptr ? 0 : srv_sys->activity_count);
}

/** Check if there has been any activity.
 @return false if no change in activity counter. */
bool srv_check_activity(ulint old_activity_count) /*!< in: old activity count */
{
  return (srv_sys == nullptr ? false
                             : srv_sys->activity_count != old_activity_count);
}

/** Make room in the table cache by evicting an unused table.
 @return number of tables evicted. */
static ulint srv_master_evict_from_table_cache(
    ulint pct_check) /*!< in: max percent to check */
{
  ulint n_tables_evicted = 0;

  rw_lock_x_lock(dict_operation_lock, UT_LOCATION_HERE);

  dict_mutex_enter_for_mysql();

  n_tables_evicted =
      dict_make_room_in_cache(innobase_get_table_cache_size(), pct_check);

  dict_mutex_exit_for_mysql();

  rw_lock_x_unlock(dict_operation_lock);

  return (n_tables_evicted);
}

/** This function prints progress message every 60 seconds during server
 shutdown, for any activities that master thread is pending on. */
static void srv_shutdown_print_master_pending(
    std::chrono::steady_clock::time_point *last_print_time, /*!< last time the
                                          function print the message */
    ulint n_tables_to_drop, /*!< number of tables to
                            be dropped */
    ulint n_bytes_merged)   /*!< number of change buffer
                            just merged */
{
  const auto current_time = std::chrono::steady_clock::now();

  const auto time_elapsed = current_time - *last_print_time;

  if (time_elapsed > std::chrono::seconds(60)) {
    *last_print_time = std::chrono::steady_clock::now();

    if (n_tables_to_drop) {
      ib::info(ER_IB_MSG_1048, ulonglong{n_tables_to_drop});
    }

    /* Check change buffer merge, we only wait for change buffer
    merge if it is a slow shutdown */
    if (!srv_fast_shutdown && n_bytes_merged) {
      ib::info(ER_IB_MSG_1049, ulonglong{n_bytes_merged});
    }
  }
}

#ifdef UNIV_DEBUG
/** Waits in loop as long as master thread is disabled (debug) */
static void srv_master_do_disabled_loop(void) {
  if (!srv_master_thread_disabled_debug) {
    /* We return here to avoid changing op_info. */
    return;
  }

  srv_main_thread_op_info = "disabled";

  while (srv_master_thread_disabled_debug) {
    os_event_set(srv_master_thread_disabled_event);
    if (srv_shutdown_state.load() >=
        SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
      break;
    }
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
  }

  srv_main_thread_op_info = "";
}

void srv_master_thread_disabled_debug_update(THD *, SYS_VAR *, void *,
                                             const void *save) {
  /* This method is protected by mutex, as every SET GLOBAL .. */
  ut_ad(srv_master_thread_disabled_event != nullptr);

  const bool disable = *static_cast<const bool *>(save);

  const int64_t sig_count = os_event_reset(srv_master_thread_disabled_event);

  srv_master_thread_disabled_debug = disable;

  if (disable) {
    os_event_wait_low(srv_master_thread_disabled_event, sig_count);
  }
}
#endif /* UNIV_DEBUG */

#ifdef UNIV_LINUX
/** Calculates difference between two timeval values.
@param[in]      a       later timeval
@param[in]      b       earlier timeval
@return a - b; number of microseconds between b and a */
[[maybe_unused]] static int64_t timeval_diff_us(timeval a, timeval b) {
  return ((a.tv_sec - b.tv_sec) * 1000000LL + a.tv_usec - b.tv_usec);
}

/** Updates statistics about current CPU usage. */
static void srv_update_cpu_usage() {
  using Clock = std::chrono::high_resolution_clock;
  using Clock_point = std::chrono::time_point<Clock>;

  static Clock_point last_time = Clock::now();

  static timeval last_cpu_utime;
  static timeval last_cpu_stime;
  static bool last_cpu_times_set = false;

  Clock_point cur_time = Clock::now();

  const auto time_diff = std::chrono::duration_cast<std::chrono::microseconds>(
                             cur_time - last_time)
                             .count();

  if (time_diff < 100 * 1000LL) {
    return;
  }
  last_time = cur_time;

  rusage usage;
  if (getrusage(RUSAGE_SELF, &usage) != 0) {
    return;
  }

  if (!last_cpu_times_set) {
    last_cpu_utime = usage.ru_utime;
    last_cpu_stime = usage.ru_stime;
    last_cpu_times_set = true;
    return;
  }

  const auto cpu_utime_diff = timeval_diff_us(usage.ru_utime, last_cpu_utime);
  last_cpu_utime = usage.ru_utime;

  const auto cpu_stime_diff = timeval_diff_us(usage.ru_stime, last_cpu_stime);
  last_cpu_stime = usage.ru_stime;

  /* Calculate absolute. */

  double cpu_utime = cpu_utime_diff * 100.0 / time_diff;
  MONITOR_SET(MONITOR_CPU_UTIME_ABS, int64_t(cpu_utime));
  srv_cpu_usage.utime_abs = cpu_utime;

  double cpu_stime = cpu_stime_diff * 100.0 / time_diff;
  MONITOR_SET(MONITOR_CPU_STIME_ABS, int64_t(cpu_stime));
  srv_cpu_usage.stime_abs = cpu_stime;

