1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/* Copyright (c) 2014, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef PRIORITY_QUEUE_INCLUDED
#define PRIORITY_QUEUE_INCLUDED
/**
@file include/priority_queue.h
*/
#include <assert.h>
#include <functional>
#include <new>
#include <utility>
#include <vector>
#include "template_utils.h"
#if defined(EXTRA_CODE_FOR_UNIT_TESTING)
#include <iostream>
#include <sstream>
#endif
namespace priority_queue_unittest {
class PriorityQueueTest;
} // namespace priority_queue_unittest
template <typename T>
class NoopMarker {
public:
void operator()(size_t, T *) const {}
};
/**
Implements a priority queue using a vector-based max-heap.
A priority queue is a container specifically designed such that its first
element is always the greatest of the elements it contains, according to
some strict weak ordering criterion.
For object locality, the implementation is vector-based, rather than
node-based.
The priority queue is mutable, which means that the priority of an element
can be changed. See increase/decrease/update member functions.
The typical use case is to change the value/priority of the root node.
We provide iterators, which can be used to visit all elements.
Iterators do not visit queue elements in priority order.
Iterators should not be used to change the priority of elements.
The underlying container must be
constructible from an iterator range, should provide const and
non-const random access iterators to access its elements, as well as
the following operations:
- size()
- empty()
- push_back()
- pop_back()
- swap()
- clear()
- capacity()
- reserve()
- max_size()
@tparam T Type of the elements of the priority queue.
@tparam Container Type of the underlying container object where elements
are stored. Its value_type shall be T.
@tparam Less A binary predicate that takes two elements (of type T)
and returns a bool. The expression less(a,b), where
less is an object of this type and a and b are elements
in the container, shall return true if a is considered
to go before b in the strict weak ordering the
function defines.
@tparam Marker A functor, with signature void operator()(size_t, T *),
that gets called whenever an element gets a new position
in the queue (including initial insert, but excluding
removals). The marker can then store the element's
position somewhere, for later calls to update() as needed.
*/
template <typename T, typename Container = std::vector<T>,
typename Less = std::less<typename Container::value_type>,
typename Marker = NoopMarker<T>>
class Priority_queue : public Less {
public:
typedef Container container_type;
typedef Less less_type;
typedef typename container_type::value_type value_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::iterator iterator;
typedef typename container_type::const_iterator const_iterator;
typedef typename container_type::allocator_type allocator_type;
friend class priority_queue_unittest::PriorityQueueTest;
private:
// Deriving from Less allows empty base-class optimization in some cases.
typedef Less Base;
// Returns the index of the parent node of node i.
static size_type parent(size_type i) {
assert(i != 0);
return (--i) >> 1; // (i - 1) / 2
}
// Returns the index of the left child of node i.
static size_type left(size_type i) {
return (i << 1) | 1; // 2 * i + 1
}
// Returns the index of the right child of node i.
static size_type right(size_type i) {
return (++i) << 1; // 2 * i + 2
}
void heapify(size_type i, size_type last) {
assert(i < size());
size_type largest = i;
do {
i = largest;
size_type l = left(i);
size_type r = right(i);
if (l < last && Base::operator()(m_container[i], m_container[l])) {
largest = l;
}
if (r < last && Base::operator()(m_container[largest], m_container[r])) {
largest = r;
}
if (largest != i) {
std::swap(m_container[i], m_container[largest]);
m_marker(i, &m_container[i]);
m_marker(largest, &m_container[largest]);
}
} while (largest != i);
}
void heapify(size_type i) { heapify(i, m_container.size()); }
void reverse_heapify(size_type i) {
assert(i < size());
while (i > 0 && !Base::operator()(m_container[i], m_container[parent(i)])) {
size_t parent_idx = parent(i);
std::swap(m_container[parent_idx], m_container[i]);
m_marker(parent_idx, &m_container[parent_idx]);
m_marker(i, &m_container[i]);
i = parent(i);
}
}
// Sets the value of element i, and rebuilds the priority queue.
void decrease_key(size_type i, value_type const &x) {
m_container[i] = x;
heapify(i);
}
// Sets the value of element i, and rebuilds the priority queue.
void increase_key(size_type i, value_type const &x) {
m_container[i] = x;
reverse_heapify(i);
}
public:
/// Constructs an empty priority queue.
Priority_queue(Less const &less = Less(),
const allocator_type &alloc = allocator_type(),
const Marker &marker = Marker())
: Base(less), m_container(alloc), m_marker(marker) {}
/// Constructs a heap of the objects between first and beyond.
template <typename Input_iterator>
Priority_queue(Input_iterator first, Input_iterator beyond,
Less const &less = Less(),
const allocator_type &alloc = allocator_type(),
const Marker &marker = Marker())
: Base(less), m_container(first, beyond, alloc), m_marker(marker) {
build_heap();
}
/// Constructs a heap based on input argument.
void assign(const container_type &container) {
m_container = container;
build_heap();
}
/**
Constructs a heap based on container contents.
Can also be used when many elements have changed.
*/
void build_heap() {
if (m_container.size() > 1) {
for (size_type i = parent(m_container.size() - 1); i > 0; --i) {
heapify(i);
}
heapify(0);
}
}
/// Returns a const reference to the top element of the priority queue.
value_type const &top() const {
assert(!empty());
return m_container[0];
}
/// Returns a reference to the top element of the priority queue.
value_type &top() {
assert(!empty());
return m_container[0];
}
/**
Inserts an element in the priority queue.
