1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
/*****************************************************************************
Copyright (c) 2007, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/** @file trx/trx0i_s.cc
INFORMATION SCHEMA innodb_trx, innodb_locks and
innodb_lock_waits tables fetch code.
The code below fetches information needed to fill those
3 dynamic tables and uploads it into a "transactions
table cache" for later retrieval.
Created July 17, 2007 Vasil Dimov
*******************************************************/
/* Found during the build of 5.5.3 on Linux 2.4 and early 2.6 kernels:
The includes "univ.i" -> "my_global.h" cause a different path
to be taken further down with pthread functions and types,
so they must come first.
From the symptoms, this is related to bug#46587 in the MySQL bug DB.
*/
#include <sql_class.h>
#include <stdio.h>
#include "buf0buf.h"
#include "dict0dict.h"
#include "ha0storage.h"
#include "ha_prototypes.h"
#include "hash0hash.h"
#include "lock0iter.h"
#include "lock0lock.h"
#include "mem0mem.h"
#include "mysql/plugin.h"
#include "page0page.h"
#include "rem0rec.h"
#include "row0row.h"
#include "srv0srv.h"
#include "sync0rw.h"
#include "sync0sync.h"
#include "trx0i_s.h"
#include "trx0sys.h"
#include "trx0trx.h"
#include "ut0mem.h"
#include "storage/perfschema/pfs_data_lock.h"
static_assert(pk_pos_data_lock::max_len > TRX_I_S_LOCK_ID_MAX_LEN,
"pk_pos_data_lock::m_engine_lock_id must be able to hold "
"engine_lock_id which has TRX_I_S_LOCK_ID_MAX_LEN chars");
static_assert(pk_pos_data_lock_wait::max_len > TRX_I_S_LOCK_ID_MAX_LEN,
"pk_pos_data_lock_wait::m_requesting_engine_lock_id must be able "
"to hold engine_lock_id which has TRX_I_S_LOCK_ID_MAX_LEN chars");
static_assert(pk_pos_data_lock_wait::max_len > TRX_I_S_LOCK_ID_MAX_LEN,
"pk_pos_data_lock_wait::m_blocking_engine_lock_id must be able "
"to hold engine_lock_id which has TRX_I_S_LOCK_ID_MAX_LEN chars");
/** Initial number of rows in the table cache */
constexpr uint32_t TABLE_CACHE_INITIAL_ROWSNUM = 1024;
/** @brief The maximum number of chunks to allocate for a table cache.
The rows of a table cache are stored in a set of chunks. When a new
row is added a new chunk is allocated if necessary. Assuming that the
first one is 1024 rows (TABLE_CACHE_INITIAL_ROWSNUM) and each
subsequent is N/2 where N is the number of rows we have allocated till
now, then 39th chunk would accommodate 1677416425 rows and all chunks
would accommodate 3354832851 rows. */
constexpr uint32_t MEM_CHUNKS_IN_TABLE_CACHE = 39;
/** Memory limit passed to ha_storage_put_memlim().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_STORAGE(cache) (TRX_I_S_MEM_LIMIT - (cache)->mem_allocd)
/** Memory limit in table_cache_create_empty_row().
@param cache hash storage
@return maximum allowed allocation size */
#define MAX_ALLOWED_FOR_ALLOC(cache) \
(TRX_I_S_MEM_LIMIT - (cache)->mem_allocd - \
ha_storage_get_size((cache)->storage))
/** Memory for each table in the intermediate buffer is allocated in
separate chunks. These chunks are considered to be concatenated to
represent one flat array of rows. */
struct i_s_mem_chunk_t {
ulint offset; /*!< offset, in number of rows */
ulint rows_allocd; /*!< the size of this chunk, in number
of rows */
void *base; /*!< start of the chunk */
};
/** This represents one table's cache. */
struct i_s_table_cache_t {
ulint rows_used; /*!< number of used rows */
ulint rows_allocd; /*!< number of allocated rows */
ulint row_size; /*!< size of a single row */
i_s_mem_chunk_t chunks[MEM_CHUNKS_IN_TABLE_CACHE]; /*!< array of
memory chunks that stores the
rows */
};
/** Initial size of the cache storage */
constexpr uint32_t CACHE_STORAGE_INITIAL_SIZE = 1024;
/** Number of hash cells in the cache storage */
constexpr uint32_t CACHE_STORAGE_HASH_CELLS = 2048;
/** This structure describes the intermediate buffer */
struct trx_i_s_cache_t {
rw_lock_t *rw_lock; /*!< read-write lock protecting
the rest of this structure */
std::atomic<std::chrono::steady_clock::time_point> last_read{
std::chrono::steady_clock::time_point{}}; /*!< last time the cache was
read; */
static_assert(decltype(last_read)::is_always_lock_free);
i_s_table_cache_t innodb_trx; /*!< innodb_trx table */
i_s_table_cache_t innodb_locks; /*!< innodb_locks table */
/** storage for external volatile data that may become unavailable when we
release exclusive global locksys latch or trx_sys->mutex */
ha_storage_t *storage;
/** the amount of memory allocated with mem_alloc*() */
ulint mem_allocd;
/** this is true if the memory limit was hit and thus the data in the cache is
truncated */
bool is_truncated;
};
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
static trx_i_s_cache_t trx_i_s_cache_static;
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
trx_i_s_cache_t *trx_i_s_cache = &trx_i_s_cache_static;
/** For a record lock that is in waiting state retrieves the only bit that
is set, for a table lock returns ULINT_UNDEFINED.