  /* Calculate relative. */

  cpu_set_t cs;
  CPU_ZERO(&cs);
  if (sched_getaffinity(0, sizeof(cs), &cs) != 0) {
    return;
  }

  const int n_cpu = CPU_COUNT(&cs);

  srv_cpu_usage.n_cpu = n_cpu;
  MONITOR_SET(MONITOR_CPU_N, int64_t(n_cpu));

  if (n_cpu == 0) {
    return;
  }

  cpu_utime /= n_cpu;
  MONITOR_SET(MONITOR_CPU_UTIME_PCT, int64_t(cpu_utime));
  srv_cpu_usage.utime_pct = cpu_utime;

  cpu_stime /= n_cpu;
  MONITOR_SET(MONITOR_CPU_STIME_PCT, int64_t(cpu_stime));
  srv_cpu_usage.stime_pct = cpu_stime;
}
#else /* !UNIV_LINUX */
#ifdef _WIN32
/** Convert a FILETIME to microseconds.
Do not cast a pointer to a FILETIME structure to either a ULARGE_INTEGER* or
__int64* value because it can cause alignment faults on 64-bit Windows.
*/
static uint64_t FILETIME_to_microseconds(const FILETIME &ft) {
  ULARGE_INTEGER ulg;
  ulg.HighPart = ft.dwHighDateTime;
  ulg.LowPart = ft.dwLowDateTime;
  return ulg.QuadPart / 10;
}

/** Updates statistics about current CPU usage. */
static void srv_update_cpu_usage() {
  using Clock = std::chrono::high_resolution_clock;
  using Clock_point = std::chrono::time_point<Clock>;

  static Clock_point last_time = Clock::now();

  static uint64_t last_cpu_utime;
  static uint64_t last_cpu_stime;
  static bool last_cpu_times_set = false;

  Clock_point cur_time = Clock::now();

  const auto time_diff = std::chrono::duration_cast<std::chrono::microseconds>(
                             cur_time - last_time)
                             .count();

  if (time_diff < 100 * 1000LL) {
    return;
  }
  last_time = cur_time;

  FILETIME process_creation_time;
  FILETIME process_exit_time;
  FILETIME process_kernel_time;
  FILETIME process_user_time;

  if (!GetProcessTimes(GetCurrentProcess(), &process_creation_time,
                       &process_exit_time, &process_kernel_time,
                       &process_user_time)) {
    return;
  }

  uint64_t cur_cpu_utime = FILETIME_to_microseconds(process_user_time);
  uint64_t cur_cpu_stime = FILETIME_to_microseconds(process_kernel_time);
  if (!last_cpu_times_set) {
    last_cpu_utime = cur_cpu_utime;
    last_cpu_stime = cur_cpu_stime;
    last_cpu_times_set = true;
    return;
  }

  const auto cpu_utime_diff = cur_cpu_utime - last_cpu_utime;
  last_cpu_utime = cur_cpu_utime;

  const auto cpu_stime_diff = cur_cpu_stime - last_cpu_stime;
  last_cpu_stime = cur_cpu_stime;

  /* Calculate absolute. */

  double cpu_utime = cpu_utime_diff * 100.0 / time_diff;
  MONITOR_SET(MONITOR_CPU_UTIME_ABS, int64_t(cpu_utime));
  srv_cpu_usage.utime_abs = cpu_utime;

  double cpu_stime = cpu_stime_diff * 100.0 / time_diff;
  MONITOR_SET(MONITOR_CPU_STIME_ABS, int64_t(cpu_stime));
  srv_cpu_usage.stime_abs = cpu_stime;

  /* Calculate relative. */

  DWORD_PTR process_affinity_mask;
  DWORD_PTR system_affinity_mask;
  if (!GetProcessAffinityMask(GetCurrentProcess(), &process_affinity_mask,
                              &system_affinity_mask)) {
    return;
  }

  /* If the system has more than 64 processors and the current process
     contains threads in multiple groups, GetProcessAffinityMask returns
     zero for both affinity masks.
  */
  if ((process_affinity_mask == 0) && (system_affinity_mask == 0)) {
    return;
  }

  int n_cpu = 0;
  constexpr int MAX_CPU_N = 64;
  uint64_t j = 1;
  for (int i = 0; i < MAX_CPU_N; ++i) {
    if (j & process_affinity_mask) {
      ++n_cpu;
    }
    j = j << 1;
  }

  srv_cpu_usage.n_cpu = n_cpu;
  MONITOR_SET(MONITOR_CPU_N, int64_t(n_cpu));

  if (n_cpu == 0) {
    return;
  }

  cpu_utime /= n_cpu;
  MONITOR_SET(MONITOR_CPU_UTIME_PCT, int64_t(cpu_utime));
  srv_cpu_usage.utime_pct = cpu_utime;

  cpu_stime /= n_cpu;
  MONITOR_SET(MONITOR_CPU_STIME_PCT, int64_t(cpu_stime));
  srv_cpu_usage.stime_pct = cpu_stime;
}
#else
static void srv_update_cpu_usage() {
  srv_cpu_usage.utime_pct = 0;
  srv_cpu_usage.utime_abs = 0;
  srv_cpu_usage.stime_pct = 0;
  srv_cpu_usage.stime_abs = 0;
  srv_cpu_usage.n_cpu = 1;
}
#endif

#endif /* UNIV_LINUX || WIN32 */

/** Perform the tasks that the master thread is supposed to do when the
 server is active. There are two types of tasks. The first category is
 of such tasks which are performed at each invocation of this function.
 We assume that this function is called roughly every second when the
 server is active. The second category is of such tasks which are
 performed at some interval e.g.: purge, dict_LRU cleanup etc. */
static void srv_master_do_active_tasks(void) {
  const auto cur_time = std::chrono::steady_clock::now();
  static std::chrono::steady_clock::time_point last_dict_lru_check;

