1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
TODO:
Fix that MAYBE_KEY are stored in the tree so that we can detect use
of full hash keys for queries like:
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and
kws.keyword_id in (204,205);
*/
/*
This file contains:
Range/index_merge/groupby-minmax optimizer module
A module that accepts a table, condition, and returns
- an AccessPath that can give a RowIterator, that can be used to retrieve
rows that match the specified condition, or
- a "no records will match the condition" statement.
The module entry point is
test_quick_select()
KeyTupleFormat
~~~~~~~~~~~~~~
The code in this file (and elsewhere) makes operations on key value tuples.
Those tuples are stored in the following format:
The tuple is a sequence of key part values. The length of key part value
depends only on its type (and not depends on the what value is stored)
KeyTuple: keypart1-data, keypart2-data, ...
The value of each keypart is stored in the following format:
keypart_data: [isnull_byte] keypart-value-bytes
If a keypart may have a NULL value (key_part->field->is_nullable() can
be used to check this), then the first byte is a NULL indicator with the
following valid values:
1 - keypart has NULL value.
0 - keypart has non-NULL value.
<questionable-statement> If isnull_byte==1 (NULL value), then the following
keypart->length bytes must be 0.
</questionable-statement>
keypart-value-bytes holds the value. Its format depends on the field type.
The length of keypart-value-bytes may or may not depend on the value being
stored. The default is that length is static and equal to
KEY_PART_INFO::length.
Key parts with (key_part_flag & HA_BLOB_PART) have length depending of the
value:
keypart-value-bytes: value_length value_bytes
The value_length part itself occupies HA_KEY_BLOB_LENGTH=2 bytes.
See key_copy() and key_restore() for code to move data between index tuple
and table record
CAUTION: the above description is only sergefp's understanding of the
subject and may omit some details.
*/
#include "sql/range_optimizer/range_optimizer.h"
#include <float.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <set>
#include "field_types.h" // enum_field_types
#include "m_ctype.h"
#include "m_string.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_sqlcommand.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "scope_guard.h"
#include "sql/check_stack.h"
#include "sql/current_thd.h"
#include "sql/field_common_properties.h"
#include "sql/item.h"
#include "sql/item_func.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/key.h" // is_key_used
#include "sql/mem_root_array.h"
#include "sql/mysqld.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_hints.h" // hint_key_state
#include "sql/opt_trace.h" // Opt_trace_array
#include "sql/opt_trace_context.h"
#include "sql/psi_memory_key.h"
#include "sql/range_optimizer/group_index_skip_scan_plan.h"
#include "sql/range_optimizer/index_merge_plan.h"
#include "sql/range_optimizer/index_range_scan_plan.h"
#include "sql/range_optimizer/index_skip_scan_plan.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_analysis.h"
#include "sql/range_optimizer/range_opt_param.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/rowid_ordered_retrieval_plan.h"
#include "sql/range_optimizer/tree.h"
#include "sql/sql_class.h" // THD
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h" // JOIN
#include "sql/sql_select.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/thr_malloc.h"
#include "sql/uniques.h" // Unique
using std::min;
static AccessPath *get_best_disjunct_quick(
THD *thd, RANGE_OPT_PARAM *param, TABLE *table,
bool index_merge_union_allowed, bool index_merge_sort_union_allowed,
bool index_merge_intersect_allowed, bool skip_records_in_range,
const MY_BITMAP *needed_fields, SEL_IMERGE *imerge, const double cost_est,
Key_map *needed_reg);
#ifndef NDEBUG
static void print_quick(AccessPath *path, const Key_map *needed_reg);
#endif
namespace opt_range {
SEL_ARG *null_element = nullptr;
}
using namespace opt_range;
void range_optimizer_init() {
null_element = new SEL_ARG;
null_element->color =
SEL_ARG::BLACK; // Don't trip up the test in test_rb_tree.
}
void range_optimizer_free() { delete null_element; }
/*
Add SEL_TREE to this index_merge without any checks,
NOTES
This function implements the following:
(x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs
RETURN
true on OOM.
*/
bool SEL_IMERGE::or_sel_tree(SEL_TREE *tree) { return trees.push_back(tree); }
/*
Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
combining new_tree with one of the trees in this SEL_IMERGE if they both
have SEL_ARGs for the same key.
SYNOPSIS
or_sel_tree_with_checks()
param RANGE_OPT_PARAM from test_quick_select
remove_jump_scans See get_mm_tree()
new_tree SEL_TREE with type KEY or KEY_SMALLER.
NOTES
This does the following:
(t_1||...||t_k)||new_tree =
either
= (t_1||...||t_k||new_tree)
or
= (t_1||....||(t_j|| new_tree)||...||t_k),
where t_i, y are SEL_TREEs.
new_tree is combined with the first t_j it has a SEL_ARG on common
key with. As a consequence of this, choice of keys to do index_merge
read may depend on the order of conditions in WHERE part of the query.
RETURN
0 OK
1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
and (*this) should be discarded.
-1 An error occurred.
*/
int SEL_IMERGE::or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
bool remove_jump_scans,
SEL_TREE *new_tree) {
DBUG_TRACE;
for (SEL_TREE *&tree : trees) {
if (sel_trees_can_be_ored(tree, new_tree, param)) {
tree = tree_or(param, remove_jump_scans, tree, new_tree);
if (tree == nullptr) return 1;
if (tree->type == SEL_TREE::ALWAYS) return 1;
/* SEL_TREE::IMPOSSIBLE is impossible here */
return 0;
}
}
/* New tree cannot be combined with any of existing trees. */
if (or_sel_tree(new_tree)) {
return -1;
} else {
return 0;
}
}
/*
Perform OR operation on this index_merge and supplied index_merge list.
RETURN
0 - OK
1 - One of conditions in result is always true and this SEL_IMERGE
should be discarded.
-1 - An error occurred
*/
int SEL_IMERGE::or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
bool remove_jump_scans,
SEL_IMERGE *imerge) {
for (SEL_TREE *tree : imerge->trees) {
int ret = or_sel_tree_with_checks(param, remove_jump_scans, tree);
if (ret != 0) {
return ret;
}
}
return 0;
}
SEL_IMERGE::SEL_IMERGE(SEL_IMERGE *arg, RANGE_OPT_PARAM *param)
: trees(param->temp_mem_root, arg->trees) {}
void trace_quick_description(const AccessPath *path, Opt_trace_context *trace) {
Opt_trace_object range_trace(trace, "range_details");
String range_info;
range_info.set_charset(system_charset_info);
add_info_string(path, &range_info);
range_trace.add_utf8("used_index", range_info.ptr(), range_info.length());
}
QUICK_RANGE::QUICK_RANGE()
: min_key(nullptr),
max_key(nullptr),
min_length(0),
max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE),
rkey_func_flag(HA_READ_INVALID),
min_keypart_map(0),
max_keypart_map(0) {}
QUICK_RANGE::QUICK_RANGE(MEM_ROOT *mem_root, const uchar *min_key_arg,
uint min_length_arg, key_part_map min_keypart_map_arg,
const uchar *max_key_arg, uint max_length_arg,
key_part_map max_keypart_map_arg, uint flag_arg,
enum ha_rkey_function rkey_func_flag_arg)
: min_key(nullptr),
max_key(nullptr),
min_length((uint16)min_length_arg),
max_length((uint16)max_length_arg),
flag((uint16)flag_arg),
rkey_func_flag(rkey_func_flag_arg),
min_keypart_map(min_keypart_map_arg),
max_keypart_map(max_keypart_map_arg) {
min_key = mem_root->ArrayAlloc<uchar>(min_length_arg + 1);
max_key = mem_root->ArrayAlloc<uchar>(max_length_arg + 1);
if (min_key != nullptr) {
memcpy(min_key, min_key_arg, min_length_arg + 1);
}
if (max_key != nullptr) {
memcpy(max_key, max_key_arg, max_length_arg + 1);
}
}
/*
Fill needed_fields with bitmap of fields used in the query.
