1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
|
/* Copyright (c) 2013, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef PREALLOCED_ARRAY_INCLUDED
#define PREALLOCED_ARRAY_INCLUDED
/**
@file include/prealloced_array.h
*/
#include <assert.h>
#include <stddef.h>
#include <algorithm>
#include <new>
#include <type_traits>
#include <utility>
#include "my_compiler.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "mysql/psi/psi_memory.h"
#include "mysql/service_mysql_alloc.h"
/**
A typesafe replacement for DYNAMIC_ARRAY. We do our own memory management,
and pre-allocate space for a number of elements. The purpose is to
pre-allocate enough elements to cover normal use cases, thus saving
malloc()/free() overhead.
If we run out of space, we use malloc to allocate more space.
The interface is chosen to be similar to std::vector.
We keep the std::vector property that storage is contiguous.
We have fairly low overhead over the inline storage; typically 8 bytes
(e.g. Prealloced_array<TABLE *, 4> needs 40 bytes on 64-bit platforms).
@remark
Unlike DYNAMIC_ARRAY, elements are properly copied
(rather than memcpy()d) if the underlying array needs to be expanded.
@remark
Depending on Has_trivial_destructor, we destroy objects which are
removed from the array (including when the array object itself is destroyed).
@tparam Element_type The type of the elements of the container.
Elements must be copyable or movable.
@tparam Prealloc Number of elements to pre-allocate.
*/
template <typename Element_type, size_t Prealloc>
class Prealloced_array {
/**
Is Element_type trivially destructible? If it is, we don't destroy
elements when they are removed from the array or when the array is
destroyed.
*/
static constexpr bool Has_trivial_destructor =
std::is_trivially_destructible<Element_type>::value;
bool using_inline_buffer() const { return m_inline_size >= 0; }
/**
Gets the buffer in use.
*/
Element_type *buffer() {
return using_inline_buffer() ? m_buff : m_ext.m_array_ptr;
}
const Element_type *buffer() const {
return using_inline_buffer() ? m_buff : m_ext.m_array_ptr;
}
void set_size(size_t n) {
if (using_inline_buffer()) {
m_inline_size = n;
} else {
m_ext.m_alloced_size = n;
}
}
void adjust_size(int delta) {
if (using_inline_buffer()) {
m_inline_size += delta;
} else {
m_ext.m_alloced_size += delta;
}
}
public:
/// Initial capacity of the array.
static const size_t initial_capacity = Prealloc;
/// Standard typedefs.
typedef Element_type value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef Element_type *iterator;
typedef const Element_type *const_iterator;
explicit Prealloced_array(PSI_memory_key psi_key) : m_psi_key(psi_key) {
static_assert(Prealloc != 0, "We do not want a zero-size array.");
}
/**
Initializes (parts of) the array with default values.
Using 'Prealloc' for initial_size makes this similar to a raw C array.
*/
Prealloced_array(PSI_memory_key psi_key, size_t initial_size)
: m_psi_key(psi_key) {
static_assert(Prealloc != 0, "We do not want a zero-size array.");
if (initial_size > Prealloc) {
// We avoid using reserve() since it requires Element_type to be copyable.
void *mem =
my_malloc(m_psi_key, initial_size * element_size(), MYF(MY_WME));
if (!mem) return;
m_inline_size = -1;
m_ext.m_alloced_size = initial_size;
m_ext.m_array_ptr = static_cast<Element_type *>(mem);
m_ext.m_alloced_capacity = initial_size;
} else {
m_inline_size = initial_size;
}
for (size_t ix = 0; ix < initial_size; ++ix) {
Element_type *p = &buffer()[ix];
::new (p) Element_type();
}
}
/**
An object instance "owns" its array, so we do deep copy here.
*/
Prealloced_array(const Prealloced_array &that) : m_psi_key(that.m_psi_key) {
if (this->reserve(that.capacity())) return;
for (const Element_type *p = that.begin(); p != that.end(); ++p)
this->push_back(*p);
}
Prealloced_array(Prealloced_array &&that) : m_psi_key(that.m_psi_key) {
*this = std::move(that);
}
/**
Range constructor.
Constructs a container with as many elements as the range [first,last),
with each element constructed from its corresponding element in that range,
in the same order.
*/
Prealloced_array(PSI_memory_key psi_key, const_iterator first,
const_iterator last)
: m_psi_key(psi_key) {
if (this->reserve(last - first)) return;
for (; first != last; ++first) push_back(*first);
}
Prealloced_array(std::initializer_list<Element_type> elems)
: Prealloced_array(PSI_NOT_INSTRUMENTED, elems.begin(), elems.end()) {}
/**
Copies all the elements from 'that' into this container.
