1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/* Copyright (c) 2019, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/iterators/bka_iterator.h"
#include <assert.h>
#include <math.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <iterator>
#include <new>
#include <string>
#include <utility>
#include <vector>
#include "my_alloc.h"
#include "my_base.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "mysqld_error.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/iterators/hash_join_buffer.h"
#include "sql/iterators/row_iterator.h"
#include "sql/psi_memory_key.h"
#include "sql/sql_executor.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/table.h"
class JOIN;
using hash_join_buffer::BufferRow;
using hash_join_buffer::LoadBufferRowIntoTableBuffers;
using pack_rows::TableCollection;
using std::string;
using std::vector;
static bool NeedMatchFlags(JoinType join_type) {
return join_type == JoinType::OUTER || join_type == JoinType::SEMI ||
join_type == JoinType::ANTI;
}
static size_t BytesNeededForMatchFlags(size_t rows) {
// One bit per row.
return (rows + 7) / 8;
}
BKAIterator::BKAIterator(THD *thd,
unique_ptr_destroy_only<RowIterator> outer_input,
const Prealloced_array<TABLE *, 4> &outer_input_tables,
unique_ptr_destroy_only<RowIterator> inner_input,
size_t max_memory_available,
size_t mrr_bytes_needed_for_single_inner_row,
float expected_inner_rows_per_outer_row,
bool store_rowids, table_map tables_to_get_rowid_for,
MultiRangeRowIterator *mrr_iterator,
JoinType join_type)
: RowIterator(thd),
m_outer_input(std::move(outer_input)),
m_inner_input(std::move(inner_input)),
m_mem_root(key_memory_hash_join, 16384 /* 16 kB */),
m_rows(&m_mem_root),
m_outer_input_tables(outer_input_tables, store_rowids,
tables_to_get_rowid_for,
/*tables_to_store_contents_of_null_rows_for=*/0),
m_max_memory_available(max_memory_available),
m_mrr_bytes_needed_for_single_inner_row(
mrr_bytes_needed_for_single_inner_row),
m_mrr_iterator(mrr_iterator),
m_join_type(join_type) {
assert(m_outer_input != nullptr);
assert(m_inner_input != nullptr);
m_mrr_bytes_needed_per_row =
lrint(mrr_bytes_needed_for_single_inner_row *
std::max(expected_inner_rows_per_outer_row, 1.0f));
}
bool BKAIterator::Init() {
if (!m_outer_input_tables.has_blob_column()) {
size_t upper_row_size =
pack_rows::ComputeRowSizeUpperBound(m_outer_input_tables);
if (m_outer_row_buffer.reserve(upper_row_size)) {
my_error(ER_OUTOFMEMORY, MYF(0), upper_row_size);
return true;
}
}
PrepareForRequestRowId(m_outer_input_tables.tables(),
m_outer_input_tables.tables_to_get_rowid_for());
BeginNewBatch();
m_end_of_outer_rows = false;
m_has_row_from_previous_batch = false;
return m_outer_input->Init();
}
void BKAIterator::BeginNewBatch() {
m_mem_root.ClearForReuse();
new (&m_rows) Mem_root_array<BufferRow>(&m_mem_root);
m_bytes_used = 0;
m_state = State::NEED_OUTER_ROWS;
}
int BKAIterator::ReadOuterRows() {
for (;;) {
if (m_has_row_from_previous_batch) {
// The outer row will be in m_outer_row_buffer already. Load it back
// into the global table buffers; MultiRangeRowIterator has loaded other
// rows into them, and in case we are reading from a join, Read() may
// not update all of the tables.
m_has_row_from_previous_batch = false;
LoadBufferRowIntoTableBuffers(
m_outer_input_tables,
hash_join_buffer::Key(m_outer_row_buffer.ptr(),
m_outer_row_buffer.length()));
} else {
int result = m_outer_input->Read();
if (result == 1) {
// Error.
return 1;
}
if (result == -1) {
// EOF.
m_end_of_outer_rows = true;
break;
}
RequestRowId(m_outer_input_tables.tables(),
m_outer_input_tables.tables_to_get_rowid_for());
// Save the contents of all columns marked for reading.
if (StoreFromTableBuffers(m_outer_input_tables, &m_outer_row_buffer)) {
return 1;
}
}
// See if we have room for this row, and the associated number of MRR
// rows, without going over our total RAM budget. (We ignore the budget
// if the buffer is empty; at least a single row must be allowed at all
// times.)
const size_t row_size = m_outer_row_buffer.length();
size_t total_bytes_needed_after_this_row =
m_bytes_used + row_size +
(m_mrr_bytes_needed_per_row + sizeof(m_rows[0])) * (m_rows.size() + 1);
if (NeedMatchFlags(m_join_type)) {
total_bytes_needed_after_this_row +=
BytesNeededForMatchFlags(m_rows.size() + 1);
}
if (!m_rows.empty() &&
total_bytes_needed_after_this_row > m_max_memory_available) {
// Out of memory, so end the batch and send it.