SYNOPSIS
fill_used_fields_bitmap()
param Parameter from test_quick_select function.
NOTES
Clustered PK members are not put into the bitmap as they are implicitly
present in all keys (and it is impossible to avoid reading them).
RETURN
0 Ok
1 Out of memory.
*/
static int fill_used_fields_bitmap(RANGE_OPT_PARAM *param,
MY_BITMAP *needed_fields) {
TABLE *table = param->table;
my_bitmap_map *tmp;
uint pk;
if (!(tmp = (my_bitmap_map *)param->return_mem_root->Alloc(
table->s->column_bitmap_size)) ||
bitmap_init(needed_fields, tmp, table->s->fields))
return 1;
bitmap_copy(needed_fields, table->read_set);
bitmap_union(needed_fields, table->write_set);
pk = param->table->s->primary_key;
if (pk != MAX_KEY && param->table->file->primary_key_is_clustered()) {
/* The table uses clustered PK and it is not internally generated */
KEY_PART_INFO *key_part = param->table->key_info[pk].key_part;
KEY_PART_INFO *key_part_end =
key_part + param->table->key_info[pk].user_defined_key_parts;
for (; key_part != key_part_end; ++key_part)
bitmap_clear_bit(needed_fields, key_part->fieldnr - 1);
}
return 0;
}
bool setup_range_optimizer_param(THD *thd, MEM_ROOT *return_mem_root,
MEM_ROOT *temp_mem_root, Key_map keys_to_use,
TABLE *table, Query_block *query_block,
RANGE_OPT_PARAM *param) {
param->table = table;
param->query_block = query_block;
param->keys = 0;
param->return_mem_root = return_mem_root;
param->temp_mem_root = temp_mem_root;
param->using_real_indexes = true;
param->use_index_statistics = false;
temp_mem_root->set_max_capacity(thd->variables.range_optimizer_max_mem_size);
temp_mem_root->set_error_for_capacity_exceeded(true);
// These are being stored in AccessPaths, so they need to be on
// return_mem_root.
param->real_keynr = return_mem_root->ArrayAlloc<uint>(table->s->keys);
param->key = return_mem_root->ArrayAlloc<KEY_PART *>(table->s->keys);
param->key_parts = return_mem_root->ArrayAlloc<KEY_PART>(table->s->key_parts);
if (param->real_keynr == nullptr || param->key == nullptr ||
param->key_parts == nullptr) {
return true; // Can't use range
}
KEY_PART *key_parts = param->key_parts;
Opt_trace_context *const trace = &thd->opt_trace;
{
Opt_trace_array trace_idx(trace, "potential_range_indexes",
Opt_trace_context::RANGE_OPTIMIZER);
/*
Make an array with description of all key parts of all table keys.
This is used in get_mm_parts function.
*/
KEY *key_info = table->key_info;
for (uint idx = 0; idx < table->s->keys; idx++, key_info++) {
Opt_trace_object trace_idx_details(trace);
trace_idx_details.add_utf8("index", key_info->name);
KEY_PART_INFO *key_part_info;
if (!keys_to_use.is_set(idx)) {
trace_idx_details.add("usable", false)
.add_alnum("cause", "not_applicable");
continue;
}
if (hint_key_state(thd, table->pos_in_table_list, idx, NO_RANGE_HINT_ENUM,
0)) {
trace_idx_details.add("usable", false)
.add_alnum("cause", "no_range_optimization hint");
continue;
}
if (key_info->flags & HA_FULLTEXT) {
trace_idx_details.add("usable", false).add_alnum("cause", "fulltext");
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
}
trace_idx_details.add("usable", true);
param->key[param->keys] = key_parts;
key_part_info = key_info->key_part;
Opt_trace_array trace_keypart(trace, "key_parts");
for (uint part = 0; part < actual_key_parts(key_info);
part++, key_parts++, key_part_info++) {
key_parts->key = param->keys;
key_parts->part = part;
key_parts->length = key_part_info->length;
key_parts->store_length = key_part_info->store_length;
key_parts->field = key_part_info->field;
key_parts->null_bit = key_part_info->null_bit;
key_parts->image_type = (part < key_info->user_defined_key_parts &&
key_info->flags & HA_SPATIAL)
? Field::itMBR
: Field::itRAW;
/* Only HA_PART_KEY_SEG is used */
key_parts->flag = key_part_info->key_part_flag;
trace_keypart.add_utf8(
get_field_name_or_expression(thd, key_part_info->field));
}
param->real_keynr[param->keys++] = idx;
}
}
param->key_parts_end = key_parts;
return false;
}
/*
Test if a key can be used in different ranges, and create the QUICK
access method (range, index merge etc) that is estimated to be
cheapest unless table/index scan is even cheaper (exception: @see
parameter force_quick_range).
SYNOPSIS
test_quick_select()
thd Current thread
return_mem_root MEM_ROOT to allocate AccessPaths, RowIterators and
dependent information on (ie., permanent artifacts
that must live on after the range optimizer
has finished executing).
temp_mem_root MEM_ROOT to use for temporary data. Should usually
be empty on entry, as we we will set memory limits
on it. The primary reason why it's declared in the
caller is that DynamicRangeIterator can clear it
and reuse its memory between calls.
keys_to_use Keys to use for range retrieval
prev_tables Tables assumed to be already read when the scan is
performed (but not read at the moment of this call),
including const tables. Otherwise 0.
read_tables If invoked during execution: tables already read
for this join (so values can be assumed to be present).
Otherwise 0.
limit Query limit
force_quick_range Prefer to use range (instead of full table scan) even
if it is more expensive.
interesting_order The sort order the range access method must be able
to provide. Three-value logic: asc/desc/don't care
table The table to optimize over.
skip_records_in_range
Same as QEP_TAB::m_skip_records_in_range.
cond The condition to optimize for, if any.
needed_reg this info is used in make_join_query_block() even if
there is no quick.
ignore_table_scan Disregard table scan while looking for range.
query_block The block the given table is part of.
path [out] Calculated AccessPath, or nullptr.
NOTES
Updates the following:
needed_reg - Bits for keys with may be used if all prev regs are read
In the table struct the following information is updated:
quick_keys - Which keys can be used
quick_rows - How many rows the key matches
quick_condition_rows - E(# rows that will satisfy the table condition)
IMPLEMENTATION
quick_condition_rows value is obtained as follows:
It is a minimum of E(#output rows) for all considered table access
methods (range and index_merge accesses over various indexes).
The obtained value is not a true E(#rows that satisfy table condition)
but rather a pessimistic estimate. To obtain a true E(#...) one would
need to combine estimates of various access methods, taking into account
correlations between sets of rows they will return.
For example, if values of tbl.key1 and tbl.key2 are independent (a right
assumption if we have no information about their correlation) then the
correct estimate will be:
E(#rows("tbl.key1 < c1 AND tbl.key2 < c2")) =
= E(#rows(tbl.key1 < c1)) / total_rows(tbl) * E(#rows(tbl.key2 < c2)
which is smaller than
MIN(E(#rows(tbl.key1 < c1), E(#rows(tbl.key2 < c2)))
which is currently produced.
TODO
* Change the value returned in quick_condition_rows from a pessimistic
estimate to true E(#rows that satisfy table condition).
(we can re-use some of E(#rows) calcuation code from
index_merge/intersection for this)
* Check if this function really needs to modify keys_to_use, and change the
code to pass it by reference if it doesn't.
* In addition to force_quick_range other means can be (an usually are) used
to make this function prefer range over full table scan. Figure out if
force_quick_range is really needed.
RETURN
-1 if impossible select (i.e. certainly no rows will be selected)
0 if can't use quick_select
1 if found usable ranges and quick select has been successfully created.
@note After this call, caller may decide to really use the returned QUICK,
by calling QEP_TAB::set_range_scan() and updating tab->type() if appropriate.
