1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef SQL_RANGE_OPTIMIZER_PATH_HELPERS_H_
#define SQL_RANGE_OPTIMIZER_PATH_HELPERS_H_
/**
@file
Various small helpers to abstract over the fact that AccessPath can contain
a number of different range scan types.
*/
#include "sql/join_optimizer/access_path.h"
#include "sql/range_optimizer/group_index_skip_scan_plan.h"
#include "sql/range_optimizer/index_merge_plan.h"
#include "sql/range_optimizer/index_range_scan_plan.h"
#include "sql/range_optimizer/index_skip_scan_plan.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/rowid_ordered_retrieval_plan.h"
inline bool is_loose_index_scan(const AccessPath *path) {
return path->type == AccessPath::INDEX_SKIP_SCAN ||
path->type == AccessPath::GROUP_INDEX_SKIP_SCAN;
}
inline bool is_agg_loose_index_scan(const AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_SKIP_SCAN:
return path->index_skip_scan().param->has_aggregate_function;
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return path->group_index_skip_scan().param->have_agg_distinct;
break;
default:
return false;
}
}
/**
Whether the range access method is capable of returning records
in reverse order.
*/
inline bool reverse_sort_possible(const AccessPath *path) {
return path->type == AccessPath::INDEX_RANGE_SCAN;
}
/**
Whether the access path is an INDEX_RANGE_SCAN that returns rows in reverse
order. (Note that non-range index scans return false here.)
*/
inline bool is_reverse_sorted_range(const AccessPath *path) {
return path->type == AccessPath::INDEX_RANGE_SCAN &&
path->index_range_scan().reverse;
}
/**
Ask the AccessPath to reverse itself; returns false if successful.
Overridden only in INDEX_RANGE_SCAN.
*/
inline bool make_reverse(uint used_key_parts, AccessPath *path) {
if (path->type == AccessPath::INDEX_RANGE_SCAN) {
if (path->index_range_scan().geometry) {
return true;
}
path->index_range_scan().reverse = true;
TABLE *table = path->index_range_scan().used_key_part[0].field->table;
path->index_range_scan().using_extended_key_parts =
(used_key_parts > table->key_info[path->index_range_scan().index]
.user_defined_key_parts);
return false;
} else {
return true;
}
}
inline void set_need_sorted_output(AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
path->index_range_scan().mrr_flags |= HA_MRR_SORTED;
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
case AccessPath::INDEX_SKIP_SCAN:
// Always sorted already.
break;
default:
assert(false);
}
}
/**
If this is an index range scan, and that range scan uses a single
index, returns the index used. Otherwise, MAX_KEY.
*/
inline unsigned used_index(const AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
return path->index_range_scan().index;
case AccessPath::INDEX_SKIP_SCAN:
return path->index_skip_scan().index;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return path->group_index_skip_scan().index;
default:
return MAX_KEY;
}
}
/**
Return true if there is only one range and this uses the whole unique key.
*/
inline bool unique_key_range(const AccessPath *path) {
if (path->type != AccessPath::INDEX_RANGE_SCAN) {
return false;
}
if (path->index_range_scan().num_ranges == 1) {
QUICK_RANGE *tmp = path->index_range_scan().ranges[0];
if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE) {
KEY *key =
path->index_range_scan().used_key_part[0].field->table->key_info +
path->index_range_scan().index;
return (key->flags & HA_NOSAME) && key->key_length == tmp->min_length;
}
}
return false;
}
inline void get_fields_used(const AccessPath *path, MY_BITMAP *used_fields) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
for (uint i = 0; i < path->index_range_scan().num_used_key_parts; ++i) {
bitmap_set_bit(
used_fields,
path->index_range_scan().used_key_part[i].field->field_index());
}
break;
case AccessPath::INDEX_MERGE:
for (AccessPath *child : *path->index_merge().children) {
get_fields_used(child, used_fields);
}
break;
case AccessPath::ROWID_INTERSECTION:
for (AccessPath *child : *path->rowid_intersection().children) {
get_fields_used(child, used_fields);
}
if (path->rowid_intersection().cpk_child != nullptr) {
get_fields_used(path->rowid_intersection().cpk_child, used_fields);
}
break;
case AccessPath::ROWID_UNION:
for (AccessPath *child : *path->rowid_union().children) {
get_fields_used(child, used_fields);
}
break;
case AccessPath::INDEX_SKIP_SCAN:
for (uint i = 0; i < path->index_skip_scan().num_used_key_parts; ++i) {
bitmap_set_bit(used_fields, path->index_skip_scan()
.param->index_info->key_part[i]
.field->field_index());
}
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
for (uint i = 0; i < path->group_index_skip_scan().num_used_key_parts;
++i) {
bitmap_set_bit(used_fields, path->group_index_skip_scan()
.param->index_info->key_part[i]
.field->field_index());
}
break;
default:
assert(false);
}
}
inline unsigned get_used_key_parts(const AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
return path->index_range_scan().num_used_key_parts;
case AccessPath::INDEX_SKIP_SCAN:
return path->index_skip_scan().num_used_key_parts;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return path->group_index_skip_scan().num_used_key_parts;
case AccessPath::INDEX_MERGE:
case AccessPath::ROWID_INTERSECTION:
case AccessPath::ROWID_UNION:
return 0;
default:
assert(false);
return 0;
}
}
/**
Return whether any index used by this range scan uses the field(s)
marked in passed bitmap. Assert-fails if not a range scan.