  /* First do the tasks that we are suppose to do at each
  invocation of this function. */

  ++srv_main_active_loops;

  MONITOR_INC(MONITOR_MASTER_ACTIVE_LOOPS);

  /* ALTER TABLE in MySQL requires on Unix that the table handler
  can drop tables lazily after there no longer are SELECT
  queries to them. */
  {
    srv_main_thread_op_info = "doing background drop tables";
    const auto counter_time = std::chrono::steady_clock::now();
    row_drop_tables_for_mysql_in_background();
    MONITOR_INC_TIME(MONITOR_SRV_BACKGROUND_DROP_TABLE_MICROSECOND,
                     counter_time);
  }

  ut_d(srv_master_do_disabled_loop());

  if (srv_shutdown_state.load() >=
      SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
    return;
  }

  /* Do an ibuf merge */
  {
    srv_main_thread_op_info = "doing insert buffer merge";
    const auto counter_time = std::chrono::steady_clock::now();

    ibuf_merge_in_background(false);
    MONITOR_INC_TIME(MONITOR_SRV_IBUF_MERGE_MICROSECOND, counter_time);
  }

  /* Flush logs if needed */
  log_buffer_sync_in_background();

  /* Now see if various tasks that are performed at defined
  intervals need to be performed. */

  if (srv_shutdown_state.load() >=
      SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
    return;
  }

  srv_update_cpu_usage();

  if (trx_sys->rseg_history_len.load() > 0) {
    srv_wake_purge_thread_if_not_active();
  }

  if (cur_time - last_dict_lru_check > SRV_MASTER_DICT_LRU_INTERVAL) {
    last_dict_lru_check = cur_time;
    srv_main_thread_op_info = "enforcing dict cache limit";
    const auto counter_time = std::chrono::steady_clock::now();
    ulint n_evicted = srv_master_evict_from_table_cache(50);
    if (n_evicted != 0) {
      MONITOR_INC_VALUE(MONITOR_SRV_DICT_LRU_EVICT_COUNT, n_evicted);
    }
    MONITOR_INC_TIME(MONITOR_SRV_DICT_LRU_MICROSECOND, counter_time);
  }
}

/** Perform the tasks that the master thread is supposed to do whenever the
 server is idle. We do check for the server state during this function
 and if the server has entered the shutdown phase we may return from
 the function without completing the required tasks.
 Note that the server can move to active state when we are executing this
 function but we don't check for that as we are suppose to perform more
 or less same tasks when server is active. */
static void srv_master_do_idle_tasks(void) {
  ++srv_main_idle_loops;

  MONITOR_INC(MONITOR_MASTER_IDLE_LOOPS);

  /* ALTER TABLE in MySQL requires on Unix that the table handler
  can drop tables lazily after there no longer are SELECT
  queries to them. */
  {
    srv_main_thread_op_info = "doing background drop tables";
    const auto counter_time = std::chrono::steady_clock::now();
    row_drop_tables_for_mysql_in_background();
    MONITOR_INC_TIME(MONITOR_SRV_BACKGROUND_DROP_TABLE_MICROSECOND,
                     counter_time);

    ut_d(srv_master_do_disabled_loop());

    if (srv_shutdown_state.load() >=
        SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
      return;
    }
  }

  /* Do an ibuf merge */
  {
    srv_main_thread_op_info = "doing insert buffer merge";
    const auto counter_time = std::chrono::steady_clock::now();
    ibuf_merge_in_background(true);
    MONITOR_INC_TIME(MONITOR_SRV_IBUF_MERGE_MICROSECOND, counter_time);
  }

  if (srv_shutdown_state.load() >=
      SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
    return;
  }

  srv_update_cpu_usage();

  if (trx_sys->rseg_history_len > 0) {
    srv_wake_purge_thread_if_not_active();
  }

  srv_main_thread_op_info = "enforcing dict cache limit";
  const auto counter_time = std::chrono::steady_clock::now();
  ulint n_evicted = srv_master_evict_from_table_cache(100);
  if (n_evicted != 0) {
    MONITOR_INC_VALUE(MONITOR_SRV_DICT_LRU_EVICT_COUNT, n_evicted);
  }
  MONITOR_INC_TIME(MONITOR_SRV_DICT_LRU_MICROSECOND, counter_time);

  /* Flush logs if needed */
  log_buffer_sync_in_background();
}

/** Perform the tasks during pre_dd_shutdown phase. The tasks that we do
 depend on srv_fast_shutdown:
 2 => very fast shutdown => do no book keeping
 0, 1 => normal or slow shutdown => clear drop table queue
 @param[in,out]   last_print_time       last time log message (about pending
                                        operations of shutdown) was printed
 @return true if there might be some work left to be done, false otherwise */
static bool srv_master_do_pre_dd_shutdown_tasks(
    std::chrono::steady_clock::time_point *last_print_time) /*!< last time the
                                          function print the message */
{
  ulint n_tables_to_drop = 0;

  ut_ad(!srv_read_only_mode);

  ++srv_main_shutdown_loops;

  ut_a(srv_shutdown_state_matches([](auto state) {
    return state == SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS ||
           state == SRV_SHUTDOWN_EXIT_THREADS;
  }));

  /* In very fast shutdown none of the following is necessary */
  if (srv_fast_shutdown == 2) {
    return (false);
  }