*/
int test_quick_select(THD *thd, MEM_ROOT *return_mem_root,
MEM_ROOT *temp_mem_root, Key_map keys_to_use,
table_map prev_tables, table_map read_tables,
ha_rows limit, bool force_quick_range,
const enum_order interesting_order, TABLE *table,
bool skip_records_in_range, Item *cond,
Key_map *needed_reg, bool ignore_table_scan,
Query_block *query_block, AccessPath **path) {
DBUG_TRACE;
*path = nullptr;
needed_reg->clear_all();
if (keys_to_use.is_clear_all()) return 0;
DBUG_PRINT("enter", ("keys_to_use: %lu prev_tables: %lu ",
(ulong)keys_to_use.to_ulonglong(), (ulong)prev_tables));
const Cost_model_server *const cost_model = thd->cost_model();
ha_rows records = table->file->stats.records;
if (!records) records++; /* purecov: inspected */
double scan_time =
cost_model->row_evaluate_cost(static_cast<double>(records)) + 1;
Cost_estimate cost_est = table->file->table_scan_cost();
cost_est.add_io(1.1);
cost_est.add_cpu(scan_time);
if (ignore_table_scan) {
scan_time = DBL_MAX;
cost_est.set_max_cost();
}
if (limit < records) {
cost_est.reset();
// Force to use index
cost_est.add_io(
table->cost_model()->page_read_cost(static_cast<double>(records)) + 1);
cost_est.add_cpu(scan_time);
} else if (cost_est.total_cost() <= 2.0 && !force_quick_range)
return 0; /* No need for quick select */
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_range(trace, "range_analysis");
Opt_trace_object(trace, "table_scan")
.add("rows", table->file->stats.records)
.add("cost", cost_est);
keys_to_use.intersect(table->keys_in_use_for_query);
if (keys_to_use.is_clear_all()) return 0;
/*
Use the 3 multiplier as range optimizer allocates big RANGE_OPT_PARAM
structure and may evaluate a subquery expression
TODO During the optimization phase we should evaluate only inexpensive
single-lookup subqueries.
*/
uchar buff[STACK_BUFF_ALLOC];
if (check_stack_overrun(thd, 3 * STACK_MIN_SIZE + sizeof(RANGE_OPT_PARAM),
buff)) {
return 0; // Fatal error flag is set
}
/* set up parameter that is passed to all functions */
RANGE_OPT_PARAM param;
if (setup_range_optimizer_param(thd, return_mem_root, temp_mem_root,
keys_to_use, table, query_block, ¶m)) {
return 0;
}
thd->push_internal_handler(¶m.error_handler);
auto cleanup = create_scope_guard([thd] { thd->pop_internal_handler(); });
/*
Set index_merge_allowed from OPTIMIZER_SWITCH_INDEX_MERGE.
Notice also that OPTIMIZER_SWITCH_INDEX_MERGE disables all
index merge sub strategies.
*/
const bool index_merge_allowed =
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE);
const bool index_merge_union_allowed =
index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_UNION);
const bool index_merge_sort_union_allowed =
index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION);
const bool index_merge_intersect_allowed =
index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT);
/* Calculate cost of full index read for the shortest covering index */
if (!table->covering_keys.is_clear_all()) {
int key_for_use = find_shortest_key(table, &table->covering_keys);
// find_shortest_key() should return a valid key:
assert(key_for_use != MAX_KEY);
Cost_estimate key_read_time = param.table->file->index_scan_cost(
key_for_use, 1, static_cast<double>(records));
key_read_time.add_cpu(
cost_model->row_evaluate_cost(static_cast<double>(records)));
bool chosen = false;
if (key_read_time < cost_est) {
cost_est = key_read_time;
chosen = true;
}
Opt_trace_object trace_cov(trace, "best_covering_index_scan",
Opt_trace_context::RANGE_OPTIMIZER);
trace_cov.add_utf8("index", table->key_info[key_for_use].name)
.add("cost", key_read_time)
.add("chosen", chosen);
if (!chosen) trace_cov.add_alnum("cause", "cost");
}
AccessPath *best_path = nullptr;
double best_cost = cost_est.total_cost();
SEL_TREE *tree = nullptr;
if (cond) {
{
Opt_trace_array trace_setup_cond(trace, "setup_range_conditions");
tree = get_mm_tree(thd, ¶m, prev_tables | INNER_TABLE_BIT,
read_tables | INNER_TABLE_BIT,
table->pos_in_table_list->map(),
/*remove_jump_scans=*/true, cond);
}
if (tree) {
if (tree->type == SEL_TREE::IMPOSSIBLE) {
trace_range.add("impossible_range", true);
cost_est.reset();
cost_est.add_io(static_cast<double>(HA_POS_ERROR));
return -1;
}
/*
If the tree can't be used for range scans, proceed anyway, as we
can construct a group-min-max quick select
*/
if (tree->type != SEL_TREE::KEY) {
trace_range.add("range_scan_possible", false);
if (tree->type == SEL_TREE::ALWAYS)
trace_range.add_alnum("cause", "condition_always_true");
tree = nullptr;
}
}
}
/*
Try to construct a GroupIndexSkipScanIterator.
Notice that it can be constructed no matter if there is a range tree.
*/
AccessPath *group_path = get_best_group_min_max(
thd, ¶m, tree, interesting_order, skip_records_in_range, best_cost);
if (group_path) {
DBUG_EXECUTE_IF("force_lis_for_group_by", group_path->cost = 0.0;);
param.table->quick_condition_rows =
min<double>(group_path->num_output_rows(), table->file->stats.records);
Opt_trace_object grp_summary(trace, "best_group_range_summary",
Opt_trace_context::RANGE_OPTIMIZER);
if (unlikely(trace->is_started()))
trace_basic_info(thd, group_path, ¶m, &grp_summary);
if (group_path->cost < best_cost) {
grp_summary.add("chosen", true);
best_path = group_path;
best_cost = best_path->cost;
} else
grp_summary.add("chosen", false).add_alnum("cause", "cost");
}
bool force_skip_scan = hint_table_state(thd, param.table->pos_in_table_list,
SKIP_SCAN_HINT_ENUM, 0);
if (thd->optimizer_switch_flag(OPTIMIZER_SKIP_SCAN) || force_skip_scan) {
AccessPath *skip_scan_path =
get_best_skip_scan(thd, ¶m, tree, interesting_order,
skip_records_in_range, force_skip_scan);
if (skip_scan_path) {
param.table->quick_condition_rows = min<double>(
skip_scan_path->num_output_rows(), table->file->stats.records);
Opt_trace_object summary(trace, "best_skip_scan_summary",
Opt_trace_context::RANGE_OPTIMIZER);
if (unlikely(trace->is_started()))
trace_basic_info(thd, skip_scan_path, ¶m, &summary);
if (skip_scan_path->cost < best_cost || force_skip_scan) {
summary.add("chosen", true);
best_path = skip_scan_path;
best_cost = best_path->cost;
} else
summary.add("chosen", false).add_alnum("cause", "cost");
}
}
if (tree && (best_path == nullptr || !get_forced_by_hint(best_path))) {
/*
It is possible to use a range-based quick select (but it might be
slower than 'all' table scan).
*/
dbug_print_tree("final_tree", tree, ¶m);
MY_BITMAP needed_fields;
if (fill_used_fields_bitmap(¶m, &needed_fields)) {
return 0;
}
{
/*
Calculate cost of single index range scan and possible
intersections of these
*/
Opt_trace_object trace_range_alt(trace, "analyzing_range_alternatives",
Opt_trace_context::RANGE_OPTIMIZER);
AccessPath *range_path = get_key_scans_params(
thd, ¶m, tree, false, true, interesting_order,
skip_records_in_range, best_cost, /*ror_only=*/false, needed_reg);
/* Get best 'range' plan and prepare data for making other plans */
if (range_path) {
best_path = range_path;
best_cost = best_path->cost;
}
/*
Simultaneous key scans and row deletes on several handler
objects are not allowed so don't use ROR-intersection for
table deletes. Also, ROR-intersection cannot return rows in
descending order
*/
if ((thd->lex->sql_command != SQLCOM_DELETE) &&
(index_merge_allowed ||
hint_table_state(thd, param.table->pos_in_table_list,
INDEX_MERGE_HINT_ENUM, 0)) &&
interesting_order != ORDER_DESC) {
/*
Get best non-covering ROR-intersection plan and prepare data for
building covering ROR-intersection.