// This row will be dealt with in the next batch.
m_has_row_from_previous_batch = true;
break;
}
char *row = m_mem_root.ArrayAlloc<char>(row_size);
if (row == nullptr) {
return 1;
}
memcpy(row, m_outer_row_buffer.ptr(), row_size);
m_rows.push_back(BufferRow(row, row_size));
m_bytes_used += row_size;
}
// If we had no rows at all, we're done.
if (m_rows.empty()) {
assert(!m_has_row_from_previous_batch);
m_state = State::END_OF_ROWS;
return -1;
}
// Figure out how much RAM we need to allocate for the MRR row buffer,
// given to the handler for holding inner rows.
size_t mrr_buffer_size = m_mrr_bytes_needed_per_row * m_rows.size();
if (m_bytes_used + mrr_buffer_size >= m_max_memory_available) {
// Even if it will take us over budget, DS-MRR needs space for at least
// one row to work.
assert(m_rows.size() ==
1); // Otherwise, we would have stopped reading rows earlier.
if (m_bytes_used + m_mrr_bytes_needed_for_single_inner_row >=
m_max_memory_available) {
mrr_buffer_size = m_mrr_bytes_needed_for_single_inner_row;
} else {
mrr_buffer_size = m_max_memory_available - m_bytes_used;
}
} else {
// We're under budget. Heuristically, increase it to get some
// extra headroom if the estimate is pessimistic.
mrr_buffer_size = std::min(mrr_buffer_size * 2 + 16384,
m_max_memory_available - m_bytes_used);
}
assert(mrr_buffer_size >= m_mrr_bytes_needed_for_single_inner_row);
// Ask the MRR iterator to do the actual read.
m_mrr_iterator->set_rows(m_rows.begin(), m_rows.end());
m_mrr_iterator->set_mrr_buffer(m_mem_root.ArrayAlloc<uchar>(mrr_buffer_size),
mrr_buffer_size);
if (NeedMatchFlags(m_join_type)) {
const size_t bytes_needed = BytesNeededForMatchFlags(m_rows.size());
m_mrr_iterator->set_match_flag_buffer(
m_mem_root.ArrayAlloc<uchar>(bytes_needed));
}
if (m_inner_input->Init()) {
return 1;
}
// Probe the rows we've got using MRR.
m_state = State::RETURNING_JOINED_ROWS;
m_mrr_iterator->SetNullRowFlag(false);
return 0;
}
void BKAIterator::BatchFinished() {
// End of joined rows; start reading the next batch if there are
// more outer rows.
if (m_end_of_outer_rows) {
m_state = State::END_OF_ROWS;
} else {
BeginNewBatch();
assert(m_state == State::NEED_OUTER_ROWS);
}
}
int BKAIterator::MakeNullComplementedRow() {
// Find the next row that hasn't been matched to anything yet.
while (m_current_pos != m_rows.end()) {
if (m_mrr_iterator->RowHasBeenRead(m_current_pos)) {
++m_current_pos;
} else {
// Return a NULL-complemented row. (Our table already has the NULL flag
// set.)
LoadIntoTableBuffers(m_outer_input_tables,
pointer_cast<const uchar *>(m_current_pos->data()));
++m_current_pos;
return 0;
}
}
// No more NULL-complemented rows to return.
m_mrr_iterator->SetNullRowFlag(false);
return -1;
}
int BKAIterator::Read() {
for (;;) { // Termination condition within loop.
switch (m_state) {
case State::END_OF_ROWS:
return -1;
case State::NEED_OUTER_ROWS: {
int err = ReadOuterRows();
if (err != 0) {
return err;
}
break;
}
case State::RETURNING_JOINED_ROWS: {
int err = m_inner_input->Read();
if (err != -1) {
if (err == 0) {
m_mrr_iterator->MarkLastRowAsRead();
if (m_join_type == JoinType::ANTI) {
break;
}
}
// A row or an error; pass it through (unless we are an antijoin).
return err;
}
// No more joined rows in this batch. Go to the next batch -- but
// if we're an outer join or antijoin, first create NULL-complemented
// rows for the ones in this batch that we didn't match to anything.