*/
inline bool uses_index_on_fields(const AccessPath *path,
const MY_BITMAP *fields) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
return is_key_used(path->index_range_scan().used_key_part[0].field->table,
path->index_range_scan().index, fields);
case AccessPath::INDEX_MERGE:
for (AccessPath *child : *path->index_merge().children) {
if (uses_index_on_fields(child, fields)) {
return true;
}
}
return false;
case AccessPath::ROWID_INTERSECTION:
for (AccessPath *child : *path->rowid_intersection().children) {
if (uses_index_on_fields(child, fields)) {
return true;
}
}
return path->rowid_intersection().cpk_child != nullptr &&
uses_index_on_fields(path->rowid_intersection().cpk_child, fields);
case AccessPath::ROWID_UNION:
for (AccessPath *child : *path->rowid_union().children) {
if (uses_index_on_fields(child, fields)) {
return true;
}
}
return false;
case AccessPath::INDEX_SKIP_SCAN:
return is_key_used(path->index_skip_scan().table,
path->index_skip_scan().index, fields);
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return is_key_used(path->group_index_skip_scan().table,
path->group_index_skip_scan().index, fields);
default:
assert(false);
return false;
}
}
/**
Get the total length of first used_key_parts parts of the key,
in bytes. Only applicable for range access types that use a single
index (others will assert-fail).
*/
inline unsigned get_max_used_key_length(const AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN: {
int max_used_key_length = 0;
Bounds_checked_array ranges{path->index_range_scan().ranges,
path->index_range_scan().num_ranges};
for (const QUICK_RANGE *range : ranges) {
max_used_key_length =
std::max<int>(max_used_key_length, range->min_length);
max_used_key_length =
std::max<int>(max_used_key_length, range->max_length);
}
return max_used_key_length;
}
case AccessPath::INDEX_SKIP_SCAN: {
int max_used_key_length = 0;
KEY_PART_INFO *p = path->index_skip_scan().param->index_info->key_part;
for (uint i = 0; i < path->index_skip_scan().num_used_key_parts;
i++, p++) {
max_used_key_length += p->store_length;
}
return max_used_key_length;
}
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return path->group_index_skip_scan().param->max_used_key_length;
default:
assert(false);
return 0;
}
}
/*
Append text representation of the range scan (what and how is
merged) to str. The result is added to "Extra" field in EXPLAIN output.
*/
inline void add_info_string(const AccessPath *path, String *str) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN: {
TABLE *table = path->index_range_scan().used_key_part[0].field->table;
KEY *key_info = table->key_info + path->index_range_scan().index;
str->append(key_info->name);
break;
}
case AccessPath::INDEX_MERGE: {
bool first = true;
TABLE *table = path->index_merge().table;
str->append(STRING_WITH_LEN("sort_union("));
// For EXPLAIN compatibility with older versions, PRIMARY is always
// printed last.
for (bool print_primary : {false, true}) {
for (AccessPath *child : *path->index_merge().children) {
const bool is_primary = table->file->primary_key_is_clustered() &&
used_index(child) == table->s->primary_key;
if (is_primary != print_primary) continue;
if (!first)
str->append(',');
else
first = false;
::add_info_string(child, str);
}
}
str->append(')');
break;
}
case AccessPath::ROWID_INTERSECTION: {
bool first = true;
str->append(STRING_WITH_LEN("intersect("));
for (AccessPath *current : *path->rowid_intersection().children) {
if (!first)
str->append(',');
else
first = false;
::add_info_string(current, str);
}
if (path->rowid_intersection().cpk_child) {
str->append(',');
::add_info_string(path->rowid_intersection().cpk_child, str);
}
str->append(')');
break;
}
case AccessPath::ROWID_UNION: {
bool first = true;
str->append(STRING_WITH_LEN("union("));
for (AccessPath *current : *path->rowid_union().children) {
if (!first)
str->append(',');
else
first = false;
::add_info_string(current, str);
}
str->append(')');
break;
}
case AccessPath::INDEX_SKIP_SCAN: {
str->append(STRING_WITH_LEN("index_for_skip_scan("));
str->append(path->index_skip_scan().param->index_info->name);
str->append(')');
break;
}
case AccessPath::GROUP_INDEX_SKIP_SCAN: {
str->append(STRING_WITH_LEN("index_for_group_by("));
str->append(path->group_index_skip_scan().param->index_info->name);
str->append(')');
break;
}
default:
assert(false);
}
}
/*
Append comma-separated list of keys this quick select uses to key_names;
append comma-separated list of corresponding used lengths to used_lengths.