*/
AccessPath *rori_path = get_best_ror_intersect(
thd, ¶m, table, index_merge_intersect_allowed, tree,
&needed_fields, best_cost,
/*force_index_merge_result=*/true, /*reuse_handler=*/true);
if (rori_path) {
best_path = rori_path;
best_cost = best_path->cost;
}
}
}
// Here we calculate cost of union index merge
if (!tree->merges.is_empty()) {
// Cannot return rows in descending order.
if ((index_merge_allowed ||
hint_table_state(thd, param.table->pos_in_table_list,
INDEX_MERGE_HINT_ENUM, 0)) &&
interesting_order != ORDER_DESC && param.table->file->stats.records) {
/* Try creating index_merge/ROR-union scan. */
AccessPath *best_conj_path = nullptr, *new_conj_path = nullptr;
Opt_trace_array trace_idx_merge(trace, "analyzing_index_merge_union",
Opt_trace_context::RANGE_OPTIMIZER);
// Buffer for index_merge cost estimates.
for (SEL_IMERGE &imerge : tree->merges) {
new_conj_path = get_best_disjunct_quick(
thd, ¶m, table, index_merge_union_allowed,
index_merge_sort_union_allowed, index_merge_intersect_allowed,
skip_records_in_range, &needed_fields, &imerge, best_cost,
needed_reg);
if (new_conj_path)
param.table->quick_condition_rows =
min<double>(param.table->quick_condition_rows,
new_conj_path->num_output_rows());
if (!best_conj_path ||
(new_conj_path && new_conj_path->cost < best_conj_path->cost)) {
best_conj_path = new_conj_path;
}
}
if (best_conj_path) best_path = best_conj_path;
}
}
}
/*
If we got a read plan, return it, but only if the storage engine supports
using indexes for access.
*/
if (best_path && (table->file->ha_table_flags() & HA_NO_INDEX_ACCESS) == 0) {
records = best_path->num_output_rows();
*path = best_path;
}
if (unlikely(trace->is_started() && best_path)) {
Opt_trace_object trace_range_summary(trace, "chosen_range_access_summary");
{
Opt_trace_object trace_range_plan(trace, "range_access_plan");
trace_basic_info(thd, best_path, ¶m, &trace_range_plan);
}
trace_range_summary.add("rows_for_plan", best_path->num_output_rows())
.add("cost_for_plan", best_path->cost)
.add("chosen", true);
}
DBUG_EXECUTE("info", print_quick(*path, needed_reg););
if (records == 0) {
return -1;
} else {
return *path != nullptr;
}
}
/**
Helper function for get_best_disjunct_quick(), dealing with the case of
creating a ROR union. Returns nullptr if either an error occurred, or if the
ROR union was found to be more expensive than read_cost (which is presumably
the cost for the index merge plan).
*/
static AccessPath *get_ror_union_path(
THD *thd, RANGE_OPT_PARAM *param, TABLE *table,
bool index_merge_intersect_allowed, const MY_BITMAP *needed_fields,
SEL_IMERGE *imerge, const double read_cost, bool force_index_merge,
Bounds_checked_array<AccessPath *> roru_read_plans,
AccessPath **range_scans, Opt_trace_object *trace_best_disjunct) {
double roru_index_cost = 0.0;
ha_rows roru_total_records = 0;
/* Find 'best' ROR scan for each of trees in disjunction */
double roru_intersect_part = 1.0;
{
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_array trace_analyze_ror(trace, "analyzing_roworder_scans");
AccessPath **cur_child = range_scans;
AccessPath **cur_roru_plan = &roru_read_plans[0];
for (auto tree_it = imerge->trees.begin(); tree_it != imerge->trees.end();
tree_it++, cur_child++, cur_roru_plan++) {
Opt_trace_object path(trace);
if (unlikely(trace->is_started()))
trace_basic_info(thd, *cur_child, param, &path);
const auto &child_param = (*cur_child)->index_range_scan();
/*
Assume the best ROR scan is the one that has cheapest
full-row-retrieval scan cost.
Also accumulate index_only scan costs as we'll need them to
calculate overall index_intersection cost.
*/
double scan_cost = 0.0;
if (child_param.can_be_used_for_ror) {
/* Ok, we have index_only cost, now get full rows scan cost */
scan_cost = table->file
->read_cost(child_param.index, 1,
(*cur_child)->num_output_rows())
.total_cost();
scan_cost += table->cost_model()->row_evaluate_cost(
(*cur_child)->num_output_rows());
} else
scan_cost = read_cost;
AccessPath *prev_plan = *cur_child;
if (!(*cur_roru_plan = get_best_ror_intersect(
thd, param, table, index_merge_intersect_allowed, *tree_it,
needed_fields, scan_cost,
/*force_index_merge_result=*/false, /*reuse_handler=*/false))) {
if (child_param.can_be_used_for_ror)
*cur_roru_plan = prev_plan;
else
return nullptr;
}
roru_index_cost += (*cur_roru_plan)->cost;
roru_total_records += (*cur_roru_plan)->num_output_rows();
roru_intersect_part *=
(*cur_roru_plan)->num_output_rows() / table->file->stats.records;
}
}
/*
rows to retrieve=
SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
This is valid because index_merge construction guarantees that conditions
in disjunction do not share key parts.
*/
roru_total_records -=
static_cast<ha_rows>(roru_intersect_part * table->file->stats.records);
/* ok, got a ROR read plan for each of the disjuncts
Calculate cost:
cost(index_union_scan(scan_1, ... scan_n)) =
SUM_i(cost_of_index_only_scan(scan_i)) +
queue_use_cost(rowid_len, n) +
cost_of_row_retrieval
See get_merge_buffers_cost function for queue_use_cost formula derivation.
*/
double roru_total_cost;
{
JOIN *join = param->query_block->join;
const bool is_interrupted = join && join->tables != 1;
Cost_estimate sweep_cost;
get_sweep_read_cost(table, roru_total_records, is_interrupted, &sweep_cost);
roru_total_cost = sweep_cost.total_cost();
roru_total_cost += roru_index_cost;
roru_total_cost += table->cost_model()->key_compare_cost(
rows2double(roru_total_records) * std::log2(roru_read_plans.size()));
}
trace_best_disjunct->add("index_roworder_union_cost", roru_total_cost)
.add("members", roru_read_plans.size());
if (roru_total_cost < read_cost || force_index_merge) {
trace_best_disjunct->add("chosen", true);
auto *children = new (param->return_mem_root)
Mem_root_array<AccessPath *>(param->return_mem_root);
children->reserve(roru_read_plans.size());
for (AccessPath *child : roru_read_plans) {
// NOTE: This overwrites parameters in paths that may be used
// for something else, but since we've already decided that
// we are to choose a ROR union, it doesn't matter. If we are
// to keep multiple candidates around, we need to clone the
// AccessPaths here.
switch (child->type) {
case AccessPath::INDEX_RANGE_SCAN:
child->index_range_scan().need_rows_in_rowid_order = true;
break;
case AccessPath::ROWID_INTERSECTION:
child->rowid_intersection().need_rows_in_rowid_order = true;
child->rowid_intersection().retrieve_full_rows = false;
break;
default:
assert(false);
}
children->push_back(child);
}
AccessPath *path = new (param->return_mem_root) AccessPath;
path->type = AccessPath::ROWID_UNION;
path->cost = roru_total_cost;
path->set_num_output_rows(roru_total_records);
path->rowid_union().table = table;
path->rowid_union().children = children;
path->rowid_union().forced_by_hint = force_index_merge;
return path;
}
return nullptr;
}
/*
Get best plan for a SEL_IMERGE disjunctive expression.
