1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <assert.h>
#include <string.h>
#include <sys/types.h>
#include "field_types.h"
#include "m_ctype.h"
#include "memory_debugging.h"
#include "mf_wcomp.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_byteorder.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_table_map.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "sql-common/json_dom.h"
#include "sql/current_thd.h"
#include "sql/derror.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_json_func.h"
#include "sql/item_row.h"
#include "sql/key.h"
#include "sql/mem_root_array.h"
#include "sql/opt_trace.h"
#include "sql/opt_trace_context.h"
#include "sql/query_options.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/tree.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql_string.h"
#include "template_utils.h"
/*
A null_sel_tree is used in get_func_mm_tree_from_in_predicate to pass
as an argument to tree_or. It is used only to influence the return
value from tree_or function.
*/
static MEM_ROOT null_root;
static SEL_TREE null_sel_tree(SEL_TREE::IMPOSSIBLE, &null_root, 0);
static uchar is_null_string[2] = {1, 0};
static SEL_TREE *get_mm_parts(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables, table_map read_tables,
Item_func *cond_func, Field *field,
Item_func::Functype type, Item *value);
static SEL_ROOT *get_mm_leaf(THD *thd, RANGE_OPT_PARAM *param, Item *cond_func,
Field *field, KEY_PART *key_part,
Item_func::Functype type, Item *value,
bool *inexact);
static SEL_TREE *get_full_func_mm_tree(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables,
table_map read_tables,
table_map current_table,
bool remove_jump_scans, Item *predicand,
Item_func *op, Item *value, bool inv);
static SEL_ROOT *sel_add(SEL_ROOT *key1, SEL_ROOT *key2);
/**
If EXPLAIN or if the --safe-updates option is enabled, add a warning that
the index cannot be used for range access due to either type conversion or
different collations on the field used for comparison
@param thd Thread handle
@param param RANGE_OPT_PARAM from test_quick_select
@param key_num Key number
@param field Field in the predicate
*/
static void warn_index_not_applicable(THD *thd, const RANGE_OPT_PARAM *param,
const uint key_num, const Field *field) {
if (param->using_real_indexes &&
(thd->lex->is_explain() ||
thd->variables.option_bits & OPTION_SAFE_UPDATES))
push_warning_printf(thd, Sql_condition::SL_WARNING,
ER_WARN_INDEX_NOT_APPLICABLE,
ER_THD(thd, ER_WARN_INDEX_NOT_APPLICABLE), "range",
field->table->key_info[param->real_keynr[key_num]].name,
field->field_name);
}
/*
Build a SEL_TREE for <> or NOT BETWEEN predicate
SYNOPSIS
get_ne_mm_tree()
param RANGE_OPT_PARAM from test_quick_select
prev_tables See test_quick_select()
read_tables See test_quick_select()
remove_jump_scans See get_mm_tree()
cond_func item for the predicate
field field in the predicate
lt_value constant that field should be smaller
gt_value constant that field should be greaterr
RETURN
# Pointer to tree built tree
0 on error
*/
static SEL_TREE *get_ne_mm_tree(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables, table_map read_tables,
bool remove_jump_scans, Item_func *cond_func,
Field *field, Item *lt_value, Item *gt_value) {
SEL_TREE *tree = nullptr;
if (param->has_errors()) return nullptr;
tree = get_mm_parts(thd, param, prev_tables, read_tables, cond_func, field,
Item_func::LT_FUNC, lt_value);
if (tree) {
tree = tree_or(param, remove_jump_scans, tree,
get_mm_parts(thd, param, prev_tables, read_tables, cond_func,
field, Item_func::GT_FUNC, gt_value));
}
return tree;
}
/**
Factory function to build a SEL_TREE from an @<in predicate@>
@param thd Thread handle
@param param Information on 'just about everything'.
@param prev_tables See test_quick_select()
@param read_tables See test_quick_select()
@param remove_jump_scans See get_mm_tree()
@param predicand The @<in predicate's@> predicand, i.e. the left-hand
side of the @<in predicate@> expression.
@param op The 'in' operator itself.
@param is_negated If true, the operator is NOT IN, otherwise IN.
*/
static SEL_TREE *get_func_mm_tree_from_in_predicate(
THD *thd, RANGE_OPT_PARAM *param, table_map prev_tables,
table_map read_tables, bool remove_jump_scans, Item *predicand,
Item_func_in *op, bool is_negated) {
if (param->has_errors()) return nullptr;
// Populate array as we need to examine its values here
if (op->m_const_array != nullptr && !op->m_populated) {
op->populate_bisection(thd);
}
if (is_negated) {
// We don't support row constructors (multiple columns on lhs) here.
if (predicand->type() != Item::FIELD_ITEM) return nullptr;
Field *field = down_cast<Item_field *>(predicand)->field;
if (op->m_const_array != nullptr && !op->m_const_array->is_row_result()) {
/*
We get here for conditions on the form "t.key NOT IN (c1, c2, ...)",
where c{i} are constants. Our goal is to produce a SEL_TREE that
represents intervals:
($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ... (*)
where $MIN is either "-inf" or NULL.
The most straightforward way to produce it is to convert NOT
IN into "(t.key != c1) AND (t.key != c2) AND ... " and let the
range analyzer build a SEL_TREE from that. The problem is that
the range analyzer will use O(N^2) memory (which is probably a
bug), and people who do use big NOT IN lists (e.g. see
BUG#15872, BUG#21282), will run out of memory.
Another problem with big lists like (*) is that a big list is
unlikely to produce a good "range" access, while considering
that range access will require expensive CPU calculations (and
for MyISAM even index accesses). In short, big NOT IN lists
are rarely worth analyzing.
Considering the above, we'll handle NOT IN as follows:
- if the number of entries in the NOT IN list is less than
NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*)
manually.
- Otherwise, don't produce a SEL_TREE.
*/
const uint NOT_IN_IGNORE_THRESHOLD = 1000;
// If we have t.key NOT IN (null, null, ...) or the list is too long
if (op->m_const_array->m_used_size == 0 ||
op->m_const_array->m_used_size > NOT_IN_IGNORE_THRESHOLD)
return nullptr;
/*
Create one Item_type constant object. We'll need it as
get_mm_parts only accepts constant values wrapped in Item_Type
objects.
We create the Item on thd->mem_root which points to
per-statement mem_root.