@return record number within the heap */
static ulint wait_lock_get_heap_no(const lock_t *lock) /*!< in: lock */
{
ulint ret;
switch (lock_get_type(lock)) {
case LOCK_REC:
ret = lock_rec_find_set_bit(lock);
ut_a(ret != ULINT_UNDEFINED);
break;
case LOCK_TABLE:
ret = ULINT_UNDEFINED;
break;
default:
ut_error;
}
return (ret);
}
/** Initializes the members of a table cache. */
static void table_cache_init(
i_s_table_cache_t *table_cache, /*!< out: table cache */
size_t row_size) /*!< in: the size of a
row */
{
ulint i;
table_cache->rows_used = 0;
table_cache->rows_allocd = 0;
table_cache->row_size = row_size;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
table_cache->chunks[i].base = nullptr;
}
}
/** Frees a table cache. */
static void table_cache_free(
i_s_table_cache_t *table_cache) /*!< in/out: table cache */
{
ulint i;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
/* the memory is actually allocated in
table_cache_create_empty_row() */
if (table_cache->chunks[i].base) {
ut::free(table_cache->chunks[i].base);
table_cache->chunks[i].base = nullptr;
}
}
}
/** Returns an empty row from a table cache. The row is allocated if no more
empty rows are available. The number of used rows is incremented.
If the memory limit is hit then NULL is returned and nothing is
allocated.
@return empty row, or NULL if out of memory */
static void *table_cache_create_empty_row(
i_s_table_cache_t *table_cache, /*!< in/out: table cache */
trx_i_s_cache_t *cache) /*!< in/out: cache to record
how many bytes are
allocated */
{
ulint i;
void *row;
ut_a(table_cache->rows_used <= table_cache->rows_allocd);
if (table_cache->rows_used == table_cache->rows_allocd) {
/* rows_used == rows_allocd means that new chunk needs
to be allocated: either no more empty rows in the
last allocated chunk or nothing has been allocated yet
(rows_num == rows_allocd == 0); */
i_s_mem_chunk_t *chunk;
ulint req_bytes;
ulint got_bytes;
ulint req_rows;
ulint got_rows;
/* find the first not allocated chunk */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].base == nullptr) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
have been allocated :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
/* allocate the chunk we just found */
if (i == 0) {
/* first chunk, nothing is allocated yet */
req_rows = TABLE_CACHE_INITIAL_ROWSNUM;
} else {
/* Memory is increased by the formula
new = old + old / 2; We are trying not to be
aggressive here (= using the common new = old * 2)
because the allocated memory will not be freed
until InnoDB exit (it is reused). So it is better
to once allocate the memory in more steps, but
have less unused/wasted memory than to use less
steps in allocation (which is done once in a
lifetime) but end up with lots of unused/wasted
memory. */
req_rows = table_cache->rows_allocd / 2;
}
req_bytes = req_rows * table_cache->row_size;
if (req_bytes > MAX_ALLOWED_FOR_ALLOC(cache)) {
return (nullptr);
}
chunk = &table_cache->chunks[i];
got_bytes = req_bytes;
chunk->base = ut::malloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, req_bytes);
got_rows = got_bytes / table_cache->row_size;
cache->mem_allocd += got_bytes;
#if 0
printf("allocating chunk %d req bytes=%lu, got bytes=%lu,"
" row size=%lu,"
" req rows=%lu, got rows=%lu\n",
i, req_bytes, got_bytes,
table_cache->row_size,
req_rows, got_rows);
#endif
chunk->rows_allocd = got_rows;
table_cache->rows_allocd += got_rows;
/* adjust the offset of the next chunk */
if (i < MEM_CHUNKS_IN_TABLE_CACHE - 1) {
table_cache->chunks[i + 1].offset = chunk->offset + chunk->rows_allocd;
}
/* return the first empty row in the newly allocated
chunk */
row = chunk->base;
} else {
char *chunk_start;
ulint offset;
/* there is an empty row, no need to allocate new
chunks */
/* find the first chunk that contains allocated but
empty/unused rows */
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset + table_cache->chunks[i].rows_allocd >
table_cache->rows_used) {
break;
}
}
/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
are full, but
table_cache->rows_used != table_cache->rows_allocd means
exactly the opposite - there are allocated but
empty/unused rows :-X */
ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);
chunk_start = (char *)table_cache->chunks[i].base;
offset = table_cache->rows_used - table_cache->chunks[i].offset;
row = chunk_start + offset * table_cache->row_size;
}
table_cache->rows_used++;
return (row);
}
#ifdef UNIV_DEBUG
/** Validates a row in the locks cache.