  /* ALTER TABLE in MySQL requires on Unix that the table handler
  can drop tables lazily after there no longer are SELECT
  queries to them. */
  if (srv_force_recovery < SRV_FORCE_NO_BACKGROUND) {
    srv_main_thread_op_info = "doing background drop tables";
    n_tables_to_drop = row_drop_tables_for_mysql_in_background();
  }

  /* Print progress message every 60 seconds during shutdown */
  srv_shutdown_print_master_pending(last_print_time, n_tables_to_drop, 0);

  return (n_tables_to_drop != 0);
}

/** Perform the tasks during shutdown. The tasks that we do at shutdown
 depend on srv_fast_shutdown:
 1, 2 => very fast shutdown => do no book keeping
 0 => slow shutdown => do ibuf merge
 @param[in,out]   last_print_time       last time log message (about pending
                                        operations of shutdown) was printed
 @return true if there might be some work left to be done, false otherwise */
static bool srv_master_do_shutdown_tasks(
    std::chrono::steady_clock::time_point *last_print_time) /*!< last time the
                                          function print the message */
{
  ulint n_bytes_merged = 0;

  ut_ad(!srv_read_only_mode);

  ++srv_main_shutdown_loops;

  ut_a(srv_shutdown_state_matches([](auto state) {
    return state == SRV_SHUTDOWN_MASTER_STOP ||
           state == SRV_SHUTDOWN_EXIT_THREADS;
  }));

  /* In very fast shutdown none of the following is necessary */
  if (srv_fast_shutdown >= 1) {
    return (false);
  }

  /* In case of slow shutdown we do ibuf merge (unless innodb_force_recovery
  is greater or equal to SRV_FORCE_NO_IBUF_MERGE). */
  if (srv_force_recovery < SRV_FORCE_NO_IBUF_MERGE) {
    srv_main_thread_op_info = "doing insert buffer merge";
    n_bytes_merged = ibuf_merge_in_background(true);
  }

  /* Print progress message every 60 seconds during shutdown */
  srv_shutdown_print_master_pending(last_print_time, 0, n_bytes_merged);

  return (n_bytes_merged != 0);
}

/* Enable REDO tablespace encryption */
bool srv_enable_redo_encryption() {
  log_t &log = *log_sys;

  /* While enabling encryption, make sure not to overwrite the existing
  redo log encryption key (if it has already been generated).

  Note that we can safely check log.m_encryption_metadata without acquiring
  any of mutexes which are enlisted as required to protect updates of this
  field. That's because srv_enable_redo_encryption() is called either in
  startup phase, or during update of innodb_redo_log_encrypt. Server ensures
  that sysvars are not being updated concurrently and that they are not being
  updated during startup phase. */
  if (log_can_encrypt(log)) {
    return false;
  }

  Clone_notify notifier(Clone_notify::Type::SPACE_ALTER_ENCRYPT,
                        dict_sys_t::s_log_space_id, false);
  if (notifier.failed()) {
    return true;
  }

  /* Start to encrypt the redo log block from now on. */
  if (log_encryption_generate_metadata(log) != DB_SUCCESS) {
    ib::error(ER_IB_MSG_LOG_FILES_ENCRYPTION_INIT_FAILED);
    return true;
  }

  /* Announce encryption is successfully enabled for the redo log. */
  ib::info(ER_IB_MSG_1245);
  return false;
}

/* Set encryption for UNDO tablespace with given space id. */
bool set_undo_tablespace_encryption(space_id_t space_id, mtr_t *mtr) {
  ut_ad(fsp_is_undo_tablespace(space_id));
  fil_space_t *space = fil_space_get(space_id);

  dberr_t err;
  byte encrypt_info[Encryption::INFO_SIZE];

  Encryption_metadata encryption_metadata;

  Encryption::set_or_generate(Encryption::AES, nullptr, nullptr,
                              encryption_metadata);

  /* 0 fill encryption info */
  memset(encrypt_info, 0, Encryption::INFO_SIZE);

  /* Fill up encryption info to be set */
  if (!Encryption::fill_encryption_info(encryption_metadata, true,
                                        encrypt_info)) {
    ib::error(ER_IB_MSG_1052, space->name);
    return true;
  }

  uint32_t new_flags = space->flags | FSP_FLAGS_MASK_ENCRYPTION;

  /* Write encryption info on tablespace header page */
  if (!fsp_header_write_encryption(space->id, new_flags, encrypt_info, true,
                                   false, mtr)) {
    ib::error(ER_IB_MSG_1053, space->name);
    return true;
  }

  /* Update In-Mem encryption information for UNDO tablespace */
  fsp_flags_set_encryption(space->flags);
  err = fil_set_encryption(space->id, encryption_metadata.m_type,
                           encryption_metadata.m_key, encryption_metadata.m_iv);
  if (err != DB_SUCCESS) {
    ib::error(ER_IB_MSG_1054, space->name, int{err}, ut_strerr(err));
    return true;
  }

  return false;
}

/* Enable UNDO tablespace encryption */
bool srv_enable_undo_encryption() {
  /* Make sure undo::ddl_mutex is owned. */
  ut_ad(mutex_own(&undo::ddl_mutex));
  bool ret_val = false;

  /* Traverse over all UNDO tablespaces and mark them encrypted. */
  undo::spaces->s_lock();
  for (auto undo_space : undo::spaces->m_spaces) {
    /* Skip system tablespace. */
    if (undo_space->id() == TRX_SYS_SPACE) {
      continue;
    }

    fil_space_t *space = fil_space_get(undo_space->id());
    ut_ad(fsp_is_undo_tablespace(undo_space->id()));

