1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
Implementations of basic iterators, ie. those that have no children
and don't take any refs (they typically read directly from a table
in some way). See row_iterator.h.
*/
#include "sql/iterators/basic_row_iterators.h"
#include <assert.h>
#include <atomic>
#include <string>
#include <utility>
#include <vector>
#include "my_base.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "mysqld_error.h"
#include "sql/debug_sync.h"
#include "sql/handler.h"
#include "sql/iterators/row_iterator.h"
#include "sql/mem_root_array.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h" // THD
#include "sql/sql_executor.h"
#include "sql/sql_tmp_table.h"
#include "sql/system_variables.h"
#include "sql/table.h"
using std::string;
using std::vector;
template <bool Reverse>
IndexScanIterator<Reverse>::IndexScanIterator(THD *thd, TABLE *table, int idx,
bool use_order,
double expected_rows,
ha_rows *examined_rows)
: TableRowIterator(thd, table),
m_record(table->record[0]),
m_idx(idx),
m_use_order(use_order),
m_expected_rows(expected_rows),
m_examined_rows(examined_rows) {}
template <bool Reverse>
IndexScanIterator<Reverse>::~IndexScanIterator() {
if (table() && table()->key_read) {
table()->set_keyread(false);
}
}
template <bool Reverse>
bool IndexScanIterator<Reverse>::Init() {
if (!table()->file->inited) {
if (table()->covering_keys.is_set(m_idx) && !table()->no_keyread) {
table()->set_keyread(true);
}
int error = table()->file->ha_index_init(m_idx, m_use_order);
if (error) {
PrintError(error);
return true;
}
if (set_record_buffer(table(), m_expected_rows)) {
return true;
}
}
m_first = true;
return false;
}
// Doxygen gets confused by the explicit specializations.
//! @cond
template <>
int IndexScanIterator<false>::Read() { // Forward read.
int error;
if (m_first) {
error = table()->file->ha_index_first(m_record);
m_first = false;
} else {
error = table()->file->ha_index_next(m_record);
}
if (error) return HandleError(error);
if (m_examined_rows != nullptr) {
++*m_examined_rows;
}
return 0;
}
template <>
int IndexScanIterator<true>::Read() { // Backward read.
int error;
if (m_first) {
error = table()->file->ha_index_last(m_record);
m_first = false;
} else {
error = table()->file->ha_index_prev(m_record);
}
if (error) return HandleError(error);
if (m_examined_rows != nullptr) {
++*m_examined_rows;
}
return 0;
}
//! @endcond
template class IndexScanIterator<true>;
template class IndexScanIterator<false>;
/**
The default implementation of unlock-row method of RowIterator,
used in all access methods except EQRefIterator.
*/
void TableRowIterator::UnlockRow() { m_table->file->unlock_row(); }
void TableRowIterator::SetNullRowFlag(bool is_null_row) {
if (is_null_row) {
m_table->set_null_row();
} else {
m_table->reset_null_row();
}
}
int TableRowIterator::HandleError(int error) {
if (thd()->killed) {
thd()->send_kill_message();
return 1;
}
if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND) {
m_table->set_no_row();
return -1;
} else {
PrintError(error);
return 1;
}
}
void TableRowIterator::PrintError(int error) {
m_table->file->print_error(error, MYF(0));
}
void TableRowIterator::StartPSIBatchMode() {
m_table->file->start_psi_batch_mode();
}
void TableRowIterator::EndPSIBatchModeIfStarted() {
m_table->file->end_psi_batch_mode_if_started();
}
TableScanIterator::TableScanIterator(THD *thd, TABLE *table,
double expected_rows,
ha_rows *examined_rows)
: TableRowIterator(thd, table),
m_record(table->record[0]),
m_expected_rows(expected_rows),
m_examined_rows(examined_rows),
m_limit_rows(table->set_counter() != nullptr ? table->m_limit_rows
: HA_POS_ERROR) {}
TableScanIterator::~TableScanIterator() {
if (table()->file != nullptr) {
table()->file->ha_index_or_rnd_end();
}
}
bool TableScanIterator::Init() {
empty_record(table());
/*
Only attempt to allocate a record buffer the first time the handler is
initialized.
*/
const bool first_init = !table()->file->inited;
int error = table()->file->ha_rnd_init(true);
if (error) {
PrintError(error);
return true;
}
if (first_init && set_record_buffer(table(), m_expected_rows)) {
return true; /* purecov: inspected */
}
m_stored_rows = 0;
return false;
}
int TableScanIterator::Read() {
int tmp;
if (table()->is_union_or_table()) {
while ((tmp = table()->file->ha_rnd_next(m_record))) {
/*
ha_rnd_next can return RECORD_DELETED for MyISAM when one thread is
reading and another deleting without locks.