@return true if valid */
static bool i_s_locks_row_validate(
const i_s_locks_row_t *row) /*!< in: row to validate */
{
ut_ad(row->lock_guid);
ut_ad(row->lock_guid.m_trx_guid);
ut_ad(row->lock_table_id != 0);
if (row->lock_space == SPACE_UNKNOWN) {
ut_ad(row->lock_page == FIL_NULL);
ut_ad(row->lock_rec == ULINT_UNDEFINED);
} else {
ut_ad(row->lock_page != FIL_NULL);
ut_ad(row->lock_rec != ULINT_UNDEFINED);
}
return true;
}
#endif /* UNIV_DEBUG */
/** Fills i_s_trx_row_t object.
If memory can not be allocated then false is returned.
@return false if allocation fails */
static bool fill_trx_row(
i_s_trx_row_t *row, /*!< out: result object
that's filled */
const trx_t *trx, /*!< in: transaction to
get data from */
const i_s_locks_row_t *requested_lock_row, /*!< in: pointer to the
corresponding row in
innodb_locks if trx is
waiting or NULL if trx
is not waiting */
trx_i_s_cache_t *cache) /*!< in/out: cache into
which to copy volatile
strings */
{
size_t stmt_len;
const char *s;
/* We are going to read various trx->lock fields protected by trx->mutex */
ut_ad(trx_mutex_own(trx));
/* We are going to read TRX_WEIGHT, lock_number_of_rows_locked() and
lock_number_of_tables_locked() which requires latching the lock_sys.
Also, we need it to avoid reading temporary NULL value set to wait_lock by a
B-tree page reorganization. */
ut_ad(locksys::owns_exclusive_global_latch());
row->trx_id = trx_get_id_for_print(trx);
row->trx_started = trx->start_time.load(std::memory_order_relaxed);
row->trx_state = trx_get_que_state_str(trx);
row->requested_lock_row = requested_lock_row;
ut_ad(requested_lock_row == nullptr ||
i_s_locks_row_validate(requested_lock_row));
if (trx->lock.wait_lock != nullptr) {
ut_a(requested_lock_row != nullptr);
row->trx_wait_started = trx->lock.wait_started;
} else {
ut_a(requested_lock_row == nullptr);
row->trx_wait_started = {};
}
row->trx_weight = static_cast<uintmax_t>(TRX_WEIGHT(trx));
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
row->trx_schedule_weight.second = trx->lock.schedule_weight.load();
row->trx_schedule_weight.first = true;
} else {
row->trx_schedule_weight.first = false;
}
if (trx->mysql_thd == nullptr) {
/* For internal transactions e.g., purge and transactions
being recovered at startup there is no associated MySQL
thread data structure. */
row->trx_mysql_thread_id = 0;
row->trx_query = nullptr;
goto thd_done;
}
row->trx_mysql_thread_id = thd_get_thread_id(trx->mysql_thd);
char query[TRX_I_S_TRX_QUERY_MAX_LEN + 1];
stmt_len = innobase_get_stmt_safe(trx->mysql_thd, query, sizeof(query));
if (stmt_len > 0) {
row->trx_query = static_cast<const char *>(ha_storage_put_memlim(
cache->storage, query, stmt_len + 1, MAX_ALLOWED_FOR_STORAGE(cache)));
row->trx_query_cs = innobase_get_charset(trx->mysql_thd);
if (row->trx_query == nullptr) {
return false;
}
} else {
row->trx_query = nullptr;
}
thd_done:
s = trx->op_info;
if (s != nullptr && s[0] != '\0') {