    /* While enabling encryption, make sure not to overwrite the tablespace key.
    Otherwise, pages encrypted with the old tablespace key can't be read. */
    if (FSP_FLAGS_GET_ENCRYPTION(space->flags)) {
      continue;
    }

    Clone_notify notifier(Clone_notify::Type::SPACE_ALTER_ENCRYPT, space->id,
                          false);
    if (notifier.failed()) {
      ret_val = true;
      break;
    }

    undo_space->rsegs()->s_lock();

    /* Make sure that there is enough reusable space in the redo log files. */
    log_free_check();

    mtr_t mtr;
    mtr_start(&mtr);
    mtr_x_lock_space(space, &mtr);

    if (set_undo_tablespace_encryption(undo_space->id(), &mtr)) {
      mtr_commit(&mtr);
      undo_space->rsegs()->s_unlock();
      ret_val = true;
      break;
    }

    mtr_commit(&mtr);
    undo_space->rsegs()->s_unlock();

    /* Announce encryption is successfully enabled for the undo tablespace. */
    ib::info(ER_IB_MSG_1055, undo_space->space_name());
  }

  undo::spaces->s_unlock();
  return ret_val;
}

/** Puts master thread to sleep. At this point we are using polling to
 service various activities. Master thread sleeps for one second before
 checking the state of the server again */
static void srv_master_sleep(void) {
  srv_main_thread_op_info = "sleeping";
  std::this_thread::sleep_for(std::chrono::seconds(1));
  srv_main_thread_op_info = "";
}

/** Waits on event in provided slot.
@param[in]   slot     slot reserved as SRV_MASTER */
static void srv_master_wait(srv_slot_t *slot) {
  srv_main_thread_op_info = "suspending";

  srv_suspend_thread(slot);

  /* DO NOT CHANGE THIS STRING.
  InnoDB manual also mentions this string in several places. */
  srv_main_thread_op_info = "waiting for server activity";

  os_event_wait(slot->event);
}

/** Executes the main loop of the master thread.
@param[in]   slot     slot reserved as SRV_MASTER */
static void srv_master_main_loop(srv_slot_t *slot) {
  if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND) {
    /* When innodb_force_recovery is at least SRV_FORCE_NO_BACKGROUND,
    we avoid performing active/idle master's tasks. However, we still
    need to ensure that:
      srv_shutdown_state >= SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS,
    after we exited srv_master_main_loop(). Keep waiting until that
    is satisfied and then exit. */
    while (srv_shutdown_state.load() <
           SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
      srv_master_wait(slot);
    }
    return;
  }

  ulint old_activity_count = srv_get_activity_count();

  while (srv_shutdown_state.load() <
         SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS) {
    srv_master_sleep();

    MONITOR_INC(MONITOR_MASTER_THREAD_SLEEP);

    /* Just in case - if there is not much free space in redo,
    try to avoid asking for troubles because of extra work
    performed in such background thread. */
    srv_main_thread_op_info = "checking free log space";
    log_free_check();

    if (srv_check_activity(old_activity_count)) {
      old_activity_count = srv_get_activity_count();
      srv_master_do_active_tasks();
    } else {
      srv_master_do_idle_tasks();
    }

    /* Purge any deleted tablespace pages. */
    fil_purge();
  }
}

/** Executes pre_dd_shutdown tasks in the master thread. */
static void srv_master_pre_dd_shutdown_loop() {
  ut_a(srv_shutdown_state_matches([](auto state) {
    return state == SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS ||
           state == SRV_SHUTDOWN_EXIT_THREADS;
  }));
  auto last_print_time = std::chrono::steady_clock::now();
  while (srv_shutdown_state.load() < SRV_SHUTDOWN_EXIT_THREADS &&
         srv_master_do_pre_dd_shutdown_tasks(&last_print_time)) {
    /* Shouldn't loop here in case of very fast shutdown */
    ut_ad(srv_fast_shutdown < 2);
  }
}

/** Executes shutdown tasks in the master thread. */
static void srv_master_shutdown_loop() {
  ut_a(srv_shutdown_state_matches([](auto state) {
    return state == SRV_SHUTDOWN_MASTER_STOP ||
           state == SRV_SHUTDOWN_EXIT_THREADS;
  }));
  auto last_print_time = std::chrono::steady_clock::now();
  while (srv_shutdown_state.load() < SRV_SHUTDOWN_EXIT_THREADS &&
         srv_master_do_shutdown_tasks(&last_print_time)) {
    /* Shouldn't loop here in case of very fast shutdown */
    ut_ad(srv_fast_shutdown < 2);
  }
}

/** The master thread controlling the server. */
void srv_master_thread() {
  DBUG_TRACE;

  srv_slot_t *slot;

  THD *thd = create_internal_thd();

  ut_ad(!srv_read_only_mode);

  srv_main_thread_process_no = os_proc_get_number();
  srv_main_thread_id = std::this_thread::get_id();

  slot = srv_reserve_slot(SRV_MASTER);
  ut_a(slot == srv_sys->sys_threads);

  srv_master_main_loop(slot);

  srv_master_pre_dd_shutdown_loop();

  os_event_set(srv_threads.m_master_ready_for_dd_shutdown);