*/
Item_basic_constant *value_item =
op->m_const_array->create_item(thd->mem_root);
if (value_item == nullptr) return nullptr;
/* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */
uint i = 0;
SEL_TREE *tree = nullptr;
do {
op->m_const_array->value_to_item(i, value_item);
tree = get_mm_parts(thd, param, prev_tables, read_tables, op, field,
Item_func::LT_FUNC, value_item);
if (!tree) break;
i++;
} while (i < op->m_const_array->m_used_size &&
tree->type == SEL_TREE::IMPOSSIBLE);
if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
/* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
return nullptr;
SEL_TREE *tree2 = nullptr;
Item_basic_constant *previous_range_value =
op->m_const_array->create_item(thd->mem_root);
for (; i < op->m_const_array->m_used_size; i++) {
// Check if the value stored in the field for the previous range
// is greater, lesser or equal to the actual value specified in the
// query. Used further down to set the flags for the current range
// correctly (as the max value for the previous range will become
// the min value for the current range).
op->m_const_array->value_to_item(i - 1, previous_range_value);
int cmp_value =
stored_field_cmp_to_item(thd, field, previous_range_value);
if (op->m_const_array->compare_elems(i, i - 1)) {
/* Get a SEL_TREE for "-inf < X < c_i" interval */
op->m_const_array->value_to_item(i, value_item);
tree2 = get_mm_parts(thd, param, prev_tables, read_tables, op, field,
Item_func::LT_FUNC, value_item);
if (!tree2) {
tree = nullptr;
break;
}
/* Change all intervals to be "c_{i-1} < X < c_i" */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ARG *last_val;
if (tree->keys[idx] && tree2->keys[idx] &&
((last_val = tree->keys[idx]->root->last()))) {
SEL_ARG *new_interval = tree2->keys[idx]->root;
new_interval->min_value = last_val->max_value;
// We set the max value of the previous range as the beginning
// for this range interval. However we need values higher than
// this value:
// For ex: If the range is "not in (1,2)" we first construct
// X < 1 before this loop and add 1 < X < 2 in this loop and
// follow it up with 2 < X below.
// While fetching values for the second interval, we set
// "NEAR_MIN" flag so that we fetch values higher than "1".
// However, when the values specified are not compatible
// with the field that is being compared to, they are rounded
// off.
// For the example above, if the range given was "not in (0.9,
// 1.9)", range optimizer rounds of the values to (1,2). In such
// a case, setting the flag to "NEAR_MIN" is not right. Because
// we need values higher than "0.9" not "1". We check this
// before we set the flag below.
if (cmp_value <= 0)
new_interval->min_flag = NEAR_MIN;
else
new_interval->min_flag = 0;
/*
If the interval is over a partial keypart, the
interval must be "c_{i-1} <= X < c_i" instead of
"c_{i-1} < X < c_i". Reason:
Consider a table with a column "my_col VARCHAR(3)",
and an index with definition
"INDEX my_idx my_col(1)". If the table contains rows
with my_col values "f" and "foo", the index will not
distinguish the two rows.
Note that tree_or() below will effectively merge
this range with the range created for c_{i-1} and
we'll eventually end up with only one range:
"NULL < X".
Partitioning indexes are never partial.
*/
if (param->using_real_indexes) {
const KEY key = param->table->key_info[param->real_keynr[idx]];
const KEY_PART_INFO *kpi = key.key_part + new_interval->part;
if (kpi->key_part_flag & HA_PART_KEY_SEG)
new_interval->min_flag = 0;
}
}
}
/*
The following doesn't try to allocate memory so no need to
check for NULL.
*/
tree = tree_or(param, remove_jump_scans, tree, tree2);
}
}
if (tree && tree->type != SEL_TREE::IMPOSSIBLE) {
/*
Get the SEL_TREE for the last "c_last < X < +inf" interval
(value_item contains c_last already)
*/
tree2 = get_mm_parts(thd, param, prev_tables, read_tables, op, field,
Item_func::GT_FUNC, value_item);
tree = tree_or(param, remove_jump_scans, tree, tree2);
}
return tree;
} else {
SEL_TREE *tree = get_ne_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, op, field,
op->arguments()[1], op->arguments()[1]);
if (tree) {
Item **arg, **end;
for (arg = op->arguments() + 2, end = arg + op->argument_count() - 2;
arg < end; arg++) {
tree = tree_and(
param, tree,
get_ne_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, op, field, *arg, *arg));
}
}
return tree;
}
return nullptr;
}
// The expression is IN, not negated.
if (predicand->type() == Item::FIELD_ITEM) {
// The expression is (<column>) IN (...)
Field *field = down_cast<Item_field *>(predicand)->field;
SEL_TREE *tree =
get_mm_parts(thd, param, prev_tables, read_tables, op, field,
Item_func::EQ_FUNC, op->arguments()[1]);
if (tree) {
Item **arg, **end;
for (arg = op->arguments() + 2, end = arg + op->argument_count() - 2;
arg < end; arg++) {
tree = tree_or(param, remove_jump_scans, tree,
get_mm_parts(thd, param, prev_tables, read_tables, op,
field, Item_func::EQ_FUNC, *arg));
}
}
return tree;
}
if (predicand->type() == Item::ROW_ITEM) {
/*
The expression is (<column>,...) IN (...)
We iterate over the rows on the rhs of the in predicate,
building an OR tree of ANDs, a.k.a. a DNF expression out of this. E.g:
(col1, col2) IN ((const1, const2), (const3, const4))
becomes
(col1 = const1 AND col2 = const2) OR (col1 = const3 AND col2 = const4)
*/
SEL_TREE *or_tree = &null_sel_tree;
Item_row *row_predicand = down_cast<Item_row *>(predicand);
// Iterate over the rows on the rhs of the in predicate, building an OR.
for (uint i = 1; i < op->argument_count(); ++i) {
/*
We only support row value expressions. Some optimizations rewrite
the Item tree, and we don't handle that.
*/
Item *in_list_item = op->arguments()[i];
if (in_list_item->type() != Item::ROW_ITEM) return nullptr;
Item_row *row = static_cast<Item_row *>(in_list_item);
// Iterate over the columns, building an AND tree.
SEL_TREE *and_tree = nullptr;
for (uint j = 0; j < row_predicand->cols(); ++j) {
Item *item = row_predicand->element_index(j);
// We only support columns in the row on the lhs of the in predicate.
if (item->type() != Item::FIELD_ITEM) return nullptr;
Field *field = static_cast<Item_field *>(item)->field;
Item *value = row->element_index(j);
SEL_TREE *and_expr = get_mm_parts(thd, param, prev_tables, read_tables,
op, field, Item_func::EQ_FUNC, value);
and_tree = tree_and(param, and_tree, and_expr);
/*
Short-circuit evaluation: If and_expr is NULL then no key part in
this disjunct can be used as a search key. Or in other words the
condition is always true. Hence the whole disjunction is always true.
*/
if (and_tree == nullptr) return nullptr;
}
or_tree = tree_or(param, remove_jump_scans, or_tree, and_tree);
}
return or_tree;
}
return nullptr;
}
/**
Factory function to build a SEL_TREE from a JSON_OVERLAPS or JSON_CONTAINS
functions
\verbatim
This function builds SEL_TREE out of JSON_OEVRLAPS() of form:
JSON_OVERLAPS(typed_array_field, "[<val>,...,<val>]")
JSON_OVERLAPS("[<val>,...,<val>]", typed_array_field)
JSON_CONTAINS(typed_array_field, "[<val>,...,<val>]")
where
typed_array_field is a field which has multi-valued index defined on it
<val> each value in the array is coercible to the array's
type
These conditions are pre-checked in substitute_gc().
\endverbatim
@param thd Thread handle
@param param Information on 'just about everything'.
@param prev_tables See test_quick_select()
@param read_tables See test_quick_select()
@param remove_jump_scans See get_mm_tree()
@param predicand the typed array JSON_CONTAIN's argument
@param op The 'JSON_OVERLAPS' operator itself.