TRX_I_S_STRING_COPY(s, row->trx_operation_state,
TRX_I_S_TRX_OP_STATE_MAX_LEN, cache);
if (row->trx_operation_state == nullptr) {
return false;
}
} else {
row->trx_operation_state = nullptr;
}
row->trx_tables_in_use = trx->n_mysql_tables_in_use;
row->trx_tables_locked = lock_number_of_tables_locked(trx);
row->trx_lock_structs = UT_LIST_GET_LEN(trx->lock.trx_locks);
row->trx_lock_memory_bytes = mem_heap_get_size(trx->lock.lock_heap);
row->trx_rows_locked = lock_number_of_rows_locked(&trx->lock);
row->trx_rows_modified = trx->undo_no;
row->trx_concurrency_tickets = trx->n_tickets_to_enter_innodb;
switch (trx->isolation_level) {
case TRX_ISO_READ_UNCOMMITTED:
row->trx_isolation_level = "READ UNCOMMITTED";
break;
case TRX_ISO_READ_COMMITTED:
row->trx_isolation_level = "READ COMMITTED";
break;
case TRX_ISO_REPEATABLE_READ:
row->trx_isolation_level = "REPEATABLE READ";
break;
case TRX_ISO_SERIALIZABLE:
row->trx_isolation_level = "SERIALIZABLE";
break;
/* Should not happen as TRX_ISO_READ_COMMITTED is default */
default:
row->trx_isolation_level = "UNKNOWN";
}
row->trx_unique_checks = trx->check_unique_secondary;
row->trx_foreign_key_checks = trx->check_foreigns;
s = trx->detailed_error;
if (s != nullptr && s[0] != '\0') {
TRX_I_S_STRING_COPY(s, row->trx_foreign_key_error,
TRX_I_S_TRX_FK_ERROR_MAX_LEN, cache);
if (row->trx_foreign_key_error == nullptr) {
return false;
}
} else {
row->trx_foreign_key_error = nullptr;
}
row->trx_has_search_latch = trx->has_search_latch;
row->trx_is_read_only = trx->read_only;
row->trx_is_autocommit_non_locking = trx_is_autocommit_non_locking(trx);
return true;
}
/** Format the nth field of "rec" and put it in "buf". The result is always
NUL-terminated. Returns the number of bytes that were written to "buf"
(including the terminating NUL).
@return end of the result */
static ulint put_nth_field(
char *buf, /*!< out: buffer */
ulint buf_size, /*!< in: buffer size in bytes */
ulint n, /*!< in: number of field */
const dict_index_t *index, /*!< in: index */
const rec_t *rec, /*!< in: record */
const ulint *offsets) /*!< in: record offsets, returned
by rec_get_offsets() */
{
const byte *data;
ulint data_len;
dict_field_t *dict_field;
ulint ret;
ut_ad(rec_offs_validate(rec, nullptr, offsets));
if (buf_size == 0) {
return (0);
}
ret = 0;
if (n > 0) {
/* we must append ", " before the actual data */
if (buf_size < 3) {
buf[0] = '\0';
return (1);
}
memcpy(buf, ", ", 3);
buf += 2;
buf_size -= 2;
ret += 2;
}
/* now buf_size >= 1 */
/* Here any field must be part of index key, which should not be
added instantly, so no default value */
ut_ad(!rec_offs_nth_default(index, offsets, n));
data = rec_get_nth_field(index, rec, offsets, n, &data_len);
dict_field = index->get_field(n);
ret +=
row_raw_format((const char *)data, data_len, dict_field, buf, buf_size);
return (ret);
}
/** Fill performance schema lock data.
Create a string that represents the LOCK_DATA
column, for a given lock record.