  /* This is just for test scenarios. */
  srv_thread_delay_cleanup_if_needed(true);

  while (srv_shutdown_state.load() < SRV_SHUTDOWN_MASTER_STOP) {
    srv_master_wait(slot);
  }

  srv_master_shutdown_loop();

  srv_main_thread_op_info = "exiting";
  destroy_internal_thd(thd);
}

/**
Check if purge should stop.
@return true if it should shutdown. */
static bool srv_purge_should_exit(
    ulint n_purged) /*!< in: pages purged in last batch */
{
  switch (srv_shutdown_state.load()) {
    case SRV_SHUTDOWN_NONE:
    case SRV_SHUTDOWN_RECOVERY_ROLLBACK:
    case SRV_SHUTDOWN_PRE_DD_AND_SYSTEM_TRANSACTIONS:
      /* Normal operation. */
      break;

    case SRV_SHUTDOWN_PURGE:
      /* Exit unless slow shutdown requested or all done. */
      return (srv_fast_shutdown != 0 || n_purged == 0);

    case SRV_SHUTDOWN_EXIT_THREADS:
      return (true);

    case SRV_SHUTDOWN_LAST_PHASE:
    case SRV_SHUTDOWN_FLUSH_PHASE:
    case SRV_SHUTDOWN_MASTER_STOP:
    case SRV_SHUTDOWN_CLEANUP:
    case SRV_SHUTDOWN_DD:
      ut_error;
  }

  return (false);
}

/** Fetch and execute a task from the work queue.
 @return true if a task was executed */
static bool srv_task_execute(void) {
  que_thr_t *thr = nullptr;

  ut_ad(!srv_read_only_mode);
  ut_a(srv_force_recovery < SRV_FORCE_NO_BACKGROUND);

  if (UT_LIST_GET_LEN(srv_sys->tasks) == 0) {
    return false;
  }

  mutex_enter(&srv_sys->tasks_mutex);

  if (UT_LIST_GET_LEN(srv_sys->tasks) > 0) {
    thr = UT_LIST_GET_FIRST(srv_sys->tasks);

    ut_a(que_node_get_type(thr->child) == QUE_NODE_PURGE);

    UT_LIST_REMOVE(srv_sys->tasks, thr);
  }

  mutex_exit(&srv_sys->tasks_mutex);

  if (thr != nullptr) {
    que_run_threads(thr);

    purge_sys->n_completed.fetch_add(1);
  }

  return (thr != nullptr);
}

/** Worker thread that reads tasks from the work queue and executes them. */
void srv_worker_thread() {
  srv_slot_t *slot;

  ut_ad(!srv_read_only_mode);
  ut_a(srv_force_recovery < SRV_FORCE_NO_BACKGROUND);

  THD *thd = create_internal_thd();

  purge_sys->is_this_a_purge_thread = true;

  slot = srv_reserve_slot(SRV_WORKER);

  ut_a(srv_n_purge_threads > 1);

  srv_sys_mutex_enter();

  ut_a(srv_sys->n_threads_active[SRV_WORKER] < srv_n_purge_threads);

  srv_sys_mutex_exit();

  /* We need to ensure that the worker threads exit after the
  purge coordinator thread. Otherwise the purge coordinaor can
  end up waiting forever in trx_purge_wait_for_workers_to_complete() */

  do {
    srv_suspend_thread(slot);

    os_event_wait(slot->event);

    if (srv_task_execute()) {
      /* If there are tasks in the queue, wakeup
      the purge coordinator thread. */

      srv_wake_purge_thread_if_not_active();
    }

    /* Note: we are checking the state without holding the
    purge_sys->latch here. */
  } while (purge_sys->state != PURGE_STATE_EXIT);

  srv_free_slot(slot);

  rw_lock_x_lock(&purge_sys->latch, UT_LOCATION_HERE);

  ut_a(!purge_sys->running);
  ut_a(purge_sys->state == PURGE_STATE_EXIT);
  ut_a(srv_shutdown_state.load() >= SRV_SHUTDOWN_PURGE);

  rw_lock_x_unlock(&purge_sys->latch);

  destroy_internal_thd(thd);
}

/** Do the actual purge operation.
@param[in,out]  n_total_purged  Total pages purged in this call
@return length of history list before the last purge batch. */
static ulint srv_do_purge(ulint *n_total_purged) {
  ulint n_pages_purged;

  static ulint count = 0;
  static ulint n_use_threads = 0;
  static uint64_t rseg_history_len = 0;
  ulint old_activity_count = srv_get_activity_count();
  bool need_explicit_truncate = false;

  const auto n_threads = srv_threads.m_purge_workers_n;

  ut_a(n_threads > 0);
  ut_ad(!srv_read_only_mode);

  /* Purge until there are no more records to purge and there is
  no change in configuration or server state. If the user has
  configured more than one purge thread then we treat that as a
  pool of threads and only use the extra threads if purge can't
  keep up with updates. */

  if (n_use_threads == 0) {
    n_use_threads = n_threads;
  }

  do {
    if (trx_sys->rseg_history_len.load() > rseg_history_len ||
        (srv_max_purge_lag > 0 && rseg_history_len > srv_max_purge_lag)) {
      /* History length is now longer than what it was
      when we took the last snapshot. Use more threads. */

      if (n_use_threads < n_threads) {
        ++n_use_threads;
      }

    } else if (srv_check_activity(old_activity_count) && n_use_threads > 1) {
      /* History length same or smaller since last snapshot,
      use fewer threads. */

      --n_use_threads;

      old_activity_count = srv_get_activity_count();
    }

    /* Ensure that the purge threads are less than what
    was configured. */

    ut_a(n_use_threads > 0);
    ut_a(n_use_threads <= n_threads);