if (m_join_type == JoinType::OUTER || m_join_type == JoinType::ANTI) {
m_state = State::RETURNING_NULL_COMPLEMENTED_ROWS;
m_current_pos = m_rows.begin();
m_mrr_iterator->SetNullRowFlag(true);
} else {
BatchFinished();
break;
}
}
[[fallthrough]];
case State::RETURNING_NULL_COMPLEMENTED_ROWS: {
int err = MakeNullComplementedRow();
if (err != -1) {
return err;
}
BatchFinished();
break;
}
}
}
}
MultiRangeRowIterator::MultiRangeRowIterator(
THD *thd, TABLE *table, Index_lookup *ref, int mrr_flags,
JoinType join_type, const Prealloced_array<TABLE *, 4> &outer_input_tables,
bool store_rowids, table_map tables_to_get_rowid_for)
: TableRowIterator(thd, table),
m_file(table->file),
m_ref(ref),
m_mrr_flags(mrr_flags),
m_outer_input_tables(outer_input_tables, store_rowids,
tables_to_get_rowid_for,
/*tables_to_store_contents_of_null_rows_for=*/0),
m_join_type(join_type) {}
bool MultiRangeRowIterator::Init() {
/*
Prepare to iterate over keys from the join buffer and to get
matching candidates obtained with MRR handler functions.
*/
if (!m_file->inited) {
const int error = m_file->ha_index_init(m_ref->key, true);
if (error) {
m_file->print_error(error, MYF(0));
return error;
}
}
RANGE_SEQ_IF seq_funcs = {MultiRangeRowIterator::MrrInitCallbackThunk,
MultiRangeRowIterator::MrrNextCallbackThunk,
nullptr};
if (m_join_type == JoinType::SEMI || m_join_type == JoinType::ANTI) {
seq_funcs.skip_record = MultiRangeRowIterator::MrrSkipRecordCallbackThunk;
}
if (m_match_flag_buffer != nullptr) {
assert(NeedMatchFlags(m_join_type));
// Reset all the match flags.
memset(m_match_flag_buffer, 0,
BytesNeededForMatchFlags(std::distance(m_begin, m_end)));
} else {
assert(!NeedMatchFlags(m_join_type));
}
/**
We don't send a set of rows directly to MRR; instead, we give it a set
of function pointers to iterate over the rows, and a pointer to ourselves.
The handler will call our callbacks as follows:
1. MrrInitCallback at the start, to initialize iteration.
2. MrrNextCallback is called to yield ranges to scan, until it returns 1.
*/
return m_file->multi_range_read_init(&seq_funcs, this,
std::distance(m_begin, m_end),
m_mrr_flags, &m_mrr_buffer);
}
range_seq_t MultiRangeRowIterator::MrrInitCallback(uint, uint) {
m_current_pos = m_begin;
return this;
}
uint MultiRangeRowIterator::MrrNextCallback(KEY_MULTI_RANGE *range) {
// Load the next row from the buffer, if there is one.
//
// NULL values will never match in a inner join. The optimizer will often
// set up a NULL filter for inner joins, but not in all cases, so we must
// skip such rows by checking impossible_null_ref(). Thus, we iterate
// until we have a row that is not NULL-filtered. The typical case is
// that this happens immediately.
//
// TODO(sgunders): Consider whether it would be possible to put this check
// before putting the rows into the buffer. That would require evaluating
// any items twice, though.
for (;;) {
if (m_current_pos == m_end) {
return 1;
}
LoadBufferRowIntoTableBuffers(m_outer_input_tables, *m_current_pos);
construct_lookup(thd(), table(), m_ref);
if (!m_ref->impossible_null_ref()) {
break;
}
++m_current_pos;
}
// Set up a range consisting of a single key, so the only difference
// between start and end is the flags. They signify that the range starts
// at the row in question, and ends right after it (exclusive).
range->range_flag = EQ_RANGE;
range->ptr = const_cast<char *>(pointer_cast<const char *>(m_current_pos));
range->start_key.key = m_ref->key_buff;
range->start_key.keypart_map = (1 << m_ref->key_parts) - 1; // All keyparts.
range->start_key.length = m_ref->key_length;
range->start_key.flag = HA_READ_KEY_EXACT;
range->end_key = range->start_key;
range->end_key.flag = HA_READ_AFTER_KEY;
++m_current_pos;
return 0;
}
bool MultiRangeRowIterator::MrrSkipRecord(char *range_info) {
BufferRow *rec_ptr = pointer_cast<BufferRow *>(range_info);
return RowHasBeenRead(rec_ptr);
}
int MultiRangeRowIterator::Read() {
// Read a row from the MRR buffer. rec_ptr tells us which outer row
// this corresponds to; it corresponds to range->ptr in MrrNextCallback(),
// and points to the serialized outer row in BKAIterator's m_row array.
BufferRow *rec_ptr = nullptr;
do {
int error =
m_file->ha_multi_range_read_next(pointer_cast<char **>(&rec_ptr));
if (error != 0) {
return HandleError(error);
}
// NDB never calls mrr_funcs.skip_record(), so we need to recheck here.
// See bug #30594210.
} while (m_join_type == JoinType::SEMI && RowHasBeenRead(rec_ptr));
LoadIntoTableBuffers(m_outer_input_tables,
pointer_cast<const uchar *>(rec_ptr->data()));
m_last_row_returned = rec_ptr;
return 0;
}
|