@param[out] lock_data Lock data string
@param[in] lock Lock to inspect
@param[in] heap_no Lock heap number
@param[in] container Data container to fill
*/
void p_s_fill_lock_data(const char **lock_data, const lock_t *lock,
ulint heap_no,
PSI_server_data_lock_container *container) {
ut_a(lock_get_type(lock) == LOCK_REC);
switch (heap_no) {
case PAGE_HEAP_NO_INFIMUM:
*lock_data = "infimum pseudo-record";
return;
case PAGE_HEAP_NO_SUPREMUM:
*lock_data = "supremum pseudo-record";
return;
}
mtr_t mtr;
const buf_block_t *block;
const page_t *page;
const rec_t *rec;
const dict_index_t *index;
ulint n_fields;
char buf[TRX_I_S_LOCK_DATA_MAX_LEN];
ulint buf_used;
ulint i;
Rec_offsets rec_offsets;
mtr_start(&mtr);
block = buf_page_try_get(lock_rec_get_page_id(lock), UT_LOCATION_HERE, &mtr);
if (block == nullptr) {
*lock_data = nullptr;
mtr_commit(&mtr);
return;
}
page = reinterpret_cast<const page_t *>(buf_block_get_frame(block));
rec = page_find_rec_with_heap_no(page, heap_no);
ut_a(rec != nullptr);
index = lock_rec_get_index(lock);
n_fields = dict_index_get_n_unique_in_tree(index);
ut_a(n_fields > 0);
const ulint *offsets = rec_offsets.compute(rec, index);
/* format and store the data */
buf_used = 0;
for (i = 0; i < n_fields; i++) {
buf_used += put_nth_field(buf + buf_used, sizeof(buf) - buf_used, i, index,
rec, offsets) -
1;
}
*lock_data = container->cache_string(buf);
mtr_commit(&mtr);
}
void fill_locks_row(i_s_locks_row_t *row, const lock_t *lock, ulint heap_no) {
row->lock_guid = lock_guid_t(*lock);
switch (lock_get_type(lock)) {
case LOCK_REC: {
const auto page_id = lock_rec_get_page_id(lock);
row->lock_space = page_id.space();
row->lock_page = page_id.page_no();
row->lock_rec = heap_no;
break;
}
case LOCK_TABLE:
row->lock_space = SPACE_UNKNOWN;
row->lock_page = FIL_NULL;
row->lock_rec = ULINT_UNDEFINED;
break;
default:
ut_error;
}
row->lock_table_id = lock_get_table_id(lock);
ut_ad(i_s_locks_row_validate(row));
}
/** Adds new element to the locks cache, enlarging it if necessary.
Returns a pointer to the added row. If the row is already present then
no row is added and a pointer to the existing row is returned.
If row can not be allocated then NULL is returned.
@return row */
static i_s_locks_row_t *add_lock_to_cache(
trx_i_s_cache_t *cache, /*!< in/out: cache */
const lock_t *lock, /*!< in: the element to add */
ulint heap_no) /*!< in: lock's record number
or ULINT_UNDEFINED if the lock
is a table lock */
{
i_s_locks_row_t *dst_row;
dst_row = (i_s_locks_row_t *)table_cache_create_empty_row(
&cache->innodb_locks, cache);
/* memory could not be allocated */
if (dst_row == nullptr) {
return (nullptr);
}
fill_locks_row(dst_row, lock, heap_no);
ut_ad(i_s_locks_row_validate(dst_row));
return (dst_row);
}
/** Adds transaction's relevant (important) locks to cache.
If the transaction is waiting, then the wait lock is added to
innodb_locks and a pointer to the added row is returned in
requested_lock_row, otherwise requested_lock_row is set to NULL.
If rows can not be allocated then false is returned and the value of
requested_lock_row is undefined.
@return false if allocation fails */
static bool add_trx_relevant_locks_to_cache(
trx_i_s_cache_t *cache, /*!< in/out: cache */
const trx_t *trx, /*!< in: transaction */
i_s_locks_row_t **requested_lock_row) /*!< out: pointer to the
requested lock row, or NULL or
undefined */
{
/* We are about to iterate over locks for various tables/rows so we can not
narrow the required latch to any specific shard, and thus require exclusive
access to lock_sys. This is also needed to avoid observing NULL temporarily
set to wait_lock during B-tree page reorganization. */
ut_ad(locksys::owns_exclusive_global_latch());
/* If transaction is waiting we add the wait lock and all locks
from another transactions that are blocking the wait lock. */
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
ulint wait_lock_heap_no;
i_s_locks_row_t *blocking_lock_row;
const lock_t *wait_lock = trx->lock.wait_lock;
ut_a(wait_lock != nullptr);
wait_lock_heap_no = wait_lock_get_heap_no(wait_lock);
/* add the requested lock */
*requested_lock_row =
add_lock_to_cache(cache, wait_lock, wait_lock_heap_no);
/* memory could not be allocated */
if (*requested_lock_row == nullptr) {
return false;
}
bool out_of_memory = false;
/* then iterate over the locks before the wait lock and
add the ones that are blocking it */
locksys::find_blockers(*wait_lock, [&](const lock_t &curr_lock) {
blocking_lock_row = add_lock_to_cache(cache, &curr_lock,
/* heap_no is the same
for the wait and waited
locks */
wait_lock_heap_no);
/* memory could not be allocated */
if (blocking_lock_row == nullptr) {
out_of_memory = true;
return true; // stop iterating
}
return false;
});
return !out_of_memory;
} else {
*requested_lock_row = nullptr;
}
return true;
}
/** Checks if the cache can safely be updated.