@param x value to be pushed.
@retval true if out-of-memory, false otherwise.
*/
bool push(value_type const &x) {
try {
m_container.push_back(x);
} catch (std::bad_alloc const &) {
return true;
}
m_marker(m_container.size() - 1, &m_container.back());
reverse_heapify(m_container.size() - 1);
return false;
}
/// Pops the top-most element in the priority queue.
void pop() { remove(0); }
/// Removes the element at position i from the priority queue.
void remove(size_type i) {
assert(i < size());
if (i == m_container.size() - 1) {
m_container.pop_back();
return;
}
m_container[i] = m_container[m_container.size() - 1];
m_marker(i, &m_container[i]);
m_container.pop_back();
update(i);
}
/**
Decreases the priority of the element at position i, where the
new priority is x.
*/
void decrease(size_type i, value_type const &x) {
assert(i < size());
assert(!Base::operator()(m_container[i], x));
decrease_key(i, x);
}
/**
Increases the priority of the element at position i, where the
new priority is x.
*/
void increase(size_type i, value_type const &x) {
assert(i < size());
assert(!Base::operator()(x, m_container[i]));
increase_key(i, x);
}
/**
Changes the priority of the element at position i, where the
new priority is x.
*/
void update(size_type i, value_type const &x) {
assert(i < size());
if (Base::operator()(x, m_container[i])) {
decrease_key(i, x);
} else {
increase_key(i, x);
}
}
/**
Assumes that the i-th element's value has increased
and rebuilds the priority queue.
*/
void increase(size_type i) { reverse_heapify(i); }
/**
Assumes that the i-th element's value has decreased
and rebuilds the priority queue.
*/
void decrease(size_type i) { heapify(i); }
/**
Assumes that the i-th element's value has changed
and rebuilds the priority queue.
*/
void update(size_type i) {
assert(i < size());
if (i == 0 || Base::operator()(m_container[i], m_container[parent(i)])) {
heapify(i);
} else {
reverse_heapify(i);
}
}
/**
Assumes that the top element's value has changed
and rebuilds the priority queue.
*/
void update_top() {
assert(!empty());
heapify(0);
}
/// Returns the number of elements of the priority queue
size_type size() const { return m_container.size(); }
/// Returns true if the priority queue is empty
bool empty() const { return m_container.empty(); }
/// Returns a const reference to the i-th element in the underlying container.
value_type const &operator[](size_type i) const {
assert(i < size());
return m_container[i];
}
/// Returns a reference to the i-th element in the underlying container.
value_type &operator[](size_type i) {
assert(i < size());
return m_container[i];
}
/// Returns a const iterator to the first element of the underlying container.
const_iterator begin() const { return m_container.begin(); }
/// Returns a const iterator to the end element of the underlying container.
const_iterator end() const { return m_container.end(); }
/// Returns an iterator to the first element of the underlying container.
iterator begin() { return m_container.begin(); }
/// Returns an iterator to the end element of the underlying container.
iterator end() { return m_container.end(); }
/// Swaps the contents of two priority queues.
void swap(Priority_queue &other) {
std::swap(static_cast<Base &>(*this), static_cast<Base &>(other));
m_container.swap(other.m_container);
}
/// Returns true if the priority queue has the heap property.
bool is_valid() const {
for (size_type i = 1; i < m_container.size(); ++i) {
if (Base::operator()(m_container[parent(i)], m_container[i])) {
return false;
}
}
return true;
}
/**
Sorts the elements of the priority queue according to the strict
partial ordering defined by the object of type Less passed to
the priority queue.
The heap property of the priority queue is invalidated by this
operation.
*/
void sort() {
if (!m_container.empty()) {
for (size_type i = m_container.size() - 1; i > 0; --i) {
std::swap(m_container[i], m_container[0]);
m_marker(i, &m_container[i]);
m_marker(0, &m_container[0]);
heapify(0, i);
}
}
}
/// Clears the priority queue.
void clear() { m_container.clear(); }
/// Clears the priority queue, but deletes all elements first.
void delete_elements() { delete_container_pointers(m_container); }
/// Returns the capacity of the internal container.
size_type capacity() const { return m_container.capacity(); }
/**
Reserves space for array elements.
@param n number of elements.
@retval true if out-of-memory, false otherwise.
*/
[[nodiscard]] bool reserve(size_type n) {
assert(n <= m_container.max_size());
try {
m_container.reserve(n);
} catch (std::bad_alloc const &) {
return true;
}
return false;
}
private:
container_type m_container;
Marker m_marker;
};
#if defined(EXTRA_CODE_FOR_UNIT_TESTING)
template <class T, class Container, class Less, class Marker>
inline std::ostream &operator<<(
std::ostream &os, Priority_queue<T, Container, Less, Marker> const &pq) {
typedef
typename Priority_queue<T, Container, Less, Marker>::size_type size_type;
for (size_type i = 0; i < pq.size(); i++) {
os << pq[i] << " " << std::flush;
}
return os;
}
template <class T, class Container, class Less, class Marker>
inline std::stringstream &operator<<(
std::stringstream &ss,
Priority_queue<T, Container, Less, Marker> const &pq) {
typedef
typename Priority_queue<T, Container, Less, Marker>::size_type size_type;
for (size_type i = 0; i < pq.size(); i++) {
ss << pq[i] << " ";
}
return ss;
}
#endif // EXTRA_CODE_FOR_UNIT_TESTING
#endif // PRIORITY_QUEUE_INCLUDED
|