@returns
non-NULL constructed SEL_TREE
NULL in case of any error
*/
static SEL_TREE *get_func_mm_tree_from_json_overlaps_contains(
THD *thd, RANGE_OPT_PARAM *param, table_map prev_tables,
table_map read_tables, bool remove_jump_scans, Item *predicand,
Item_func *op) {
if (param->has_errors()) return nullptr;
// The expression is JSON_OVERLAPS(<array_field>,<JSON array/scalar>), or
// The expression is JSON_OVERLAPS(<JSON array/scalar>, <array_field>), or
// The expression is JSON_CONTAINS(<array_field>, <JSON array/scalar>)
if (predicand->type() == Item::FIELD_ITEM && predicand->returns_array()) {
Json_wrapper wr, elt;
String str;
uint values;
if (op->functype() == Item_func::JSON_OVERLAPS) {
// If the predicand is the 1st arg, then the values arg is 2nd.
values = (predicand == op->arguments()[0]) ? 1 : 0;
} else {
assert(op->functype() == Item_func::JSON_CONTAINS);
values = 1;
}
if (get_json_wrapper(op->arguments(), values, &str, op->func_name(), &wr))
return nullptr; /* purecov: inspected */
// Should be pre-checked already
assert(!(op->arguments()[values])->null_value &&
wr.type() != enum_json_type::J_OBJECT &&
wr.type() != enum_json_type::J_ERROR);
if (wr.length() == 0) return nullptr;
Field_typed_array *field = down_cast<Field_typed_array *>(
down_cast<Item_field *>(predicand)->field);
if (wr.type() == enum_json_type::J_ARRAY)
wr.remove_duplicates(
field->type() == MYSQL_TYPE_VARCHAR ? field->charset() : nullptr);
size_t i = 0;
const size_t len = (wr.type() == enum_json_type::J_ARRAY) ? wr.length() : 1;
// Skip leading JSON null values as they can't be indexed and thus doesn't
// exist in index.
while (i < len && wr[i].type() == enum_json_type::J_NULL) ++i;
// No non-null values were found.
if (i == len) return nullptr;
// Fake const table for get_mm_parts, as we're using constants from JSON
// array
const bool save_const = field->table->const_table;
field->table->const_table = true;
field->set_notnull();
// Get the SEL_ARG tree for the first non-null element..
elt = wr[i++];
field->coerce_json_value(&elt, true, nullptr);
SEL_TREE *tree =
get_mm_parts(thd, param, prev_tables, read_tables, op, field,
Item_func::EQ_FUNC, down_cast<Item_field *>(predicand));
// .. and OR with others
if (tree) {
for (; i < len; i++) {
elt = wr[i];
field->coerce_json_value(&elt, true, nullptr);
tree = tree_or(param, remove_jump_scans, tree,
get_mm_parts(thd, param, prev_tables, read_tables, op,
field, Item_func::EQ_FUNC,
down_cast<Item_field *>(predicand)));
if (!tree) // OOM
break;
}
}
field->table->const_table = save_const;
return tree;
}
return nullptr;
}
/**
Build a SEL_TREE for a simple predicate.
@param param RANGE_OPT_PARAM from test_quick_select
@param remove_jump_scans See get_mm_tree()
@param predicand field in the predicate
@param cond_func item for the predicate
@param value constant in the predicate
@param inv true <> NOT cond_func is considered
(makes sense only when cond_func is BETWEEN or IN)
@return Pointer to the built tree.
@todo Remove the appaling hack that 'value' can be a 1 cast to an Item*.
*/
static SEL_TREE *get_func_mm_tree(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables, table_map read_tables,
bool remove_jump_scans, Item *predicand,
Item_func *cond_func, Item *value, bool inv) {
SEL_TREE *tree = nullptr;
DBUG_TRACE;
if (param->has_errors()) return nullptr;
switch (cond_func->functype()) {
case Item_func::XOR_FUNC:
return nullptr; // Always true (don't use range access on XOR).
break; // See WL#5800
case Item_func::NE_FUNC:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = down_cast<Item_field *>(predicand)->field;
tree =
get_ne_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, cond_func, field, value, value);
}
break;
case Item_func::BETWEEN:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = down_cast<Item_field *>(predicand)->field;
if (!value) {
if (inv) {
tree = get_ne_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, cond_func, field,
cond_func->arguments()[1],
cond_func->arguments()[2]);
} else {
tree = get_mm_parts(thd, param, prev_tables, read_tables, cond_func,
field, Item_func::GE_FUNC,
cond_func->arguments()[1]);
if (tree) {
tree = tree_and(param, tree,
get_mm_parts(thd, param, prev_tables, read_tables,
cond_func, field, Item_func::LE_FUNC,
cond_func->arguments()[2]));
}
}
} else
tree = get_mm_parts(
thd, param, prev_tables, read_tables, cond_func, field,
(inv ? (value == reinterpret_cast<Item *>(1) ? Item_func::GT_FUNC
: Item_func::LT_FUNC)
: (value == reinterpret_cast<Item *>(1)
? Item_func::LE_FUNC
: Item_func::GE_FUNC)),
cond_func->arguments()[0]);
}
break;
case Item_func::IN_FUNC: {
Item_func_in *in_pred = down_cast<Item_func_in *>(cond_func);
tree = get_func_mm_tree_from_in_predicate(thd, param, prev_tables,
read_tables, remove_jump_scans,
predicand, in_pred, inv);
} break;
case Item_func::JSON_CONTAINS:
case Item_func::JSON_OVERLAPS: {
tree = get_func_mm_tree_from_json_overlaps_contains(
thd, param, prev_tables, read_tables, remove_jump_scans, predicand,
cond_func);
} break;
case Item_func::MEMBER_OF_FUNC:
if (predicand->type() == Item::FIELD_ITEM && predicand->returns_array()) {
Field_typed_array *field = down_cast<Field_typed_array *>(
down_cast<Item_field *>(predicand)->field);
Item *arg = cond_func->arguments()[0];
Json_wrapper wr;
if (arg->val_json(&wr)) {
break;
}
assert(!arg->null_value && wr.type() != enum_json_type::J_ERROR);
if (wr.type() == enum_json_type::J_NULL) {
break;
}
// Fake const table for get_mm_parts(), as we are using constants from
// JSON array
const bool save_const = field->table->const_table;
field->table->const_table = true;
field->set_notnull();
field->coerce_json_value(&wr, true, nullptr);
tree = get_mm_parts(thd, param, prev_tables, read_tables, cond_func,
field, Item_func::EQ_FUNC, predicand);
field->table->const_table = save_const;
}
break;
default:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = down_cast<Item_field *>(predicand)->field;
/*
Here the function for the following predicates are processed:
<, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL and GIS functions.
If the predicate is of the form (value op field) it is handled
as the equivalent predicate (field rev_op value), e.g.
2 <= a is handled as a >= 2.