SYNOPSIS
get_best_disjunct_quick()
param Parameter from check_quick_select function
index_merge_union_allowed
index_merge_sort_union_allowed
index_merge_intersect_allowed
interesting_order The sort order the range access method must be able
to provide. Three-value logic: asc/desc/don't care
skip_records_in_range Same value as JOIN_TAB::skip_records_in_range().
needed_fields Bitmap of fields used in the query
imerge Expression to use
imerge_cost_buff Buffer for index_merge cost estimates
cost_est Don't create scans with cost > cost_est
needed_reg [out] Bits for keys with may be used if all prev regs are read
NOTES
index_merge cost is calculated as follows:
index_merge_cost =
cost(index_reads) + (see #1)
cost(rowid_to_row_scan) + (see #2)
cost(unique_use) (see #3)
1. cost(index_reads) =SUM_i(cost(index_read_i))
For non-CPK scans,
cost(index_read_i) = {cost of ordinary 'index only' scan}
For CPK scan,
cost(index_read_i) = {cost of non-'index only' scan}
2. cost(rowid_to_row_scan)
If table PK is clustered then
cost(rowid_to_row_scan) =
{cost of ordinary clustered PK scan with n_ranges=n_rows}
Otherwise, we use the following model to calculate costs:
We need to retrieve n_rows rows from file that occupies n_blocks blocks.
We assume that offsets of rows we need are independent variates with
uniform distribution in [0..max_file_offset] range.
We'll denote block as "busy" if it contains row(s) we need to retrieve
and "empty" if doesn't contain rows we need.
Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
applies to any block in file). Let x_i be a variate taking value 1 if
block #i is empty and 0 otherwise.
Then E(x_i) = (1 - 1/n_blocks)^n_rows;
E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
= n_blocks * ((1 - 1/n_blocks)^n_rows) =
~= n_blocks * exp(-n_rows/n_blocks).
E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
~= n_blocks * (1 - exp(-n_rows/n_blocks)).
Average size of "hole" between neighbor non-empty blocks is
E(hole_size) = n_blocks/E(n_busy_blocks).
The total cost of reading all needed blocks in one "sweep" is:
E(n_busy_blocks) * disk_seek_cost(n_blocks/E(n_busy_blocks))
This cost estimate is calculated in get_sweep_read_cost().
3. Cost of Unique use is calculated in Unique::get_use_cost function.
ROR-union cost is calculated in the same way index_merge, but instead of
Unique a priority queue is used.
RETURN
Created read plan
NULL - Out of memory or no read scan could be built.
*/
static AccessPath *get_best_disjunct_quick(
THD *thd, RANGE_OPT_PARAM *param, TABLE *table,
bool index_merge_union_allowed, bool index_merge_sort_union_allowed,
bool index_merge_intersect_allowed, bool skip_records_in_range,
const MY_BITMAP *needed_fields, SEL_IMERGE *imerge, const double cost_est,
Key_map *needed_reg) {
double imerge_cost = 0.0;
ha_rows cpk_scan_records = 0;
ha_rows non_cpk_scan_records = 0;
bool all_scans_ror_able = true;
const Cost_model_table *const cost_model = table->cost_model();
double read_cost = cost_est;
DBUG_TRACE;
DBUG_PRINT("info", ("Full table scan cost: %g", cost_est));
assert(table->file->stats.records);
const bool force_index_merge =
hint_table_state(thd, table->pos_in_table_list, INDEX_MERGE_HINT_ENUM, 0);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_best_disjunct(trace);
uint n_child_scans = imerge->trees.size();
AccessPath **range_scans =
param->return_mem_root->ArrayAlloc<AccessPath *>(n_child_scans);
if (range_scans == nullptr) {
return nullptr;
}
// Note: to_merge.end() is called to close this object after this for-loop.
Opt_trace_array to_merge(trace, "indexes_to_merge");
/*
Collect best 'range' scan for each of disjuncts, and, while doing so,
analyze possibility of ROR scans. Also calculate some values needed by
other parts of the code.
*/
{
AccessPath **cpk_scan = nullptr;
bool all_scans_rors = true;
bool imerge_too_expensive = false;
AccessPath **cur_child = range_scans;
for (auto tree_it = imerge->trees.begin(); tree_it != imerge->trees.end();
++tree_it, cur_child++) {
DBUG_EXECUTE("info",
print_sel_tree(param, *tree_it, &(*tree_it)->keys_map,
"tree in SEL_IMERGE"););
Opt_trace_object trace_idx(trace);
if (!(*cur_child = get_key_scans_params(
thd, param, *tree_it, true, false, ORDER_NOT_RELEVANT,
skip_records_in_range, read_cost, /*ror_only=*/false,
needed_reg))) {
/*
One of index scans in this index_merge is more expensive than entire
table read for another available option. The entire index_merge (and
any possible ROR-union) will be more expensive then, too. We continue
here only to update SQL_SELECT members.
*/
imerge_too_expensive = true;
}
if (imerge_too_expensive) {
trace_idx.add("chosen", false).add_alnum("cause", "cost");
continue;
}
const auto &child_param = (*cur_child)->index_range_scan();
if (!child_param.can_be_used_for_imerge) {
trace_idx.add("chosen", false)
.add_alnum("cause", "index has DESC key part");
continue;
}
imerge_cost += (*cur_child)->cost;
all_scans_ror_able &= ((*tree_it)->n_ror_scans > 0);
all_scans_rors &= child_param.can_be_used_for_ror;
const bool pk_is_clustered = table->file->primary_key_is_clustered();
if (pk_is_clustered && child_param.index == table->s->primary_key) {
cpk_scan = cur_child;
cpk_scan_records = (*cur_child)->num_output_rows();
} else
non_cpk_scan_records += (*cur_child)->num_output_rows();
trace_idx
.add_utf8("index_to_merge", table->key_info[child_param.index].name)
.add("cumulated_cost", imerge_cost);
}
// Note: to_merge trace object is closed here
to_merge.end();
trace_best_disjunct.add("cost_of_reading_ranges", imerge_cost);
if (imerge_too_expensive || (((imerge_cost > read_cost) ||
((non_cpk_scan_records + cpk_scan_records >=
table->file->stats.records) &&
read_cost != DBL_MAX)) &&
!force_index_merge)) {
/*
Bail out if it is obvious that both index_merge and ROR-union will be
more expensive
*/
DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
"full table scan, bailing out"));
trace_best_disjunct.add("chosen", false).add_alnum("cause", "cost");
return nullptr;
}
/*
If all scans happen to be ROR, proceed to generate a ROR-union plan (it's
guaranteed to be cheaper than non-ROR union), unless ROR-unions are
disabled in @@optimizer_switch
*/
if (all_scans_rors && (index_merge_union_allowed || force_index_merge)) {
trace_best_disjunct.add("use_roworder_union", true)
.add_alnum("cause", "always_cheaper_than_not_roworder_retrieval");
return get_ror_union_path(
thd, param, table, index_merge_intersect_allowed, needed_fields,
imerge, read_cost, force_index_merge, {range_scans, n_child_scans},
range_scans, &trace_best_disjunct);
}
if (cpk_scan) {
/*
Add one rowid/key comparison for each row retrieved on non-CPK
scan. (it is done in IndexRangeScanIterator::row_in_ranges)
*/
const double rid_comp_cost = cost_model->key_compare_cost(
static_cast<double>(non_cpk_scan_records));
imerge_cost += rid_comp_cost;
trace_best_disjunct.add("cost_of_mapping_rowid_in_non_clustered_pk_scan",
rid_comp_cost);
}
}
/* Calculate cost(rowid_to_row_scan) */
{
Cost_estimate sweep_cost;
JOIN *join = param->query_block->join;
const bool is_interrupted = join && join->tables != 1;
get_sweep_read_cost(table, non_cpk_scan_records, is_interrupted,
&sweep_cost);
imerge_cost += sweep_cost.total_cost();
trace_best_disjunct.add("cost_sort_rowid_and_read_disk", sweep_cost);
}
AccessPath *imerge_path = nullptr;
DBUG_PRINT("info",
("index_merge cost with rowid-to-row scan: %g", imerge_cost));
if ((imerge_cost > read_cost || !index_merge_sort_union_allowed) &&
!force_index_merge) {
trace_best_disjunct.add("use_roworder_index_merge", true)
.add_alnum("cause", "cost");
} else {
/* Add Unique operations cost */
const double dup_removal_cost = Unique::get_use_cost(
(uint)non_cpk_scan_records, table->file->ref_length,
thd->variables.sortbuff_size, cost_model);
trace_best_disjunct.add("cost_duplicate_removal", dup_removal_cost);
imerge_cost += dup_removal_cost;
trace_best_disjunct.add("total_cost", imerge_cost);
DBUG_PRINT("info", ("index_merge cost: %g (wanted: less then %g)",
imerge_cost, read_cost));
if (imerge_cost < read_cost || force_index_merge) {
imerge_path = new (param->return_mem_root) AccessPath;
imerge_path->type = AccessPath::INDEX_MERGE;
imerge_path->index_merge().table = table;
imerge_path->index_merge().forced_by_hint = force_index_merge;
imerge_path->index_merge().allow_clustered_primary_key_scan = true;
imerge_path->index_merge().children =
new (param->return_mem_root) Mem_root_array<AccessPath *>(
param->return_mem_root, range_scans, range_scans + n_child_scans);
// TODO(sgunders): init_cost is high in practice, so should not be zero.