    /* Take a snapshot of the history list before purge. */
    if ((rseg_history_len = trx_sys->rseg_history_len.load()) == 0) {
      break;
    }

    bool do_truncate = need_explicit_truncate ||
                       srv_shutdown_state.load() == SRV_SHUTDOWN_PURGE ||
                       (++count % srv_purge_rseg_truncate_frequency) == 0;

    n_pages_purged =
        trx_purge(n_use_threads, srv_purge_batch_size, do_truncate);

    *n_total_purged += n_pages_purged;

    need_explicit_truncate = (n_pages_purged == 0);
    if (need_explicit_truncate) {
      undo::spaces->s_lock();
      need_explicit_truncate =
          (undo::spaces->find_first_inactive_explicit(nullptr) != nullptr);
      undo::spaces->s_unlock();
    }
  } while (purge_sys->state == PURGE_STATE_RUN &&
           (n_pages_purged > 0 || need_explicit_truncate) &&
           !srv_purge_should_exit(n_pages_purged));

  return rseg_history_len;
}

/** Suspend the purge coordinator thread. */
static void srv_purge_coordinator_suspend(
    srv_slot_t *slot,       /*!< in/out: Purge coordinator
                            thread slot */
    ulint rseg_history_len) /*!< in: history list length
                            before last purge */
{
  ut_ad(!srv_read_only_mode);
  ut_a(slot->type == SRV_PURGE);

  bool stop = false;

  /** Maximum wait time on the purge event. */
  constexpr std::chrono::milliseconds SRV_PURGE_MAX_TIMEOUT{10};

  int64_t sig_count = srv_suspend_thread(slot);

  do {
    ulint ret;

    rw_lock_x_lock(&purge_sys->latch, UT_LOCATION_HERE);

    purge_sys->running = false;

    rw_lock_x_unlock(&purge_sys->latch);

    /* We don't wait right away on the the non-timed wait because
    we want to signal the thread that wants to suspend purge. */

    if (stop) {
      os_event_wait_low(slot->event, sig_count);
      ret = 0;
    } else if (rseg_history_len <= trx_sys->rseg_history_len.load()) {
      ret =
          os_event_wait_time_low(slot->event, SRV_PURGE_MAX_TIMEOUT, sig_count);
    } else {
      /* We don't want to waste time waiting, if the
      history list increased by the time we got here,
      unless purge has been stopped. */
      ret = 0;
    }

    srv_sys_mutex_enter();

    /* The thread can be in state !suspended after the timeout
    but before this check if another thread sent a wakeup signal. */

    if (slot->suspended) {
      slot->suspended = false;
      ++srv_sys->n_threads_active[slot->type];
      ut_a(srv_sys->n_threads_active[slot->type] == 1);
    }

    srv_sys_mutex_exit();

    sig_count = srv_suspend_thread(slot);

    rw_lock_x_lock(&purge_sys->latch, UT_LOCATION_HERE);

    stop = (srv_shutdown_state.load() < SRV_SHUTDOWN_PURGE &&
            purge_sys->state == PURGE_STATE_STOP);

    if (!stop) {
      bool check = true;
      DBUG_EXECUTE_IF(
          "skip_purge_check_shutdown",
          if (srv_shutdown_state.load() >= SRV_SHUTDOWN_PURGE &&
              purge_sys->state == PURGE_STATE_STOP &&
              srv_fast_shutdown != 0) { check = false; };);

      if (check) {
        ut_a(purge_sys->n_stop == 0);
      }
      purge_sys->running = true;
    } else {
      ut_a(purge_sys->n_stop > 0);

      /* Signal that we are suspended. */
      os_event_set(purge_sys->event);
    }

    rw_lock_x_unlock(&purge_sys->latch);

    if (ret == OS_SYNC_TIME_EXCEEDED) {
      /* No new records added since wait started then simply
      wait for new records. The magic number 5000 is an
      approximation for the case where we have cached UNDO
      log records which prevent truncate of the UNDO
      segments. */

      if (rseg_history_len == trx_sys->rseg_history_len &&
          trx_sys->rseg_history_len < 5000) {
        stop = true;
      }
    }

  } while (stop);

  srv_sys_mutex_enter();

  if (slot->suspended) {
    slot->suspended = false;
    ++srv_sys->n_threads_active[slot->type];
    ut_a(srv_sys->n_threads_active[slot->type] == 1);
  }

  srv_sys_mutex_exit();
}

/** Purge coordinator thread that schedules the purge tasks. */
void srv_purge_coordinator_thread() {
  srv_slot_t *slot;

  THD *thd = create_internal_thd();

  purge_sys->is_this_a_purge_thread = true;

  ulint n_total_purged = ULINT_UNDEFINED;

  ut_ad(!srv_read_only_mode);
  ut_a(srv_n_purge_threads >= 1);
  ut_a(trx_purge_state() == PURGE_STATE_INIT);
  ut_a(srv_force_recovery < SRV_FORCE_NO_BACKGROUND);

  rw_lock_x_lock(&purge_sys->latch, UT_LOCATION_HERE);

  purge_sys->running = true;
  purge_sys->state = PURGE_STATE_RUN;

  rw_lock_x_unlock(&purge_sys->latch);

  slot = srv_reserve_slot(SRV_PURGE);

  ulint rseg_history_len = trx_sys->rseg_history_len;

  do {
    /* If there are no records to purge or the last
    purge didn't purge any records then wait for activity. */

    if (srv_shutdown_state.load() < SRV_SHUTDOWN_PURGE &&
        (purge_sys->state == PURGE_STATE_STOP || n_total_purged == 0)) {
      srv_purge_coordinator_suspend(slot, rseg_history_len);
    }

    if (srv_purge_should_exit(n_total_purged)) {
      ut_a(!slot->suspended);
      break;
    }

    n_total_purged = 0;

    rseg_history_len = srv_do_purge(&n_total_purged);