*/
Item_func::Functype func_type =
(value != cond_func->arguments()[0])
? cond_func->functype()
: ((Item_bool_func2 *)cond_func)->rev_functype();
tree = get_mm_parts(thd, param, prev_tables, read_tables, cond_func,
field, func_type, value);
}
}
return tree;
}
/*
Build conjunction of all SEL_TREEs for a simple predicate applying equalities
SYNOPSIS
get_full_func_mm_tree()
param RANGE_OPT_PARAM from test_quick_select
prev_tables See test_quick_select()
read_tables See test_quick_select()
remove_jump_scans See get_mm_tree()
predicand column or row constructor in the predicate's left-hand side.
op Item for the predicate operator
value constant in the predicate (or a field already read from
a table in the case of dynamic range access)
For BETWEEN it contains the number of the field argument.
inv If true, the predicate is negated, e.g. NOT IN.
(makes sense only when cond_func is BETWEEN or IN)
DESCRIPTION
For a simple SARGable predicate of the form (f op c), where f is a field and
c is a constant, the function builds a conjunction of all SEL_TREES that can
be obtained by the substitution of f for all different fields equal to f.
NOTES
If the WHERE condition contains a predicate (fi op c),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of fi for
each fj belonging to the same multiple equality as fi
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
in a similar way: we build a conjunction of trees for the results
of all substitutions of fi for equal fj.
Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
differently. It is considered as a conjunction of two SARGable
predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
is called for each of them separately producing trees for
AND j (f1j <=c ) and AND j (f2j <= c)
After this these two trees are united in one conjunctive tree.
It's easy to see that the same tree is obtained for
AND j,k (f1j <=c AND f2k<=c)
which is equivalent to
AND j,k (c BETWEEN f1j AND f2k).
The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
trees are united in one OR-tree. The expression
(AND j (f1j > c) OR AND j (f2j < c)
is equivalent to the expression
AND j,k (f1j > c OR f2k < c)
which is just a translation of
AND j,k (c NOT BETWEEN f1j AND f2k)
In the cases when one of the items f1, f2 is a constant c1 we do not create
a tree for it at all. It works for BETWEEN predicates but does not
work for NOT BETWEEN predicates as we have to evaluate the expression
with it. If it is true then the other tree can be completely ignored.
We do not do it now and no trees are built in these cases for
NOT BETWEEN predicates.
As to IN predicates only ones of the form (f IN (c1,...,cn)),
where f1 is a field and c1,...,cn are constant, are considered as
SARGable. We never try to narrow the index scan using predicates of
the form (c IN (c1,...,f,...,cn)).
RETURN
Pointer to the tree representing the built conjunction of SEL_TREEs
*/
static SEL_TREE *get_full_func_mm_tree(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables,
table_map read_tables,
table_map current_table,
bool remove_jump_scans, Item *predicand,
Item_func *op, Item *value, bool inv) {
SEL_TREE *tree = nullptr;
SEL_TREE *ftree = nullptr;
const table_map param_comp = ~(prev_tables | read_tables | current_table);
DBUG_TRACE;
if (param->has_errors()) return nullptr;
/*
Here we compute a set of tables that we consider as constants
suppliers during execution of the SEL_TREE that we produce below.
*/
table_map ref_tables = 0;
for (uint i = 0; i < op->arg_count; i++) {
Item *arg = op->arguments()[i]->real_item();
if (arg != predicand) ref_tables |= arg->used_tables();
}
if (predicand->type() == Item::FIELD_ITEM) {
Item_field *item_field = static_cast<Item_field *>(predicand);
Field *field = item_field->field;
if (!((ref_tables | item_field->table_ref->map()) & param_comp))
ftree = get_func_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, predicand, op, value, inv);
Item_equal *item_equal = item_field->item_equal;
if (item_equal != nullptr) {
for (Item_field &item : item_equal->get_fields()) {
Field *f = item.field;
if (!field->eq(f) &&
!((ref_tables | item.table_ref->map()) & param_comp)) {
tree = get_func_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, &item, op, value, inv);
ftree = !ftree ? tree : tree_and(param, ftree, tree);
}
}
}
} else if (predicand->type() == Item::ROW_ITEM) {
ftree = get_func_mm_tree(thd, param, prev_tables, read_tables,
remove_jump_scans, predicand, op, value, inv);
return ftree;
}
return ftree;
}
/**
The Range Analysis Module, which finds range access alternatives
applicable to single or multi-index (UNION) access. The function
does not calculate or care about the cost of the different
alternatives.
get_mm_tree() employs a relaxed boolean algebra where the solution
may be bigger than what the rules of boolean algebra accept. In
other words, get_mm_tree() may return range access plans that will
read more rows than the input conditions dictate. In it's simplest
form, consider a condition on two fields indexed by two different
indexes:
"WHERE fld1 > 'x' AND fld2 > 'y'"
In this case, there are two single-index range access alternatives.
No matter which access path is chosen, rows that are not in the
result set may be read.
In the case above, get_mm_tree() will create range access
alternatives for both indexes, so boolean algebra is still correct.
In other cases, however, the conditions are too complex to be used
without relaxing the rules. This typically happens when ORing a
conjunction to a multi-index disjunctions (@see e.g.
imerge_list_or_tree()). When this happens, the range optimizer may
choose to ignore conjunctions (any condition connected with AND). The
effect of this is that the result includes a "bigger" solution than
necessary. This is OK since all conditions will be used as filters
after row retrieval.
@see SEL_TREE::keys and SEL_TREE::merges for details of how single
and multi-index range access alternatives are stored.
remove_jump_scans: Aggressively remove "scans" that do not have
conditions on first keyparts. Such scans are usable when doing partition
pruning but not regular range optimization.
A return value of nullptr from get_mm_tree() means that this condition
could not be represented by a range. Normally, this means that the best
thing to do is to keep that condition entirely out of the range optimization,
since ANDing it with other conditions (in tree_and()) would make the entire
tree inexact and no predicates subsumable (see SEL_TREE::inexact). However,
the old join optimizer does not care, and always just gives in the entire
condition (with different parts ANDed together) in one go, since it never
subsumes anything anyway.
*/
SEL_TREE *get_mm_tree(THD *thd, RANGE_OPT_PARAM *param, table_map prev_tables,
table_map read_tables, table_map current_table,
bool remove_jump_scans, Item *cond) {
SEL_TREE *ftree = nullptr;
bool inv = false;
DBUG_TRACE;
if (param->has_errors()) return nullptr;
if (cond->type() == Item::COND_ITEM) {
Item_func::Functype functype = down_cast<Item_cond *>(cond)->functype();
SEL_TREE *tree = nullptr;
bool first = true;
for (Item &item : *down_cast<Item_cond *>(cond)->argument_list()) {
SEL_TREE *new_tree = get_mm_tree(thd, param, prev_tables, read_tables,
current_table, remove_jump_scans, &item);
if (param->has_errors()) return nullptr;
if (first) {
tree = new_tree;
first = false;
continue;
}
if (functype == Item_func::COND_AND_FUNC) {
tree = tree_and(param, tree, new_tree);
dbug_print_tree("after_and", tree, param);
if (tree && tree->type == SEL_TREE::IMPOSSIBLE) break;
} else { // OR.
tree = tree_or(param, remove_jump_scans, tree, new_tree);
dbug_print_tree("after_or", tree, param);
if (tree == nullptr || tree->type == SEL_TREE::ALWAYS) break;
}
}
dbug_print_tree("tree_returned", tree, param);
return tree;
}
if (cond->const_item() && !cond->is_expensive()) {
const SEL_TREE::Type type =
cond->val_int() ? SEL_TREE::ALWAYS : SEL_TREE::IMPOSSIBLE;
SEL_TREE *tree = new (param->temp_mem_root)
SEL_TREE(type, param->temp_mem_root, param->keys);
if (param->has_errors()) return nullptr;
dbug_print_tree("tree_returned", tree, param);
return tree;
}
// This used to be a guard against predicates like “WHERE x;”. But these are
// now always rewritten to “x <> 0”, so it does not trigger there.