Any objects in this container are destroyed first.
*/
Prealloced_array &operator=(const Prealloced_array &that) {
this->clear();
if (this->reserve(that.capacity())) return *this;
for (const Element_type *p = that.begin(); p != that.end(); ++p)
this->push_back(*p);
return *this;
}
Prealloced_array &operator=(Prealloced_array &&that) {
this->clear();
if (!that.using_inline_buffer()) {
if (!using_inline_buffer()) my_free(m_ext.m_array_ptr);
// The array is on the heap, so we can just grab it.
m_ext.m_array_ptr = that.m_ext.m_array_ptr;
m_inline_size = -1;
m_ext.m_alloced_size = that.m_ext.m_alloced_size;
m_ext.m_alloced_capacity = that.m_ext.m_alloced_capacity;
that.m_inline_size = 0;
} else {
// Move over each element.
if (this->reserve(that.capacity())) return *this;
for (Element_type *p = that.begin(); p != that.end(); ++p)
this->push_back(std::move(*p));
that.clear();
}
return *this;
}
/**
Runs DTOR on all elements if needed.
Deallocates array if we exceeded the Preallocated amount.
*/
~Prealloced_array() {
if (!Has_trivial_destructor) {
clear();
}
if (!using_inline_buffer()) my_free(m_ext.m_array_ptr);
}
size_t capacity() const {
return using_inline_buffer() ? Prealloc : m_ext.m_alloced_capacity;
}
size_t element_size() const { return sizeof(Element_type); }
bool empty() const { return size() == 0; }
size_t size() const {
return using_inline_buffer() ? m_inline_size : m_ext.m_alloced_size;
}
Element_type &at(size_t n) {
assert(n < size());
return buffer()[n];
}
const Element_type &at(size_t n) const {
assert(n < size());
return buffer()[n];
}
Element_type &operator[](size_t n) { return at(n); }
const Element_type &operator[](size_t n) const { return at(n); }
Element_type &back() { return at(size() - 1); }
const Element_type &back() const { return at(size() - 1); }
Element_type &front() { return at(0); }
const Element_type &front() const { return at(0); }
/**
begin : Returns a pointer to the first element in the array.
end : Returns a pointer to the past-the-end element in the array.
*/
iterator begin() { return buffer(); }
iterator end() { return buffer() + size(); }
const_iterator begin() const { return buffer(); }
const_iterator end() const { return buffer() + size(); }
/// Returns a constant pointer to the first element in the array.
const_iterator cbegin() const { return begin(); }
/// Returns a constant pointer to the past-the-end element in the array.
const_iterator cend() const { return end(); }
/**
Assigns a value to an arbitrary element, even where n >= size().
The array is extended with default values if necessary.
@retval true if out-of-memory, false otherwise.
*/
bool assign_at(size_t n, const value_type &val) {
if (n < size()) {
at(n) = val;
return false;
}
if (reserve(n + 1)) return true;
resize(n);
return push_back(val);
}
/**
Reserves space for array elements.
Copies (or moves, if possible) over existing elements, in case we
are re-expanding the array.
@param n number of elements.
@retval true if out-of-memory, false otherwise.
*/
bool reserve(size_t n) {
if (n <= capacity()) return false;
void *mem = my_malloc(m_psi_key, n * element_size(), MYF(MY_WME));
if (!mem) return true;
Element_type *new_array = static_cast<Element_type *>(mem);
// Move all the existing elements into the new array.
size_t old_size = size();
for (size_t ix = 0; ix < old_size; ++ix) {
Element_type *new_p = &new_array[ix];
Element_type &old_p = buffer()[ix];
::new (new_p) Element_type(std::move(old_p)); // Move into new location.
if (!Has_trivial_destructor)
old_p.~Element_type(); // Destroy the old element.
}
if (!using_inline_buffer()) my_free(m_ext.m_array_ptr);
// Forget the old array;
m_ext.m_alloced_size = old_size;
m_inline_size = -1;
m_ext.m_array_ptr = new_array;
m_ext.m_alloced_capacity = n;
return false;
}
/**
Claim memory ownership.
@param claim take ownership of memory
*/
void claim_memory_ownership(bool claim) {
if (!using_inline_buffer()) my_claim(m_ext.m_array_ptr, claim);
}
/**
Copies an element into the back of the array.