@return true if can be updated */
static bool can_cache_be_updated(trx_i_s_cache_t *cache) /*!< in: cache */
{
/* Here we read cache->last_read without acquiring its mutex
because last_read is only updated when a shared rw lock on the
whole cache is being held (see trx_i_s_cache_end_read()) and
we are currently holding an exclusive rw lock on the cache.
So it is not possible for last_read to be updated while we are
reading it. */
ut_ad(rw_lock_own(cache->rw_lock, RW_LOCK_X));
/** The minimum time that a cache must not be updated after it has been
read for the last time. We use this technique to ensure that SELECTs which
join several INFORMATION SCHEMA tables read the same version of the cache. */
constexpr std::chrono::milliseconds cache_min_idle_time{100};
return std::chrono::steady_clock::now() - cache->last_read.load() >
cache_min_idle_time;
}
/** Declare a cache empty, preparing it to be filled up. Not all resources
are freed because they can be reused. */
static void trx_i_s_cache_clear(
trx_i_s_cache_t *cache) /*!< out: cache to clear */
{
cache->innodb_trx.rows_used = 0;
cache->innodb_locks.rows_used = 0;
ha_storage_empty(&cache->storage);
}
/** Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write.
@param[in,out] cache the cache
@param[in] trx_list the list to scan
*/
template <typename Trx_list>
static void fetch_data_into_cache_low(trx_i_s_cache_t *cache,
Trx_list *trx_list) {
/* We are going to iterate over many different shards of lock_sys so we need
exclusive access */
ut_ad(locksys::owns_exclusive_global_latch());
constexpr bool rw_trx_list =
std::is_same<Trx_list, decltype(trx_sys->rw_trx_list)>::value;
static_assert(
rw_trx_list ||
std::is_same<Trx_list, decltype(trx_sys->mysql_trx_list)>::value,
"only rw_trx_list and mysql_trx_list are supported");
/* Iterate over the transaction list and add each one
to innodb_trx's cache. We also add all locks that are relevant
to each transaction into innodb_locks' and innodb_lock_waits'
caches. */
for (auto trx : *trx_list) {
i_s_trx_row_t *trx_row;
i_s_locks_row_t *requested_lock_row;
trx_mutex_enter(trx);
/* Note: Read only transactions that modify temporary
tables have a transaction ID.
Note: auto-commit non-locking read-only transactions
can have trx->state set from NOT_STARTED to ACTIVE and
then from ACTIVE to NOT_STARTED with neither trx_sys->mutex
nor trx->mutex acquired. However, as long as these transactions
are members of mysql_trx_list they are not freed. For such
transactions "trx_was_started(trx)" might be considered random,
but whatever is its result, the code below handles that well
(transaction won't release locks until its trx->mutex is acquired).
Note: locking read-only transactions can have trx->state set from
NOT_STARTED to ACTIVE with neither trx_sys->mutex nor trx->mutex
acquired. However, such transactions need to be marked as COMMITTED
before trx->state is set to NOT_STARTED and that is protected by the
trx->mutex. Therefore the assertion assert_trx_nonlocking_or_in_list()
should hold few lines below (note: the name of the assertion is wrong,
because it actually checks if the transaction is autocommit nonlocking,
whereas its name suggests that it only checks if the trx is nonlocking). */
if (!trx_was_started(trx) ||
(!rw_trx_list && trx->id != 0 && !trx->read_only)) {
trx_mutex_exit(trx);
continue;
}
assert_trx_nonlocking_or_in_list(trx);
ut_ad(trx->in_rw_trx_list == rw_trx_list);
if (!add_trx_relevant_locks_to_cache(cache, trx, &requested_lock_row)) {
cache->is_truncated = true;
trx_mutex_exit(trx);
return;
}
trx_row = reinterpret_cast<i_s_trx_row_t *>(
table_cache_create_empty_row(&cache->innodb_trx, cache));
/* memory could not be allocated */
if (trx_row == nullptr) {
cache->is_truncated = true;
trx_mutex_exit(trx);
return;
}
if (!fill_trx_row(trx_row, trx, requested_lock_row, cache)) {
/* memory could not be allocated */
--cache->innodb_trx.rows_used;
cache->is_truncated = true;
trx_mutex_exit(trx);
return;
}
trx_mutex_exit(trx);
}
}
/** Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write. */
static void fetch_data_into_cache(trx_i_s_cache_t *cache) /*!< in/out: cache */
{
/* We are going to iterate over many different shards of lock_sys so we need
exclusive access */
ut_ad(locksys::owns_exclusive_global_latch());
ut_ad(trx_sys_mutex_own());
trx_i_s_cache_clear(cache);
/* Capture the state of the read-write transactions. This includes
internal transactions too. They are not on mysql_trx_list */
fetch_data_into_cache_low(cache, &trx_sys->rw_trx_list);
/* Capture the state of the read-only active transactions */
fetch_data_into_cache_low(cache, &trx_sys->mysql_trx_list);
cache->is_truncated = false;
}
/** Update the transactions cache if it has not been read for some time.