// However, it is still relevant for subselects.
if (cond->type() != Item::FUNC_ITEM) {
return nullptr;
}
Item_func *cond_func = (Item_func *)cond;
if (cond_func->functype() == Item_func::BETWEEN ||
cond_func->functype() == Item_func::IN_FUNC)
inv = ((Item_func_opt_neg *)cond_func)->negated;
else {
Item_func::optimize_type opt_type = cond_func->select_optimize(thd);
if (opt_type == Item_func::OPTIMIZE_NONE) return nullptr;
}
/*
Notice that all fields that are outer references are const during
the execution and should not be considered for range analysis like
fields coming from the local query block are.
*/
switch (cond_func->functype()) {
case Item_func::BETWEEN: {
Item *const arg_left = cond_func->arguments()[0];
if (!arg_left->is_outer_reference() &&
arg_left->real_item()->type() == Item::FIELD_ITEM) {
Item_field *field_item = down_cast<Item_field *>(arg_left->real_item());
ftree = get_full_func_mm_tree(thd, param, prev_tables, read_tables,
current_table, remove_jump_scans,
field_item, cond_func, nullptr, inv);
}
/*
Concerning the code below see the NOTES section in
the comments for the function get_full_func_mm_tree()
*/
SEL_TREE *tree = nullptr;
for (uint i = 1; i < cond_func->arg_count; i++) {
Item *const arg = cond_func->arguments()[i];
if (!arg->is_outer_reference() &&
arg->real_item()->type() == Item::FIELD_ITEM) {
Item_field *field_item = down_cast<Item_field *>(arg->real_item());
SEL_TREE *tmp = get_full_func_mm_tree(
thd, param, prev_tables, read_tables, current_table,
remove_jump_scans, field_item, cond_func,
reinterpret_cast<Item *>(i), inv);
if (inv) {
tree = !tree ? tmp : tree_or(param, remove_jump_scans, tree, tmp);
if (tree == nullptr) break;
} else
tree = tree_and(param, tree, tmp);
} else if (inv) {
tree = nullptr;
break;
}
}
ftree = tree_and(param, ftree, tree);
break;
} // end case Item_func::BETWEEN
case Item_func::JSON_CONTAINS:
case Item_func::JSON_OVERLAPS:
case Item_func::MEMBER_OF_FUNC:
case Item_func::IN_FUNC: {
Item *predicand = cond_func->key_item();
if (!predicand) return nullptr;
predicand = predicand->real_item();
if (predicand->type() != Item::FIELD_ITEM &&
predicand->type() != Item::ROW_ITEM)
return nullptr;
ftree = get_full_func_mm_tree(thd, param, prev_tables, read_tables,
current_table, remove_jump_scans, predicand,
cond_func, nullptr, inv);
break;
} // end case Item_func::IN_FUNC
case Item_func::MULT_EQUAL_FUNC: {
Item_equal *item_equal = down_cast<Item_equal *>(cond);
Item *value = item_equal->const_arg();
if (value == nullptr) return nullptr;
table_map ref_tables = value->used_tables();
for (Item_field &field_item : item_equal->get_fields()) {
Field *field = field_item.field;
table_map param_comp = ~(prev_tables | read_tables | current_table);
if (!((ref_tables | field_item.table_ref->map()) & param_comp)) {
SEL_TREE *tree =
get_mm_parts(thd, param, prev_tables, read_tables, item_equal,
field, Item_func::EQ_FUNC, value);
ftree = !ftree ? tree : tree_and(param, ftree, tree);
}
}
dbug_print_tree("tree_returned", ftree, param);
return ftree;
} // end case Item_func::MULT_EQUAL_FUNC
default: {
Item *const arg_left = cond_func->arguments()[0];
assert(!ftree);
if (!arg_left->is_outer_reference() &&
arg_left->real_item()->type() == Item::FIELD_ITEM) {
Item_field *field_item = down_cast<Item_field *>(arg_left->real_item());
Item *value =
cond_func->arg_count > 1 ? cond_func->arguments()[1] : nullptr;
ftree = get_full_func_mm_tree(thd, param, prev_tables, read_tables,
current_table, remove_jump_scans,
field_item, cond_func, value, inv);
}
/*
Even if get_full_func_mm_tree() was executed above and did not
return a range predicate it may still be possible to create one
by reversing the order of the operands. Note that this only
applies to predicates where both operands are fields. Example: A
query of the form
WHERE t1.a OP t2.b
In this case, arguments()[0] == t1.a and arguments()[1] == t2.b.
When creating range predicates for t2, get_full_func_mm_tree()
above will return NULL because 'field' belongs to t1 and only
predicates that applies to t2 are of interest. In this case a
call to get_full_func_mm_tree() with reversed operands (see
below) may succeed.
*/
Item *arg_right;
if (!ftree && cond_func->have_rev_func() &&
(arg_right = cond_func->arguments()[1]) &&
!arg_right->is_outer_reference() &&
arg_right->real_item()->type() == Item::FIELD_ITEM) {
Item_field *field_item =
down_cast<Item_field *>(arg_right->real_item());
Item *value = arg_left;
ftree = get_full_func_mm_tree(thd, param, prev_tables, read_tables,
current_table, remove_jump_scans,
field_item, cond_func, value, inv);
}
} // end case default
} // end switch
dbug_print_tree("tree_returned", ftree, param);
return ftree;
}
/**
Test whether a comparison operator is a spatial comparison
operator, i.e. Item_func::SP_*.
Used to check if range access using operator 'op_type' is applicable
for a non-spatial index.
@param op_type The comparison operator.
@return true if 'op_type' is a spatial comparison operator, false otherwise.
*/
static bool is_spatial_operator(Item_func::Functype op_type) {
switch (op_type) {
case Item_func::SP_EQUALS_FUNC:
case Item_func::SP_DISJOINT_FUNC:
case Item_func::SP_INTERSECTS_FUNC:
case Item_func::SP_TOUCHES_FUNC:
case Item_func::SP_CROSSES_FUNC:
case Item_func::SP_WITHIN_FUNC:
case Item_func::SP_CONTAINS_FUNC:
case Item_func::SP_COVEREDBY_FUNC:
case Item_func::SP_COVERS_FUNC:
case Item_func::SP_OVERLAPS_FUNC:
case Item_func::SP_STARTPOINT:
case Item_func::SP_ENDPOINT:
case Item_func::SP_EXTERIORRING:
case Item_func::SP_POINTN:
case Item_func::SP_GEOMETRYN:
case Item_func::SP_INTERIORRINGN:
return true;
default:
return false;
}
}
static SEL_TREE *get_mm_parts(THD *thd, RANGE_OPT_PARAM *param,
table_map prev_tables, table_map read_tables,
Item_func *cond_func, Field *field,
Item_func::Functype type, Item *value) {
DBUG_TRACE;
if (param->has_errors()) return nullptr;
if (field->table != param->table) return nullptr;
KEY_PART *key_part = param->key_parts;
KEY_PART *end = param->key_parts_end;
SEL_TREE *tree = nullptr;
if (value && value->used_tables() & ~(prev_tables | read_tables))
return nullptr;
for (; key_part != end; key_part++) {
if (field->eq(key_part->field)) {
/*
Cannot do range access for spatial operators when a
non-spatial index is used.