Complexity: Constant (amortized time, reallocation may happen).
@return true if out-of-memory, false otherwise
*/
bool push_back(const Element_type &element) { return emplace_back(element); }
/**
Copies (or moves, if possible) an element into the back of the array.
Complexity: Constant (amortized time, reallocation may happen).
@return true if out-of-memory, false otherwise
*/
bool push_back(Element_type &&element) {
return emplace_back(std::move(element));
}
/**
Constructs an element at the back of the array.
Complexity: Constant (amortized time, reallocation may happen).
@return true if out-of-memory, false otherwise
*/
template <typename... Args>
bool emplace_back(Args &&...args) {
const size_t expansion_factor = 2;
if (size() == capacity() && reserve(capacity() * expansion_factor))
return true;
Element_type *p = &buffer()[size()];
adjust_size(1);
::new (p) Element_type(std::forward<Args>(args)...);
return false;
}
/**
Removes the last element in the array, effectively reducing the
container size by one. This destroys the removed element.
*/
void pop_back() {
assert(!empty());
if (!Has_trivial_destructor) back().~Element_type();
adjust_size(-1);
}
/**
The array is extended by inserting a new element before the element at the
specified position.
This is generally an inefficient operation, since we need to copy
elements to make a new "hole" in the array.
We use std::rotate to move objects, hence Element_type must be
move-assignable and move-constructible.
@return an iterator pointing to the inserted value
*/
iterator insert(const_iterator position, const value_type &val) {
return emplace(position, val);
}
/**
The array is extended by inserting a new element before the element at the
specified position. The element is moved into the array, if possible.
This is generally an inefficient operation, since we need to copy
elements to make a new "hole" in the array.
We use std::rotate to move objects, hence Element_type must be
move-assignable and move-constructible.
@return an iterator pointing to the inserted value
*/
iterator insert(const_iterator position, value_type &&val) {
return emplace(position, std::move(val));
}
/**
The array is extended by inserting a new element before the element at the
specified position. The element is constructed in-place.
This is generally an inefficient operation, since we need to copy
elements to make a new "hole" in the array.
We use std::rotate to move objects, hence Element_type must be
move-assignable and move-constructible.
@return an iterator pointing to the inserted value
*/
template <typename... Args>
iterator emplace(const_iterator position, Args &&...args) {
const difference_type n = position - begin();
emplace_back(std::forward<Args>(args)...);
std::rotate(begin() + n, end() - 1, end());
return begin() + n;
}
/**
Similar to std::set<>::insert()
Extends the array by inserting a new element, but only if it cannot be found
in the array already.
Assumes that the array is sorted with std::less<Element_type>
Insertion using this function will maintain order.
@retval A pair, with its member pair::first set an iterator pointing to
either the newly inserted element, or to the equivalent element
already in the array. The pair::second element is set to true if
the new element was inserted, or false if an equivalent element
already existed.
*/
std::pair<iterator, bool> insert_unique(const value_type &val) {
std::pair<iterator, iterator> p = std::equal_range(begin(), end(), val);
// p.first == p.second means we did not find it.
if (p.first == p.second) return std::make_pair(insert(p.first, val), true);
return std::make_pair(p.first, false);
}
/**
Similar to std::set<>::erase()
Removes a single element from the array by value.
The removed element is destroyed.
This effectively reduces the container size by one.
This is generally an inefficient operation, since we need to copy
elements to fill the "hole" in the array.
Assumes that the array is sorted with std::less<Element_type>.
@retval number of elements removed, 0 or 1.
*/
size_type erase_unique(const value_type &val) {
std::pair<iterator, iterator> p = std::equal_range(begin(), end(), val);
if (p.first == p.second) return 0; // Not found
erase(p.first);
return 1;
}
/**
Similar to std::set<>::count()
@note Assumes that array is maintained with insert_unique/erase_unique.
@retval 1 if element is found, 0 otherwise.
*/
size_type count_unique(const value_type &val) const {
return std::binary_search(begin(), end(), val);
}
/**
Removes a single element from the array.
The removed element is destroyed.
This effectively reduces the container size by one.
This is generally an inefficient operation, since we need to move
or copy elements to fill the "hole" in the array.
We use std::move to move objects, hence Element_type must be
move-assignable.
*/
iterator erase(const_iterator position) {
assert(position != end());
return erase(position - begin());
}
/**
Removes a single element from the array.