Called from handler/i_s.cc.
@return 0 - fetched, 1 - not */
int trx_i_s_possibly_fetch_data_into_cache(
trx_i_s_cache_t *cache) /*!< in/out: cache */
{
if (!can_cache_be_updated(cache)) {
return (1);
}
{
/* We need to read trx_sys and record/table lock queues */
locksys::Global_exclusive_latch_guard guard{UT_LOCATION_HERE};
trx_sys_mutex_enter();
fetch_data_into_cache(cache);
trx_sys_mutex_exit();
}
return (0);
}
bool trx_i_s_cache_is_truncated(trx_i_s_cache_t *cache) {
return (cache->is_truncated);
}
/** Initialize INFORMATION SCHEMA trx related cache. */
void trx_i_s_cache_init(trx_i_s_cache_t *cache) /*!< out: cache to init */
{
/* The latching is done in the following order:
acquire trx_i_s_cache_t::rw_lock, X
acquire locksys exclusive global latch
acquire trx_sys mutex
release trx_sys mutex
release locksys exclusive global latch
release trx_i_s_cache_t::rw_lock
acquire trx_i_s_cache_t::rw_lock, S
release trx_i_s_cache_t::rw_lock */
cache->rw_lock = static_cast<rw_lock_t *>(
ut::malloc_withkey(UT_NEW_THIS_FILE_PSI_KEY, sizeof(*cache->rw_lock)));
rw_lock_create(trx_i_s_cache_lock_key, cache->rw_lock,
LATCH_ID_TRX_I_S_CACHE);
cache->last_read = std::chrono::steady_clock::time_point{};
table_cache_init(&cache->innodb_trx, sizeof(i_s_trx_row_t));
table_cache_init(&cache->innodb_locks, sizeof(i_s_locks_row_t));
cache->storage =
ha_storage_create(CACHE_STORAGE_INITIAL_SIZE, CACHE_STORAGE_HASH_CELLS);
cache->mem_allocd = 0;
cache->is_truncated = false;
}
/** Free the INFORMATION SCHEMA trx related cache. */
void trx_i_s_cache_free(trx_i_s_cache_t *cache) /*!< in, own: cache to free */
{
rw_lock_free(cache->rw_lock);
ut::free(cache->rw_lock);
cache->rw_lock = nullptr;
ha_storage_free(cache->storage);
table_cache_free(&cache->innodb_trx);
table_cache_free(&cache->innodb_locks);
}
/** Issue a shared/read lock on the tables cache. */
void trx_i_s_cache_start_read(trx_i_s_cache_t *cache) /*!< in: cache */
{
rw_lock_s_lock(cache->rw_lock, UT_LOCATION_HERE);
}
/** Release a shared/read lock on the tables cache. */
void trx_i_s_cache_end_read(trx_i_s_cache_t *cache) /*!< in: cache */
{
ut_ad(rw_lock_own(cache->rw_lock, RW_LOCK_S));
/* update cache last read time */
cache->last_read.store(std::chrono::steady_clock::now());
rw_lock_s_unlock(cache->rw_lock);
}
/** Issue an exclusive/write lock on the tables cache. */
void trx_i_s_cache_start_write(trx_i_s_cache_t *cache) /*!< in: cache */
{
rw_lock_x_lock(cache->rw_lock, UT_LOCATION_HERE);
}
/** Release an exclusive/write lock on the tables cache. */
void trx_i_s_cache_end_write(trx_i_s_cache_t *cache) /*!< in: cache */
{
ut_ad(rw_lock_own(cache->rw_lock, RW_LOCK_X));
rw_lock_x_unlock(cache->rw_lock);
}
/** Selects a INFORMATION SCHEMA table cache from the whole cache.