*/
if (key_part->image_type != Field::itMBR &&
is_spatial_operator(cond_func->functype()))
continue;
SEL_ROOT *sel_root = nullptr;
if (!tree && !(tree = new (param->temp_mem_root)
SEL_TREE(param->temp_mem_root, param->keys)))
return nullptr; // OOM
if (!value || !(value->used_tables() & ~read_tables)) {
sel_root = get_mm_leaf(thd, param, cond_func, key_part->field, key_part,
type, value, &tree->inexact);
if (!sel_root) continue;
if (sel_root->type == SEL_ROOT::Type::IMPOSSIBLE) {
tree->type = SEL_TREE::IMPOSSIBLE;
return tree;
}
} else {
/*
The index may not be used by dynamic range access unless
'field' and 'value' are comparable.
*/
if (!comparable_in_index(cond_func, key_part->field,
key_part->image_type, type, value)) {
warn_index_not_applicable(thd, param, key_part->key, field);
return nullptr;
}
if (!(sel_root = new (param->temp_mem_root)
SEL_ROOT(param->temp_mem_root, SEL_ROOT::Type::MAYBE_KEY)))
return nullptr; // OOM
}
sel_root->root->part = (uchar)key_part->part;
tree->set_key(key_part->key,
sel_add(tree->release_key(key_part->key), sel_root));
tree->keys_map.set_bit(key_part->key);
}
}
if (tree && tree->merges.is_empty() && tree->keys_map.is_clear_all())
tree = nullptr;
return tree;
}
/**
Saves 'value' in 'field' and handles potential type conversion
problems.
@param [out] tree The SEL_ROOT leaf under construction. If
an always false predicate is found it is
modified to point to a SEL_ROOT with
type == SEL_ROOT::Type::IMPOSSIBLE.
@param value The Item that contains a value that shall
be stored in 'field'.
@param comp_op Comparison operator: >, >=, <=> etc.
@param field The field that 'value' is stored into.
@param [out] impossible_cond_cause Set to a descriptive string if an
impossible condition is found.
@param memroot Memroot for creation of new SEL_ARG.
@param query_block Query block the field is part of
@param inexact Set to true on lossy conversion
@retval false if saving went fine and it makes sense to continue
optimizing for this predicate.
@retval true if always true/false predicate was found, in which
case 'tree' has been modified to reflect this: NULL
pointer if always true, SEL_ARG with type IMPOSSIBLE
if always false.
*/
static bool save_value_and_handle_conversion(
SEL_ROOT **tree, Item *value, const Item_func::Functype comp_op,
Field *field, const char **impossible_cond_cause, MEM_ROOT *memroot,
Query_block *query_block, bool *inexact) {
// A SEL_ARG should not have been created for this predicate yet.
assert(*tree == nullptr);
THD *const thd = current_thd;
if (!(value->const_item() || thd->lex->is_query_tables_locked())) {
/*
We cannot evaluate the value yet (i.e. required tables are not yet
locked.)
This is the case of prune_partitions() called during
Query_block::prepare().
*/
return true;
}
/*
Don't evaluate subqueries during optimization if they are disabled. This
function can be called during execution when doing dynamic range access, and
we only want to disable subquery evaluation during optimization, so check if
we're in the optimization phase by calling Query_expression::is_optimized().
*/
if (!query_block->master_query_expression()->is_optimized() &&
!evaluate_during_optimization(value, query_block))
return true;
// For comparison purposes allow invalid dates like 2000-01-32
const sql_mode_t orig_sql_mode = thd->variables.sql_mode;
thd->variables.sql_mode |= MODE_INVALID_DATES;
/*
We want to change "field > value" to "field OP V"
where:
* V is what is in "field" after we stored "value" in it via
save_in_field_no_warning() (such store operation may have done
rounding...)
* OP is > or >=, depending on what's correct.
For example, if c is an INT column,
"c > 2.9" is changed to "c OP 3"
where OP is ">=" (">" would not be correct, as 3 > 2.9, a comparison
done with stored_field_cmp_to_item()). And
"c > 3.1" is changed to "c OP 3" where OP is ">" (3 < 3.1...).
*/
// Note that value may be a stored function call, executed here.
const type_conversion_status err =
value->save_in_field_no_warnings(field, true);
thd->variables.sql_mode = orig_sql_mode;
switch (err) {
case TYPE_NOTE_TRUNCATED:
case TYPE_WARN_TRUNCATED:
*inexact = true;
[[fallthrough]];
case TYPE_OK:
return false;
case TYPE_WARN_INVALID_STRING:
/*
An invalid string does not produce any rows when used with
equality operator.
*/
if (comp_op == Item_func::EQUAL_FUNC || comp_op == Item_func::EQ_FUNC) {
*impossible_cond_cause = "invalid_characters_in_string";
goto impossible_cond;
}
/*
For other operations on invalid strings, we assume that the range
predicate is always true and let evaluate_join_record() decide
the outcome.
*/
*inexact = true;
return true;
case TYPE_ERR_BAD_VALUE:
/*
In the case of incompatible values, MySQL's SQL dialect has some
strange interpretations. For example,
"int_col > 'foo'" is interpreted as "int_col > 0"
instead of always false. Because of this, we assume that the
range predicate is always true instead of always false and let
evaluate_join_record() decide the outcome.
*/
*inexact = true;
return true;
case TYPE_ERR_NULL_CONSTRAINT_VIOLATION:
// Checking NULL value on a field that cannot contain NULL.
*impossible_cond_cause = "null_field_in_non_null_column";
goto impossible_cond;
case TYPE_WARN_OUT_OF_RANGE:
/*
value to store was either higher than field::max_value or lower
than field::min_value. The field's max/min value has been stored
instead.
*/
if (comp_op == Item_func::EQUAL_FUNC || comp_op == Item_func::EQ_FUNC) {
/*
Independent of data type, "out_of_range_value =/<=> field" is
always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
// If the field is numeric, we can interpret the out of range value.
if ((field->type() != FIELD_TYPE_BIT) &&
(field->result_type() == REAL_RESULT ||
field->result_type() == INT_RESULT ||
field->result_type() == DECIMAL_RESULT)) {
/*
value to store was higher than field::max_value if
a) field has a value greater than 0, or
b) if field is unsigned and has a negative value (which, when
cast to unsigned, means some value higher than LLONG_MAX).