*/
iterator erase(size_t ix) {
assert(ix < size());
iterator pos = begin() + ix;
if (pos + 1 != end()) std::move(pos + 1, end(), pos);
pop_back();
return pos;
}
/**
Removes tail elements from the array.
The removed elements are destroyed.
This effectively reduces the containers size by 'end() - first'.
*/
void erase_at_end(const_iterator first) {
const_iterator last = cend();
const difference_type diff = last - first;
if (!Has_trivial_destructor) {
for (; first != last; ++first) first->~Element_type();
}
adjust_size(-diff);
}
/**
Removes a range of elements from the array.
The removed elements are destroyed.
This effectively reduces the containers size by 'last - first'.
This is generally an inefficient operation, since we need to move
or copy elements to fill the "hole" in the array.
We use std::move to move objects, hence Element_type must be
move-assignable.
*/
iterator erase(const_iterator first, const_iterator last) {
/*
std::move() wants non-const input iterators, otherwise it cannot move and
must always copy the elements. Convert first and last from const_iterator
to iterator.
*/
iterator start = begin() + (first - cbegin());
iterator stop = begin() + (last - cbegin());
if (first != last) erase_at_end(std::move(stop, end(), start));
return start;
}
/**
Exchanges the content of the container by the content of rhs, which
is another vector object of the same type. Sizes may differ.
We use std::swap to do the operation.
*/
void swap(Prealloced_array &rhs) {
// Just swap pointers if both arrays have done malloc.
if (!using_inline_buffer() && !rhs.using_inline_buffer()) {
std::swap(m_ext.m_alloced_size, rhs.m_ext.m_alloced_size);
std::swap(m_ext.m_alloced_capacity, rhs.m_ext.m_alloced_capacity);
std::swap(m_ext.m_array_ptr, rhs.m_ext.m_array_ptr);
std::swap(m_psi_key, rhs.m_psi_key);
return;
}
std::swap(*this, rhs);
}
/**
Requests the container to reduce its capacity to fit its size.
*/
void shrink_to_fit() {
// Cannot shrink the pre-allocated array.
if (using_inline_buffer()) return;
// No point in swapping.
if (size() == capacity()) return;
Prealloced_array tmp(m_psi_key, begin(), end());
if (size() <= Prealloc) {
/*
The elements fit in the pre-allocated array. Destruct the
heap-allocated array in this, and copy the elements into the
pre-allocated array.
*/
this->~Prealloced_array();
new (this) Prealloced_array(tmp.m_psi_key, tmp.begin(), tmp.end());
} else {
// Both this and tmp have a heap-allocated array. Swap pointers.
swap(tmp);
}
}
/**
Resizes the container so that it contains n elements.
If n is smaller than the current container size, the content is
reduced to its first n elements, removing those beyond (and
destroying them).
If n is greater than the current container size, the content is
expanded by inserting at the end as many elements as needed to
reach a size of n. If val is specified, the new elements are
initialized as copies of val, otherwise, they are
value-initialized.
If n is also greater than the current container capacity, an automatic
reallocation of the allocated storage space takes place.
Notice that this function changes the actual content of the
container by inserting or erasing elements from it.
*/
void resize(size_t n, const Element_type &val = Element_type()) {
if (n == size()) return;
if (n > size()) {
if (!reserve(n)) {
while (n != size()) push_back(val);
}
return;
}
if (!Has_trivial_destructor) {
while (n != size()) pop_back();
}
set_size(n);
}
/**
Removes (and destroys) all elements.
Does not change capacity.
*/
void clear() {
if (!Has_trivial_destructor) {
for (Element_type *p = begin(); p != end(); ++p)
p->~Element_type(); // Destroy discarded element.
}
set_size(0);
}
private:
PSI_memory_key m_psi_key;
// If >= 0, we're using the inline storage in m_buff, and contains the real
// size. If negative, we're using external storage (m_array_ptr),
// and m_alloced_size contains the real size.
int m_inline_size = 0;
// Defined outside the union because we need an initializer to avoid
// "may be used uninitialized" for -flto builds, and
// MSVC rejects initializers for individual members of an anonymous union.
// (otherwise, we'd make it an anonymous struct, to avoid m_ext everywhere).
struct External {
Element_type *m_array_ptr;
size_t m_alloced_size;
size_t m_alloced_capacity;
};
union {
External m_ext{};
Element_type m_buff[Prealloc];
};
};
static_assert(sizeof(Prealloced_array<void *, 4>) <= 40,
"Check for no unexpected padding");
#endif // PREALLOCED_ARRAY_INCLUDED
|