imerge_path->cost = imerge_cost;
imerge_path->set_num_output_rows(min<double>(
non_cpk_scan_records + cpk_scan_records, table->file->stats.records));
read_cost = imerge_cost;
}
}
if (!all_scans_ror_able || thd->lex->sql_command == SQLCOM_DELETE ||
(!index_merge_union_allowed && !force_index_merge))
return imerge_path;
/* Ok, it is possible to build a ROR-union, try it. */
AccessPath **roru_read_plans =
param->return_mem_root->ArrayAlloc<AccessPath *>(n_child_scans);
if (roru_read_plans == nullptr) {
return imerge_path;
}
/* Collect best 'range' scan for each of disjuncts, and, while doing so,
consider only ROR scans. */
assert(imerge->trees.size() == n_child_scans);
{
Opt_trace_array to_merge_ror(trace, "indexes_to_merge_in_rowid_order");
for (size_t i = 0; i < n_child_scans; ++i) {
Opt_trace_object trace_idx(trace);
roru_read_plans[i] = get_key_scans_params(
thd, param, imerge->trees[i], true, false, ORDER_NOT_RELEVANT,
skip_records_in_range, read_cost, /*ror_only=*/true, needed_reg);
if (roru_read_plans[i] == nullptr) return imerge_path;
}
}
AccessPath *ror_union_path = get_ror_union_path(
thd, param, table, index_merge_intersect_allowed, needed_fields, imerge,
read_cost, force_index_merge, {roru_read_plans, n_child_scans},
roru_read_plans, &trace_best_disjunct);
if (ror_union_path == nullptr) {
// No ROR-union plan found.
return imerge_path;
}
if (imerge_path != nullptr && imerge_path->cost < ror_union_path->cost) {
// The best sort-union is cheaper than the best ROR-union.
return imerge_path;
}
return ror_union_path;
}
bool comparable_in_index(Item *cond_func, const Field *field,
const Field::imagetype itype,
Item_func::Functype comp_type, const Item *value) {
/*
Usually an index cannot be used if the column collation differs
from the operation collation. However, a case insensitive index
may be used for some binary searches:
WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;
WHERE latin1_swedish_ci_colimn = BINARY 'a '
*/
if ((field->result_type() == STRING_RESULT &&
field->match_collation_to_optimize_range() &&
value->result_type() == STRING_RESULT && itype == Field::itRAW &&
field->charset() != cond_func->compare_collation() &&
!((comp_type == Item_func::EQUAL_FUNC ||
comp_type == Item_func::EQ_FUNC) &&
cond_func->compare_collation()->state & MY_CS_BINSORT)))
return false;
/*
Temporal values: Cannot use range access if:
'indexed_varchar_column = temporal_value'
because there are many ways to represent the same date as a
string. A few examples: "01-01-2001", "1-1-2001", "2001-01-01",
"2001#01#01". The same problem applies to time. Thus, we cannot
create a useful range predicate for temporal values into VARCHAR
column indexes.
*/
if (field->result_type() == STRING_RESULT &&
!is_temporal_type(field->type()) && value->is_temporal())
return false;
/*
Temporal values: Cannot use range access if IndexedTimeComparedToDate:
'indexed_time = temporal_value_with_date_part'
because:
- without index, a TIME column with value '48:00:00' is
equal to a DATETIME column with value
'CURDATE() + 2 days'
- with range access into the TIME column, CURDATE() + 2
days becomes "00:00:00" (Field_timef::store_internal()
simply extracts the time part from the datetime) which
is a lookup key which does not match "48:00:00". On the other
hand, we can do ref access for IndexedDatetimeComparedToTime
because Field_temporal_with_date::store_time() will convert
48:00:00 to CURDATE() + 2 days which is the correct lookup
key.
*/
if (field_time_cmp_date(field, value)) return false;
/*
We can't always use indexes when comparing a string index to a
number. cmp_type() is checked to allow comparison of dates and
numbers.
*/
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
return false;
/*
We can't use indexes when comparing to a JSON value. For example,
the string '{}' should compare equal to the JSON string "{}". If
we use a string index to compare the two strings, we will be
comparing '{}' and '"{}"', which don't compare equal.
The only exception is Item_json, which is a basic const item and is
used to contain value coerced to index's type.
*/
if (value->result_type() == STRING_RESULT &&
value->data_type() == MYSQL_TYPE_JSON && !value->basic_const_item())
return false;
return true;
}
#ifndef NDEBUG
/**
Debugging function to print out a SEL_ROOT and everything it points to,
recursively. Used only when tracking bugs in the range optimizer
(for printf debugging); will not normally have any calls to it.
*/
[[maybe_unused]] static void debug_print_tree(SEL_ROOT *origin);
static void debug_print_tree(SEL_ROOT *origin) {
if (!origin) return;
std::set<SEL_ROOT *> seen;
std::queue<SEL_ROOT *> to_print;
to_print.push(origin);
while (!to_print.empty()) {
SEL_ROOT *key = to_print.front();
to_print.pop();
if (seen.count(key)) continue;
printf("Printing %p:\n", key);
for (SEL_ARG *arg = key->root->first(); arg; arg = arg->next) {
printf(" %p (next_key_part=%p) ", arg, arg->next_key_part);
if (arg->next_key_part) to_print.push(arg->next_key_part);
String tmp;
tmp.length(0);
KEY_PART_INFO fake_key_part;
fake_key_part.field = arg->field;
fake_key_part.length = 0;
append_range(&tmp, &fake_key_part, arg->min_value, arg->max_value,
arg->min_flag | arg->max_flag);
printf("%s\n", tmp.ptr());
}
printf("\n");
}
}
#endif // !defined(NDEBUG)
/**
Find the next different key value by skipping all the rows with the same key
value.
Implements a specialized loose index access method for queries
containing aggregate functions with distinct of the form:
SELECT [SUM|COUNT|AVG](DISTINCT a,...) FROM t
This method comes to replace the index scan + Unique class
(distinct selection) for loose index scan that visits all the rows of a
covering index instead of jumping in the beginning of each group.