*/
if ((field->val_int() > 0) || // a)
(field->is_unsigned() && field->val_int() < 0)) // b)
{
if (comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC) {
/*
'<' or '<=' compared to a value higher than the field
can store is always true.
*/
return true;
}
if (comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC) {
/*
'>' or '>=' compared to a value higher than the field can
store is always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
} else // value is lower than field::min_value
{
if (comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC) {
/*
'>' or '>=' compared to a value lower than the field
can store is always true.
*/
return true;
}
if (comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC) {
/*
'<' or '=' compared to a value lower than the field can
store is always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
}
}
/*
Value is out of range on a datatype where it can't be decided if
it was underflow or overflow. It is therefore not possible to
determine whether or not the condition is impossible or always
true and we have to assume always true.
*/
return true;
case TYPE_NOTE_TIME_TRUNCATED:
if (field->type() == FIELD_TYPE_DATE &&
(comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC ||
comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC)) {
/*
We were saving DATETIME into a DATE column, the conversion went ok
but a non-zero time part was cut off.
In MySQL's SQL dialect, DATE and DATETIME are compared as datetime
values. Index over a DATE column uses DATE comparison. Changing
from one comparison to the other is possible:
datetime(date_col)< '2007-12-10 12:34:55' -> date_col<='2007-12-10'
datetime(date_col)<='2007-12-10 12:34:55' -> date_col<='2007-12-10'
datetime(date_col)> '2007-12-10 12:34:55' -> date_col>='2007-12-10'
datetime(date_col)>='2007-12-10 12:34:55' -> date_col>='2007-12-10'
but we'll need to convert '>' to '>=' and '<' to '<='. This will
be done together with other types at the end of get_mm_leaf()
(grep for stored_field_cmp_to_item)
*/
return false;
}
if (comp_op == Item_func::EQ_FUNC || comp_op == Item_func::EQUAL_FUNC) {
// Equality comparison is always false when time info has been
// truncated.
goto impossible_cond;
}
return true;
case TYPE_ERR_OOM:
return true;
/*
No default here to avoid adding new conversion status codes that are
unhandled in this function.
*/
}
assert(false); // Should never get here.
impossible_cond:
*tree = new (memroot) SEL_ROOT(memroot, SEL_ROOT::Type::IMPOSSIBLE);
return true;
}
static SEL_ROOT *get_mm_leaf(THD *thd, RANGE_OPT_PARAM *param, Item *cond_func,
Field *field, KEY_PART *key_part,
Item_func::Functype type, Item *value,
bool *inexact) {
const size_t null_bytes = field->is_nullable() ? 1 : 0;
bool optimize_range;
SEL_ROOT *tree = nullptr;
MEM_ROOT *const alloc = param->temp_mem_root;
uchar *str;
const char *impossible_cond_cause = nullptr;
DBUG_TRACE;
if (param->has_errors()) goto end;
if (!value) // IS NULL or IS NOT NULL
{
if (field->table->pos_in_table_list->outer_join)
/*
Range scan cannot be used to scan the inner table of an outer
join if the predicate is IS NULL.
*/
goto end;
if (!field->is_nullable()) // NOT NULL column
{
if (type == Item_func::ISNULL_FUNC)
tree = new (alloc) SEL_ROOT(alloc, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
uchar *null_string =
static_cast<uchar *>(alloc->Alloc(key_part->store_length + 1));
if (!null_string) goto end; // out of memory
TRASH(null_string, key_part->store_length + 1);
memcpy(null_string, is_null_string, sizeof(is_null_string));
SEL_ARG *root;
if (!(root = new (alloc) SEL_ARG(field, null_string, null_string,
!(key_part->flag & HA_REVERSE_SORT))))
goto end; // out of memory
if (!(tree = new (alloc) SEL_ROOT(root))) goto end; // out of memory
if (type == Item_func::ISNOTNULL_FUNC) {
root->min_flag = NEAR_MIN; /* IS NOT NULL -> X > NULL */
root->max_flag = NO_MAX_RANGE;
}
goto end;
}
/*
The range access method cannot be used unless 'field' and 'value'
are comparable in the index. Examples of non-comparable
field/values: different collation, DATETIME vs TIME etc.
*/
if (!comparable_in_index(cond_func, field, key_part->image_type, type,
value)) {
warn_index_not_applicable(thd, param, key_part->key, field);
goto end;
}
if (key_part->image_type == Field::itMBR) {
// @todo: use is_spatial_operator() instead?
switch (type) {
case Item_func::SP_EQUALS_FUNC:
case Item_func::SP_DISJOINT_FUNC:
case Item_func::SP_INTERSECTS_FUNC:
case Item_func::SP_TOUCHES_FUNC:
case Item_func::SP_CROSSES_FUNC:
case Item_func::SP_WITHIN_FUNC:
case Item_func::SP_CONTAINS_FUNC:
case Item_func::SP_OVERLAPS_FUNC:
break;
default:
/*
We cannot involve spatial indexes for queries that
don't use MBREQUALS(), MBRDISJOINT(), etc. functions.
*/
goto end;
}
}
if (param->using_real_indexes)
optimize_range =
field->optimize_range(param->real_keynr[key_part->key], key_part->part);
else
optimize_range = true;
if (type == Item_func::LIKE_FUNC) {
bool like_error;
char buff1[MAX_FIELD_WIDTH];
uchar *min_str, *max_str;
String tmp(buff1, sizeof(buff1), value->collation.collation), *res;
size_t length, offset, min_length, max_length;
size_t field_length = field->pack_length() + null_bytes;
if (!optimize_range) goto end;
if (!(res = value->val_str(&tmp))) {
tree = new (alloc) SEL_ROOT(alloc, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
/*
TODO:
Check if this was a function. This should have be optimized away
in the sql_select.cc
*/
if (res != &tmp) {
tmp.copy(*res); // Get own copy
res = &tmp;
}
if (field->cmp_type() != STRING_RESULT)
goto end; // Can only optimize strings
offset = null_bytes;
length = key_part->store_length;
if (length != key_part->length + null_bytes) {
/* key packed with length prefix */
offset += HA_KEY_BLOB_LENGTH;
field_length = length - HA_KEY_BLOB_LENGTH;
} else {
if (unlikely(length < field_length)) {
/*
This can only happen in a table created with UNIREG where one key
overlaps many fields
*/
length = field_length;
} else
field_length = length;
}
length += offset;
if (!(min_str = (uchar *)alloc->Alloc(length * 2))) goto end;
max_str = min_str + length;
if (field->is_nullable()) max_str[0] = min_str[0] = 0;
Item_func_like *like_func = down_cast<Item_func_like *>(cond_func);
// We can only optimize with LIKE if the escape string is known.
if (!like_func->escape_is_evaluated()) goto end;
field_length -= null_bytes;
like_error = my_like_range(
field->charset(), res->ptr(), res->length(), like_func->escape(),
wild_one, wild_many, field_length, (char *)min_str + offset,
(char *)max_str + offset, &min_length, &max_length);
if (like_error) // Can't optimize with LIKE
goto end;
// LIKE is tricky to get 100% exact, especially with Unicode collations
// (which can have contractions etc.), and will frequently be a bit too
// broad. To be safe, we currently always set that LIKE range scans are
// inexact and must be rechecked by means of a filter afterwards.