This is used by select_describe.
path must be a range scan, or there will be an assert.
*/
inline void add_keys_and_lengths(const AccessPath *path, String *key_names,
String *used_lengths) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN: {
TABLE *table = path->index_range_scan().used_key_part[0].field->table;
KEY *key_info = table->key_info + path->index_range_scan().index;
key_names->append(key_info->name);
char buf[64];
size_t length =
longlong10_to_str(get_max_used_key_length(path), buf, 10) - buf;
used_lengths->append(buf, length);
break;
}
case AccessPath::INDEX_MERGE:
add_keys_and_lengths_index_merge(path, key_names, used_lengths);
break;
case AccessPath::ROWID_INTERSECTION:
add_keys_and_lengths_rowid_intersection(path, key_names, used_lengths);
break;
case AccessPath::ROWID_UNION:
add_keys_and_lengths_rowid_union(path, key_names, used_lengths);
break;
case AccessPath::INDEX_SKIP_SCAN: {
key_names->append(path->index_skip_scan().param->index_info->name);
char buf[64];
uint length =
longlong10_to_str(get_max_used_key_length(path), buf, 10) - buf;
used_lengths->append(buf, length);
break;
}
case AccessPath::GROUP_INDEX_SKIP_SCAN: {
key_names->append(path->group_index_skip_scan().param->index_info->name);
char buf[64];
uint length =
longlong10_to_str(get_max_used_key_length(path), buf, 10) - buf;
used_lengths->append(buf, length);
break;
}
default:
assert(false);
}
}
/**
Add basic info for this range scan to the optimizer trace.
path must be a range scan, or there will be an assert.
@param thd Thread handle
@param param Parameters for range analysis of this table
@param trace_object The optimizer trace object the info is appended to
*/
inline void trace_basic_info(THD *thd, const AccessPath *path,
const RANGE_OPT_PARAM *param,
Opt_trace_object *trace_object) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
trace_basic_info_index_range_scan(thd, path, param, trace_object);
break;
case AccessPath::INDEX_MERGE:
trace_basic_info_index_merge(thd, path, param, trace_object);
break;
case AccessPath::ROWID_INTERSECTION:
trace_basic_info_rowid_intersection(thd, path, param, trace_object);
break;
case AccessPath::ROWID_UNION:
trace_basic_info_rowid_union(thd, path, param, trace_object);
break;
case AccessPath::INDEX_SKIP_SCAN:
trace_basic_info_index_skip_scan(thd, path, param, trace_object);
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
trace_basic_info_group_index_skip_scan(thd, path, param, trace_object);
break;
default:
assert(false);
}
}
inline bool get_forced_by_hint(const AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
return false; // There is no hint for plain range scan.
case AccessPath::INDEX_MERGE:
return path->index_merge().forced_by_hint;
case AccessPath::ROWID_INTERSECTION:
return path->rowid_intersection().forced_by_hint;
case AccessPath::ROWID_UNION:
return path->rowid_union().forced_by_hint;
case AccessPath::INDEX_SKIP_SCAN:
return path->index_skip_scan().forced_by_hint;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return path->group_index_skip_scan().forced_by_hint;
default:
assert(false);
return false;
}
}
#ifndef NDEBUG
/*
Print quick select information to DBUG_FILE. Caller is responsible
for locking DBUG_FILE before this call and unlocking it afterwards.
*/
inline void dbug_dump(const AccessPath *path, int indent, bool verbose) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN: {
const auto ¶m = path->index_range_scan();
dbug_dump_range(indent, verbose, param.used_key_part[0].field->table,
param.index, param.used_key_part,
{param.ranges, param.num_ranges});
break;
}
case AccessPath::INDEX_MERGE: {
dbug_dump_index_merge(indent, verbose, *path->index_merge().children);
break;
}
case AccessPath::ROWID_INTERSECTION:
dbug_dump_rowid_intersection(indent, verbose,
*path->index_merge().children);
break;
case AccessPath::ROWID_UNION:
dbug_dump_rowid_union(indent, verbose, *path->index_merge().children);
break;
case AccessPath::INDEX_SKIP_SCAN:
dbug_dump_index_skip_scan(indent, verbose, path);
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
dbug_dump_group_index_skip_scan(indent, verbose, path);
break;
default:
assert(false);
}
}
#endif
#endif // SQL_RANGE_OPTIMIZER_PATH_HELPERS_H_
|