  } while (!srv_purge_should_exit(n_total_purged));

  /* This is just for test scenarios. Do not pass thd here,
  because it would lead to wait on event then, and we would
  never exit the srv_pre_dd_shutdown() which waits for this
  thread to exit. That's because the signal for which we
  would wait is signalled in srv_shutdown which happens
  after the srv_pre_dd_shutdown is ended. */
  srv_thread_delay_cleanup_if_needed(false);

  /* Ensure that we don't jump out of the loop unless the
  exit condition is satisfied. */

  ut_a(srv_purge_should_exit(n_total_purged));

  ulint n_pages_purged = ULINT_MAX;

  /* Ensure that all records are purged if it is not a fast shutdown.
  This covers the case where a record can be added after we exit the
  loop above. */
  while (srv_fast_shutdown == 0 && n_pages_purged > 0) {
    n_pages_purged = trx_purge(1, srv_purge_batch_size, false);
  }

  /* This trx_purge is called to remove any undo records (added by
  background threads) after completion of the above loop. When
  srv_fast_shutdown != 0, a large batch size can cause significant
  delay in shutdown, so reducing the batch size to magic number 20
  (which was default in 5.5), which we hope will be sufficient to
  remove all the undo records */
  const uint temp_batch_size = 20;

  n_pages_purged =
      trx_purge(1,
                srv_purge_batch_size <= temp_batch_size ? srv_purge_batch_size
                                                        : temp_batch_size,
                true);
  ut_a(n_pages_purged == 0 || srv_fast_shutdown != 0);

  /* The task queue should always be empty, independent of fast
  shutdown state. */
  ut_a(srv_get_task_queue_length() == 0);

  srv_free_slot(slot);

  /* Note that we are shutting down. */
  rw_lock_x_lock(&purge_sys->latch, UT_LOCATION_HERE);

  purge_sys->state = PURGE_STATE_EXIT;

  /* Clear out any pending undo-tablespaces to truncate and reset
  the list as we plan to shutdown the purge thread. */
  purge_sys->undo_trunc.reset();

  purge_sys->running = false;

  rw_lock_x_unlock(&purge_sys->latch);

  /* Ensure that all the worker threads quit. */
  if (srv_n_purge_threads > 1) {
    srv_release_threads(SRV_WORKER, srv_n_purge_threads - 1);
  }

  /* This is just for test scenarios. Do not pass thd here.
  For explanation look at comment for similar usage above. */
  srv_thread_delay_cleanup_if_needed(false);

  destroy_internal_thd(thd);
}

/** Enqueues a task to server task queue and releases a worker thread, if there
is a suspended one. */
void srv_que_task_enqueue_low(que_thr_t *thr) /*!< in: query thread */
{
  ut_ad(!srv_read_only_mode);
  mutex_enter(&srv_sys->tasks_mutex);

  UT_LIST_ADD_LAST(srv_sys->tasks, thr);

  mutex_exit(&srv_sys->tasks_mutex);

  srv_release_threads(SRV_WORKER, 1);
}

/** Get count of tasks in the queue.
 @return number of tasks in queue */
ulint srv_get_task_queue_length(void) {
  ut_ad(!srv_read_only_mode);

  return UT_LIST_GET_LEN(srv_sys->tasks);
}

/** Wakeup the purge threads. */
void srv_purge_wakeup(void) {
  ut_ad(!srv_read_only_mode);

  if (srv_force_recovery < SRV_FORCE_NO_BACKGROUND) {
    srv_release_threads(SRV_PURGE, 1);

    if (srv_threads.m_purge_workers_n > 1) {
      /* SRV_PURGE is not counted here. */
      ulint n_workers = srv_threads.m_purge_workers_n - 1;

      srv_release_threads(SRV_WORKER, n_workers);
    }
  }
}

/** Check if the purge threads are active, both coordinator and worker threads
@return true if any thread is active, false if no thread is active */
bool srv_purge_threads_active() {
  if (srv_threads.m_purge_workers == nullptr) {
#ifdef UNIV_DEBUG
    ut_a(srv_read_only_mode);
#endif /* UNIV_DEBUG */
    ut_ad(!srv_thread_is_active(srv_threads.m_purge_coordinator));
    return (false);
  }

  for (size_t i = 0; i < srv_threads.m_purge_workers_n; ++i) {
    if (srv_thread_is_active(srv_threads.m_purge_workers[i])) {
      ut_ad(!srv_read_only_mode);
      return (true);
    }
  }

  ut_ad(!srv_thread_is_active(srv_threads.m_purge_coordinator));

  return (false);
}

bool srv_thread_is_active(const IB_thread &thread) {
  return (thread_is_active(thread));
}

bool srv_thread_is_stopped(const IB_thread &thread) {
  return (thread_is_stopped(thread));
}

#endif /* !UNIV_HOTBACKUP */

const char *srv_get_server_errmsgs(int errcode) {
  return (error_message_for_error_log(errcode));
}

void set_srv_redo_log(bool enable) {
  mutex_enter(&srv_innodb_monitor_mutex);
  srv_redo_log = enable;
  mutex_exit(&srv_innodb_monitor_mutex);
}