*inexact = true;
if (offset != null_bytes) // BLOB or VARCHAR
{
int2store(min_str + null_bytes, static_cast<uint16>(min_length));
int2store(max_str + null_bytes, static_cast<uint16>(max_length));
}
SEL_ARG *root = new (alloc)
SEL_ARG(field, min_str, max_str, !(key_part->flag & HA_REVERSE_SORT));
if (!root || !(tree = new (alloc) SEL_ROOT(root)))
goto end; // out of memory
goto end;
}
if (!optimize_range && type != Item_func::EQ_FUNC &&
type != Item_func::EQUAL_FUNC)
goto end; // Can't optimize this
/*
Geometry operations may mix geometry types, e.g., we may be
checking ST_Contains(<polygon field>, <point>). In such cases,
field->geom_type will be a different type than the value we're
trying to store in it, and the conversion will fail. Therefore,
set the most general geometry type while saving, and revert to the
original geometry type afterwards.
*/
{
const Field::geometry_type save_geom_type =
(field->type() == MYSQL_TYPE_GEOMETRY) ? field->get_geometry_type()
: Field::GEOM_GEOMETRY;
if (field->type() == MYSQL_TYPE_GEOMETRY) {
down_cast<Field_geom *>(field)->geom_type = Field::GEOM_GEOMETRY;
// R-tree queries are based on bounds, and must be rechecked.
*inexact = true;
}
bool always_true_or_false = save_value_and_handle_conversion(
&tree, value, type, field, &impossible_cond_cause, alloc,
param->query_block, inexact);
if (field->type() == MYSQL_TYPE_GEOMETRY &&
save_geom_type != Field::GEOM_GEOMETRY) {
down_cast<Field_geom *>(field)->geom_type = save_geom_type;
}
if (always_true_or_false) goto end;
}
/*
Any sargable predicate except "<=>" involving NULL as a constant is always
false
*/
if (type != Item_func::EQUAL_FUNC && field->is_real_null()) {
impossible_cond_cause = "comparison_with_null_always_false";
tree = new (alloc) SEL_ROOT(alloc, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
str = (uchar *)alloc->Alloc(key_part->store_length + 1);
if (!str) goto end;
if (field->is_nullable())
*str = (uchar)field->is_real_null(); // Set to 1 if null
field->get_key_image(str + null_bytes, key_part->length,
key_part->image_type);
SEL_ARG *root;
root =
new (alloc) SEL_ARG(field, str, str, !(key_part->flag & HA_REVERSE_SORT));
if (!root || !(tree = new (alloc) SEL_ROOT(root))) goto end; // out of memory
/*
Check if we are comparing an UNSIGNED integer with a negative constant.
In this case we know that:
(a) (unsigned_int [< | <=] negative_constant) == false
(b) (unsigned_int [> | >=] negative_constant) == true
In case (a) the condition is false for all values, and in case (b) it
is true for all values, so we can avoid unnecessary retrieval and condition
testing, and we also get correct comparison of unsigned integers with
negative integers (which otherwise fails because at query execution time
negative integers are cast to unsigned if compared with unsigned).
*/
if (field->result_type() == INT_RESULT &&
value->result_type() == INT_RESULT &&
((field->type() == FIELD_TYPE_BIT || field->is_unsigned()) &&
!(value)->unsigned_flag)) {
longlong item_val = value->val_int();
if (item_val < 0) {
if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC) {
impossible_cond_cause = "unsigned_int_cannot_be_negative";
tree->type = SEL_ROOT::Type::IMPOSSIBLE;
goto end;
}
if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC) {
tree = nullptr;
goto end;
}
}
}
switch (type) {
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
/* Don't use open ranges for partial key_segments */
if (!(key_part->flag & HA_PART_KEY_SEG)) {
/*
Set NEAR_MAX to read values lesser than the stored value.
*/
const int cmp_value = stored_field_cmp_to_item(thd, field, value);
if ((type == Item_func::LT_FUNC && cmp_value >= 0) ||
(type == Item_func::LE_FUNC && cmp_value > 0))
tree->root->max_flag = NEAR_MAX;
}
if (!field->is_nullable())
tree->root->min_flag = NO_MIN_RANGE; /* From start */
else { // > NULL
if (!(tree->root->min_value = static_cast<uchar *>(
alloc->Alloc(key_part->store_length + 1))))
goto end;
TRASH(tree->root->min_value, key_part->store_length + 1);
memcpy(tree->root->min_value, is_null_string, sizeof(is_null_string));
tree->root->min_flag = NEAR_MIN;
}
break;
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
/* Don't use open ranges for partial key_segments */
if (!(key_part->flag & HA_PART_KEY_SEG)) {
/*
Set NEAR_MIN to read values greater than the stored value.
*/
const int cmp_value = stored_field_cmp_to_item(thd, field, value);
if ((type == Item_func::GT_FUNC && cmp_value <= 0) ||
(type == Item_func::GE_FUNC && cmp_value < 0))
tree->root->min_flag = NEAR_MIN;
}
tree->root->max_flag = NO_MAX_RANGE;
break;
case Item_func::SP_EQUALS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_EQUAL);
break;
case Item_func::SP_DISJOINT_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_DISJOINT);
break;
case Item_func::SP_INTERSECTS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_TOUCHES_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_CROSSES_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_WITHIN_FUNC:
/*
Adjust the rkey_func_flag as it's assumed and observed that both
MyISAM and Innodb implement this function in reverse order.
*/
tree->root->set_gis_index_read_function(HA_READ_MBR_CONTAIN);
break;
case Item_func::SP_CONTAINS_FUNC:
/*
Adjust the rkey_func_flag as it's assumed and observed that both
MyISAM and Innodb implement this function in reverse order.
*/
tree->root->set_gis_index_read_function(HA_READ_MBR_WITHIN);
break;
case Item_func::SP_OVERLAPS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
default:
break;
}
end:
if (impossible_cond_cause != nullptr) {
Opt_trace_object wrapper(&thd->opt_trace);
Opt_trace_object(&thd->opt_trace, "impossible_condition",
Opt_trace_context::RANGE_OPTIMIZER)
.add_alnum("cause", impossible_cond_cause);
}
return tree;
}
/**
Add a new key test to a key when scanning through all keys
This will never be called for same key parts.
@param key1 Old root of key
@param key2 Element to insert (must be a single element)
@return New root of key
*/
static SEL_ROOT *sel_add(SEL_ROOT *key1, SEL_ROOT *key2) {
if (!key1) return key2;
if (!key2) return key1;
// key2 is assumed to be a single element.
assert(!key2->root->next_key_part);
if (key2->root->part < key1->root->part) {
// key2 fits in the start of the list.
key2->root->set_next_key_part(key1);
return key2;
}
// Find out where in the chain in key1 to put key2.
SEL_ARG *node = key1->root;
while (node->next_key_part &&
node->next_key_part->root->part > key2->root->part)
node = node->next_key_part->root;
key2->root->set_next_key_part(node->release_next_key_part());
node->set_next_key_part(key2);
return key1;
}
|