@return table cache */
static i_s_table_cache_t *cache_select_table(
trx_i_s_cache_t *cache, /*!< in: whole cache */
enum i_s_table table) /*!< in: which table */
{
i_s_table_cache_t *table_cache;
ut_ad(rw_lock_own(cache->rw_lock, RW_LOCK_S) ||
rw_lock_own(cache->rw_lock, RW_LOCK_X));
switch (table) {
case I_S_INNODB_TRX:
table_cache = &cache->innodb_trx;
break;
default:
ut_error;
}
return (table_cache);
}
/** Retrieves the number of used rows in the cache for a given
INFORMATION SCHEMA table.
@return number of rows */
ulint trx_i_s_cache_get_rows_used(trx_i_s_cache_t *cache, /*!< in: cache */
enum i_s_table table) /*!< in: which table */
{
i_s_table_cache_t *table_cache;
table_cache = cache_select_table(cache, table);
return (table_cache->rows_used);
}
/** Retrieves the nth row (zero-based) in the cache for a given
INFORMATION SCHEMA table.
@return row */
void *trx_i_s_cache_get_nth_row(trx_i_s_cache_t *cache, /*!< in: cache */
enum i_s_table table, /*!< in: which table */
ulint n) /*!< in: row number */
{
i_s_table_cache_t *table_cache;
ulint i;
void *row;
table_cache = cache_select_table(cache, table);
ut_a(n < table_cache->rows_used);
row = nullptr;
for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {
if (table_cache->chunks[i].offset + table_cache->chunks[i].rows_allocd >
n) {
row = (char *)table_cache->chunks[i].base +
(n - table_cache->chunks[i].offset) * table_cache->row_size;
break;
}
}
ut_a(row != nullptr);
return (row);
}
constexpr const char *LOCK_RECORD_ID_FORMAT = UINT64PF
":" UINT64PF ":" SPACE_ID_PF ":" PAGE_NO_PF ":" ULINTPF ":" UINT64PF;
constexpr const int LOCK_RECORD_ID_FORMAT_PARTS = 6;
constexpr const char *LOCK_TABLE_ID_FORMAT =
UINT64PF ":" UINT64PF ":" UINT64PF ":" UINT64PF;
constexpr const int LOCK_TABLE_ID_FORMAT_PARTS = 4;
char *trx_i_s_create_lock_id(const i_s_locks_row_t &row, char *lock_id,
size_t lock_id_size) {
int res_len;
/* Please adjust TRX_I_S_LOCK_ID_MAX_LEN if you change this.
The reason lock_guid.* fields are not being printed next to each other,
and thus the reason why printing them is not a member function of lock_guit_t,
is that we want the natural lexicographic order on LOCK_ENGINE_ID to be useful
for humans and it is much more useful if the rows are sorted by space, page
and heap_no, or by table, rather than by immutable id. */
if (row.lock_space != SPACE_UNKNOWN) {
/* record lock */
res_len =
snprintf(lock_id, lock_id_size, LOCK_RECORD_ID_FORMAT,
row.lock_guid.m_trx_guid.m_immutable_id,
row.lock_guid.m_trx_guid.m_version, row.lock_space,
row.lock_page, row.lock_rec, row.lock_guid.m_immutable_id);
} else {
/* table lock */
res_len = snprintf(lock_id, lock_id_size, LOCK_TABLE_ID_FORMAT,
row.lock_guid.m_trx_guid.m_immutable_id,
row.lock_guid.m_trx_guid.m_version, row.lock_table_id,
row.lock_guid.m_immutable_id);
}
/* the typecast is safe because snprintf(3) never returns
negative result */
ut_a(res_len >= 0);
ut_a((size_t)res_len < lock_id_size);
return lock_id;
}
int trx_i_s_parse_lock_id(const char *lock_id, i_s_locks_row_t *row) {
if (sscanf(lock_id, LOCK_RECORD_ID_FORMAT,
&row->lock_guid.m_trx_guid.m_immutable_id,
&row->lock_guid.m_trx_guid.m_version, &row->lock_space,
&row->lock_page, &row->lock_rec,
&row->lock_guid.m_immutable_id) == LOCK_RECORD_ID_FORMAT_PARTS) {
return LOCK_REC;
}
if (sscanf(lock_id, LOCK_TABLE_ID_FORMAT,
&row->lock_guid.m_trx_guid.m_immutable_id,
&row->lock_guid.m_trx_guid.m_version, &row->lock_table_id,
&row->lock_guid.m_immutable_id) == LOCK_TABLE_ID_FORMAT_PARTS) {
return LOCK_TABLE;
}
static_assert(LOCK_TABLE != 0 && LOCK_REC != 0);
return 0;
}
|