TODO: Placeholder function. To be replaced by a handler API call
@param is_index_scan hint to use index scan instead of random index read
to find the next different value.
@param file table handler
@param key_part group key to compare
@param record row data
@param group_prefix current key prefix data
@param group_prefix_len length of the current key prefix data
@param group_key_parts number of the current key prefix columns
@return status
@retval 0 success
@retval !0 failure
*/
int index_next_different(bool is_index_scan, handler *file,
KEY_PART_INFO *key_part, uchar *record,
const uchar *group_prefix, uint group_prefix_len,
uint group_key_parts) {
// In order to find next different key value, the old end_range should be
// cleared.
file->set_end_range(nullptr, handler::RANGE_SCAN_ASC);
if (is_index_scan) {
int result = 0;
while (!key_cmp(key_part, group_prefix, group_prefix_len,
/*is_reverse_multi_valued_index_scan=*/false)) {
result = file->ha_index_next(record);
if (result) return (result);
}
return result;
} else
return file->ha_index_read_map(record, group_prefix,
make_prev_keypart_map(group_key_parts),
HA_READ_AFTER_KEY);
}
/**
Print a key to a string
@param[out] out String the key is appended to
@param[in] key_part Index components description
@param[in] key Key tuple
*/
void print_key_value(String *out, const KEY_PART_INFO *key_part,
const uchar *key) {
Field *field = key_part->field;
if (field->is_array()) {
field = down_cast<Field_typed_array *>(field)->get_conv_field();
}
if (field->is_flag_set(BLOB_FLAG)) {
// Byte 0 of a nullable key is the null-byte. If set, key is NULL.
if (field->is_nullable() && *key)
out->append(STRING_WITH_LEN("NULL"));
else
(field->type() == MYSQL_TYPE_GEOMETRY)
? out->append(STRING_WITH_LEN("unprintable_geometry_value"))
: out->append(STRING_WITH_LEN("unprintable_blob_value"));
return;
}
uint store_length = key_part->store_length;
if (field->is_nullable()) {
/*
Byte 0 of key is the null-byte. If set, key is NULL.
Otherwise, print the key value starting immediately after the
null-byte
*/
if (*key) {
out->append(STRING_WITH_LEN("NULL"));
return;
}
key++; // Skip null byte
store_length--;
}
/*
Binary data cannot be converted to UTF8 which is what the
optimizer trace expects. If the column is binary, the hex
representation is printed to the trace instead.
*/
if (field->result_type() == STRING_RESULT &&
field->charset() == &my_charset_bin) {
out->append("0x");
for (uint i = 0; i < store_length; i++) {
out->append(_dig_vec_lower[*(key + i) >> 4]);
out->append(_dig_vec_lower[*(key + i) & 0x0F]);
}
return;
}
StringBuffer<128> tmp(system_charset_info);
bool add_quotes = field->result_type() == STRING_RESULT;
TABLE *table = field->table;
my_bitmap_map *old_sets[2];
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
field->set_key_image(key, key_part->length);
if (field->type() == MYSQL_TYPE_BIT) {
(void)field->val_int_as_str(&tmp, true); // may change tmp's charset
add_quotes = false;
} else {
field->val_str(&tmp); // may change tmp's charset
}
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
if (add_quotes) {
out->append('\'');
// Worst case: Every character is escaped.
const size_t buffer_size = tmp.length() * 2 + 1;
char *quoted_string = current_thd->mem_root->ArrayAlloc<char>(buffer_size);
const size_t quoted_length = escape_string_for_mysql(
tmp.charset(), quoted_string, buffer_size, tmp.ptr(), tmp.length());
if (quoted_length == static_cast<size_t>(-1)) {
// Overflow. Our worst case estimate for the buffer size was too low.
assert(false);
return;
}
out->append(quoted_string, quoted_length, tmp.charset());
out->append('\'');
} else {
out->append(tmp.ptr(), tmp.length(), tmp.charset());
}
}
static bool range_is_equality(const uchar *min_key, const uchar *max_key,
unsigned store_length, bool is_nullable) {
if (is_nullable && *min_key && *max_key) {
// Both keys are NULL, so don't check the rest; they could be uninitialized.
return true;
}
return memcmp(min_key, max_key, store_length) == 0;
}
/**
Append range info for a key part to a string
@param[in,out] out String the range info is appended to
@param[in] key_part Indexed column used in a range select
@param[in] min_key Key tuple describing lower bound of range
@param[in] max_key Key tuple describing upper bound of range
@param[in] flag Key range flags defining what min_key
and max_key represent @see my_base.h
*/
void append_range(String *out, const KEY_PART_INFO *key_part,
const uchar *min_key, const uchar *max_key, const uint flag) {
if (out->length() > 0) out->append(STRING_WITH_LEN(" AND "));
if (flag & GEOM_FLAG) {
/*
The flags of GEOM ranges do not work the same way as for other
range types, so printing "col < some_geom" doesn't make sense.
Just print the column name, not operator.
*/
out->append(key_part->field->field_name);
out->append(STRING_WITH_LEN(" "));
print_key_value(out, key_part, min_key);
return;
}
// Range scans over multi-valued indexes use a sequence of MEMBER OF
// predicates ORed together.
if (key_part->field->is_array()) {
print_key_value(out, key_part, min_key);
out->append(STRING_WITH_LEN(" MEMBER OF ("));
const std::string expression = ItemToString(
down_cast<Item_func *>(key_part->field->gcol_info->expr_item)
->get_arg(0)); // Strip off CAST(... AS <type> ARRAY).
out->append(expression.data(), expression.size());
out->append(')');
return;
}
if (!Overlaps(flag, NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | NEAR_MAX) &&
range_is_equality(min_key, max_key, key_part->store_length,
key_part->field->is_nullable())) {
out->append(get_field_name_or_expression(current_thd, key_part->field));
out->append(STRING_WITH_LEN(" = "));
print_key_value(out, key_part, min_key);
return;
}
if (!(flag & NO_MIN_RANGE)) {
print_key_value(out, key_part, min_key);
if (flag & NEAR_MIN)
out->append(STRING_WITH_LEN(" < "));
else
out->append(STRING_WITH_LEN(" <= "));
}
out->append(get_field_name_or_expression(current_thd, key_part->field));
if (!(flag & NO_MAX_RANGE)) {
if (flag & NEAR_MAX)
out->append(STRING_WITH_LEN(" < "));
else
out->append(STRING_WITH_LEN(" <= "));
print_key_value(out, key_part, max_key);
}
}
/**
Traverse an R-B tree of range conditions and append all ranges for
this keypart and consecutive keyparts to range_trace (if non-NULL)
or to range_string (if range_trace is NULL). See description of R-B
trees/SEL_ARG for details on how ranges are linked.
@param[in,out] range_trace Optimizer trace array ranges are appended to
@param[in,out] range_string The string where range predicates are
appended when the last keypart has
been reached.
@param range_so_far String containing ranges for keyparts prior
to this keypart.
@param keypart The R-B tree containing intervals for this
keypart.
@param key_parts Index components description, used when adding
information to the optimizer trace
@param print_full Whether or not ranges on unusable keyparts
should be printed. Useful for debugging.
@note This function mimics the behavior of sel_arg_range_seq_next()
*/
void append_range_all_keyparts(Opt_trace_array *range_trace,
String *range_string, String *range_so_far,
SEL_ROOT *keypart,
const KEY_PART_INFO *key_parts,
const bool print_full) {
assert(keypart);
const SEL_ARG *const keypart_root = keypart->root;
assert(keypart_root && keypart_root != null_element);
const bool append_to_trace = (range_trace != nullptr);
// Either add info to range_string or to range_trace
assert(append_to_trace ? !range_string : (range_string != nullptr));
// Navigate to first interval in red-black tree
const KEY_PART_INFO *cur_key_part = key_parts + keypart_root->part;
const SEL_ARG *keypart_range = keypart_root->first();
const size_t save_range_so_far_length = range_so_far->length();
while (keypart_range) {
/*
Skip the rest of condition printing to avoid OOM if appending to
range_string and the string becomes too long. Printing very long
range conditions normally doesn't make sense either.