*/
if (tmp == HA_ERR_RECORD_DELETED && !thd()->killed) continue;
return HandleError(tmp);
}
if (m_examined_rows != nullptr) {
++*m_examined_rows;
}
} else {
while (true) {
if (m_remaining_dups == 0) { // always initially
while ((tmp = table()->file->ha_rnd_next(m_record))) {
if (tmp == HA_ERR_RECORD_DELETED && !thd()->killed) continue;
return HandleError(tmp);
}
if (m_examined_rows != nullptr) {
++*m_examined_rows;
}
// Filter out rows not qualifying for INTERSECT, EXCEPT by reading
// the counter.
const ulonglong cnt =
static_cast<ulonglong>(table()->set_counter()->val_int());
if (table()->is_except()) {
if (table()->is_distinct()) {
// EXCEPT DISTINCT: any counter value larger than one yields
// exactly one row
if (cnt >= 1) break;
} else {
// EXCEPT ALL: we use m_remaining_dups to yield as many rows
// as found in the counter.
m_remaining_dups = cnt;
}
} else {
// INTERSECT
if (table()->is_distinct()) {
if (cnt == 0) break;
} else {
HalfCounter c(cnt);
// Use min(left side counter, right side counter)
m_remaining_dups = std::min(c[0], c[1]);
}
}
} else {
--m_remaining_dups; // return the same row once more.
break;
}
// Skipping this row
}
if (++m_stored_rows > m_limit_rows) {
return HandleError(HA_ERR_END_OF_FILE);
}
}
return 0;
}
ZeroRowsIterator::ZeroRowsIterator(THD *thd,
Mem_root_array<TABLE *> pruned_tables)
: RowIterator(thd), m_pruned_tables(std::move(pruned_tables)) {}
void ZeroRowsIterator::SetNullRowFlag(bool is_null_row) {
assert(!m_pruned_tables.empty());
for (TABLE *table : m_pruned_tables) {
if (is_null_row) {
table->set_null_row();
} else {
table->reset_null_row();
}
}
}
FollowTailIterator::FollowTailIterator(THD *thd, TABLE *table,
double expected_rows,
ha_rows *examined_rows)
: TableRowIterator(thd, table),
m_record(table->record[0]),
m_expected_rows(expected_rows),
m_examined_rows(examined_rows) {}
FollowTailIterator::~FollowTailIterator() {
if (table()->file != nullptr) {
table()->file->ha_index_or_rnd_end();
}
}
bool FollowTailIterator::Init() {
empty_record(table());
// BeginMaterialization() must be called before this.
assert(m_stored_rows != nullptr);
/*
Only attempt to allocate a record buffer the first time the handler is
initialized.
*/
const bool first_init = !table()->file->inited;
if (first_init) {
// Before starting a new WITH RECURSIVE execution,
// MaterializeIterator::Init() does ha_index_or_rnd_end() on all read
// cursors of recursive members, which sets file->inited = false, so we can
// use that as a signal.
if (!table()->is_created()) {
// Recursive references always refer to a temporary table,
// which do not exist at resolution time; thus, we need to
// connect to it on first run here.
assert(table()->in_use == nullptr || table()->in_use == thd());
table()->in_use = thd();
if (open_tmp_table(table())) {
return true;
}
}
int error = table()->file->ha_rnd_init(true);
if (error) {
PrintError(error);
return true;
}
if (first_init && set_record_buffer(table(), m_expected_rows)) {
return true; /* purecov: inspected */
}
// The first seen record will start a new iteration.
m_read_rows = 0;
m_recursive_iteration_count = 0;
m_end_of_current_iteration = 0;
} else {
// Just continue where we left off last time.
}
m_inited = true;
return false;
}
int FollowTailIterator::Read() {
if (m_read_rows == *m_stored_rows) {
/*
Return EOF without even checking if there are more rows
(there isn't), so that we can continue reading when there are.
There are two underlying reasons why we need to do this,
depending on the storage engine in use:
1. For both MEMORY and InnoDB, when they report EOF,
the scan stays blocked at EOF forever even if new rows
are inserted later. (InnoDB has a supremum record, and
MEMORY increments info->current_record unconditionally.)
2. Specific to MEMORY, inserting records that are deduplicated
away can corrupt cursors that hit EOF. Consider the following
scenario:
- write 'A'
- write 'A': allocates a record, hits a duplicate key error, leaves
the allocated place as "deleted record".
- init scan
- read: finds 'A' at #0
- read: finds deleted record at #1, properly skips over it, moves to
EOF
- even if we save the read position at this point, it's "after #1"
- close scan
- write 'B': takes the place of deleted record, i.e. writes at #1
- write 'C': writes at #2
- init scan, reposition at saved position
- read: still after #1, so misses 'B'.
In this scenario, the table is formed of real records followed by
deleted records and then EOF.
To avoid these problems, we keep track of the number of rows in the
table by holding the m_stored_rows pointer into the MaterializeIterator,
and simply avoid hitting EOF.
*/
return -1;
}
if (m_read_rows == m_end_of_current_iteration) {
// We have started a new iteration. Check to see if we have passed the
// user-set limit.
if (++m_recursive_iteration_count >
thd()->variables.cte_max_recursion_depth) {
my_error(ER_CTE_MAX_RECURSION_DEPTH, MYF(0), m_recursive_iteration_count);
return 1;
}
m_end_of_current_iteration = *m_stored_rows;
#ifdef ENABLED_DEBUG_SYNC
if (m_recursive_iteration_count == 4) {
DEBUG_SYNC(thd(), "in_WITH_RECURSIVE");
}
#endif
}
// Read the actual row.
//
// We can never have MyISAM here, so we don't need the checks
// for HA_ERR_RECORD_DELETED that TableScanIterator has.
int err = table()->file->ha_rnd_next(m_record);
if (err) {
return HandleError(err);
}
++m_read_rows;
if (m_examined_rows != nullptr) {
++*m_examined_rows;
}
return 0;
}
bool FollowTailIterator::RepositionCursorAfterSpillToDisk() {
if (!m_inited) {
// Spill-to-disk happened before we got to read a single row,
// so the table has not been initialized yet. It will start
// at the first row when we actually get to Init(), which is fine.
return false;
}
return reposition_innodb_cursor(table(), m_read_rows);
}
|