*/
if (!append_to_trace && range_string->length() > 500) {
range_string->append(STRING_WITH_LEN("..."));
break;
}
// Append the current range predicate to the range String
switch (keypart->type) {
case SEL_ROOT::Type::KEY_RANGE:
append_range(range_so_far, cur_key_part, keypart_range->min_value,
keypart_range->max_value,
keypart_range->min_flag | keypart_range->max_flag);
break;
case SEL_ROOT::Type::MAYBE_KEY:
range_so_far->append("MAYBE_KEY");
break;
case SEL_ROOT::Type::IMPOSSIBLE:
range_so_far->append("IMPOSSIBLE");
break;
default:
assert(false);
break;
}
/*
Print range predicates for consecutive keyparts if
1) There are predicates for later keyparts, and
2) We explicitly requested to print even the ranges that will
not be usable by range access, or
3) There are no "holes" in the used keyparts (keypartX can only
be used if there is a range predicate on keypartX-1), and
4) The current range is an equality range
*/
if (keypart_range->next_key_part && // 1
(print_full || // 2
(keypart_range->next_key_part->root->part ==
keypart_range->part + 1 && // 3
keypart_range->is_singlepoint()))) // 4
{
append_range_all_keyparts(range_trace, range_string, range_so_far,
keypart_range->next_key_part, key_parts,
print_full);
} else {
/*
This is the last keypart with a usable range predicate. Print
full range info to the optimizer trace or to the string
*/
if (append_to_trace)
range_trace->add_utf8(range_so_far->ptr(), range_so_far->length());
else {
if (range_string->length() == 0)
range_string->append(STRING_WITH_LEN("("));
else
range_string->append(STRING_WITH_LEN(" OR ("));
range_string->append(range_so_far->ptr(), range_so_far->length());
range_string->append(STRING_WITH_LEN(")"));
}
}
keypart_range = keypart_range->next;
/*
Now moving to next range for this keypart, so "reset"
range_so_far to include only range description of earlier
keyparts
*/
range_so_far->length(save_range_so_far_length);
}
}
void append_range_to_string(const QUICK_RANGE *range,
const KEY_PART_INFO *first_key_part, String *out) {
const uchar *min_key = range->min_key;
const uchar *max_key = range->max_key;
for (int keypart_idx :
BitsSetIn(range->min_keypart_map | range->max_keypart_map)) {
uint16 flag = range->flag;
if (!IsBitSet(keypart_idx, range->min_keypart_map)) {
flag |= NO_MIN_RANGE;
}
if (!IsBitSet(keypart_idx, range->max_keypart_map)) {
flag |= NO_MAX_RANGE;
}
if (Overlaps(range->min_keypart_map | range->max_keypart_map,
BitsBetween(keypart_idx + 1, MAX_REF_PARTS))) {
// We're not the last keypart, so we need to show <= and >= instead of
// < and >; e.g. a < (1,2) is printed as “a <= 1 AND a < 2”, not
// “a < 1 AND a < 2”. This isn't strictly correct, though, as the right
// thing to print would be “a < 1 OR (a <= 1 AND a < 2)”, but it's
// how it's always been done traditionally.
// TODO(sgunders): Consider changing this to using the tuple syntax
// instead.
flag &= ~(NEAR_MIN | NEAR_MAX);
}
// NOTE: append_range() automatically adds “ AND ” if needed.
append_range(out, &first_key_part[keypart_idx], min_key, max_key, flag);
min_key += first_key_part[keypart_idx].store_length;
max_key += first_key_part[keypart_idx].store_length;
}
}
void print_tree(String *out, const char *tree_name, SEL_TREE *tree,
const RANGE_OPT_PARAM *param, const bool print_full) {
if (!param->using_real_indexes) {
if (out) {
out->append(tree_name);
out->append(" uses a partitioned index and cannot be printed");
} else
DBUG_PRINT("info", ("sel_tree: "
"%s uses a partitioned index and cannot be printed",
tree_name));
return;
}
if (!tree) {
if (out) {
out->append(tree_name);
out->append(" is NULL");
} else
DBUG_PRINT("info", ("sel_tree: %s is NULL", tree_name));
return;
}
if (tree->type == SEL_TREE::IMPOSSIBLE) {
if (out) {
out->append(tree_name);
out->append(" is IMPOSSIBLE");
} else
DBUG_PRINT("info", ("sel_tree: %s is IMPOSSIBLE", tree_name));
return;
}
if (tree->type == SEL_TREE::ALWAYS) {
if (out) {
out->append(tree_name);
out->append(" is ALWAYS");
} else
DBUG_PRINT("info", ("sel_tree: %s is ALWAYS", tree_name));
return;
}
if (!tree->merges.is_empty()) {
if (out) {
out->append(tree_name);
out->append(" contains the following merges");
} else
DBUG_PRINT("info", ("sel_tree: "
"%s contains the following merges",
tree_name));
List_iterator<SEL_IMERGE> it(tree->merges);
int i = 1;
for (SEL_IMERGE *el = it++; el; el = it++, i++) {
if (out) {
out->append("\n--- alternative ");
char istr[22];
out->append(llstr(i, istr));
out->append(" ---\n");
} else
DBUG_PRINT("info", ("sel_tree: --- alternative %d ---", i));
for (SEL_TREE *current : el->trees)
print_tree(out, " merge_tree", current, param, print_full);
}
}
for (uint i = 0; i < param->keys; i++) {
if (tree->keys[i] == NULL) continue;
uint real_key_nr = param->real_keynr[i];
const KEY &cur_key = param->table->key_info[real_key_nr];
const KEY_PART_INFO *key_part = cur_key.key_part;
/*
String holding the final range description from
append_range_all_keyparts()
*/
char buff1[512];
buff1[0] = '\0';
String range_result(buff1, sizeof(buff1), system_charset_info);
range_result.length(0);
/*
Range description up to a certain keypart - used internally in
append_range_all_keyparts()
*/
char buff2[128];
String range_so_far(buff2, sizeof(buff2), system_charset_info);
range_so_far.length(0);
append_range_all_keyparts(nullptr, &range_result, &range_so_far,
tree->keys[i], key_part, print_full);
if (out) {
char istr[22];
out->append(tree_name);
out->append(" keys[");
out->append(llstr(i, istr));
out->append("]: ");
out->append(range_result.ptr());
out->append("\n");
} else
DBUG_PRINT("info", ("sel_tree: %p, type=%d, %s->keys[%u(%u)]: %s",
tree->keys[i], static_cast<int>(tree->keys[i]->type),
tree_name, i, real_key_nr, range_result.ptr()));
}
}
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/
#ifndef NDEBUG
static void print_quick(AccessPath *path, const Key_map *needed_reg) {
char buf[MAX_KEY / 8 + 1];
my_bitmap_map *old_sets[2];
DBUG_TRACE;
if (path == nullptr) return;
DBUG_LOCK_FILE;
TABLE *table = nullptr;
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
table = path->index_range_scan().used_key_part[0].field->table;
break;
case AccessPath::INDEX_MERGE:
table = path->index_merge().table;
break;
case AccessPath::ROWID_INTERSECTION:
table = path->rowid_intersection().table;
break;
case AccessPath::ROWID_UNION:
table = path->rowid_union().table;
break;
case AccessPath::INDEX_SKIP_SCAN:
table = path->index_skip_scan().table;
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
table = path->group_index_skip_scan().table;
break;
default:
assert(false);
}
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
dbug_dump(path, 0, true);
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
fprintf(DBUG_FILE, "other_keys: 0x%s:\n", needed_reg->print(buf));
DBUG_UNLOCK_FILE;
}
#endif /* !NDEBUG */
|