1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/range_optimizer/tree.h"
#include <algorithm>
#include <set>
#include <utility>
#include "m_ctype.h"
#include "m_string.h"
#include "memory_debugging.h"
#include "my_dbug.h"
#include "my_loglevel.h"
#include "my_sqlcommand.h"
#include "mysql/components/services/log_builtins.h"
#include "mysqld_error.h"
#include "sql/handler.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/range_opt_param.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/sql_class.h"
#include "sql/sql_lex.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql_string.h"
using std::max;
using std::min;
// Note: tree1 and tree2 are not usable by themselves after tree_and() or
// tree_or().
SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2);
SEL_TREE *tree_or(RANGE_OPT_PARAM *param, bool remove_jump_scans,
SEL_TREE *tree1, SEL_TREE *tree2);
SEL_ROOT *key_or(RANGE_OPT_PARAM *param, SEL_ROOT *key1, SEL_ROOT *key2);
SEL_ROOT *key_and(RANGE_OPT_PARAM *param, SEL_ROOT *key1, SEL_ROOT *key2);
SEL_ARG *rb_delete_fixup(SEL_ARG *root, SEL_ARG *key, SEL_ARG *par);
#ifndef NDEBUG
int test_rb_tree(SEL_ARG *element, SEL_ARG *parent);
#endif
static bool eq_tree(const SEL_ROOT *a, const SEL_ROOT *b);
static bool eq_tree(const SEL_ARG *a, const SEL_ARG *b);
static bool get_range(SEL_ARG **e1, SEL_ARG **e2, const SEL_ROOT *root1);
using opt_range::null_element;
/*
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
Note: Caller of this function should take care of sending the
correct flags and correct key to be stored into. In case of
ascending indexes, store_min_key() gets called to store the
min_value to range start_key. In case of descending indexes, it's
called for storing min_value to range end_key.
*/
int SEL_ROOT::store_min_key(KEY_PART *key, uchar **range_key,
uint *range_key_flag, uint last_part,
bool start_key) {
SEL_ARG *key_tree = root->first();
uint res = key_tree->store_min_value(key[key_tree->part].store_length,
range_key, *range_key_flag);
// We've stored min_value, so append min_flag
*range_key_flag |= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->root->part == key_tree->part + 1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN))) {
const bool asc = key_tree->next_key_part->root->is_ascending;
if ((start_key && asc) || (!start_key && !asc))
res += key_tree->next_key_part->store_min_key(
key, range_key, range_key_flag, last_part, start_key);
else {
uint tmp_flag = invert_min_flag(*range_key_flag);
res += key_tree->next_key_part->store_max_key(key, range_key, &tmp_flag,
last_part, start_key);
*range_key_flag = invert_max_flag(tmp_flag);
}
}
return res;
}
/*
Returns the number of keypart values appended to the key buffer.
Note: Caller of this function should take care of sending the
correct flags and correct key to be stored into. In case of
ascending indexes, store_max_key() gets called while storing the
max_value into range end_key. In case of descending indexes,
its max_value to range start_key.
*/
int SEL_ROOT::store_max_key(KEY_PART *key, uchar **range_key,
uint *range_key_flag, uint last_part,
bool start_key) {
SEL_ARG *key_tree = root->last();
uint res = key_tree->store_max_value(key[key_tree->part].store_length,
range_key, *range_key_flag);
// We've stored max value, so return max_flag
(*range_key_flag) |= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->root->part == key_tree->part + 1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX))) {
const bool asc = key_tree->next_key_part->root->is_ascending;
if ((!start_key && asc) || (start_key && !asc))
res += key_tree->next_key_part->store_max_key(
key, range_key, range_key_flag, last_part, start_key);
else {
uint tmp_flag = invert_max_flag(*range_key_flag);
res += key_tree->next_key_part->store_min_key(key, range_key, &tmp_flag,
last_part, start_key);
*range_key_flag = invert_min_flag(tmp_flag);
}
}
return res;
}
void SEL_ROOT::free_tree() {
if (use_count == 0) {
for (SEL_ARG *pos = root->first(); pos; pos = pos->next) {
SEL_ROOT *root = pos->release_next_key_part();
if (root) root->free_tree();
}
}
}
/**
Helper function to compare two SEL_ROOTs.
*/
static bool all_same(const SEL_ROOT *sa1, const SEL_ROOT *sa2) {
if (sa1 == nullptr && sa2 == nullptr) return true;
if ((sa1 != nullptr && sa2 == nullptr) || (sa1 == nullptr && sa2 != nullptr))
return false;
if (sa1->type == SEL_ROOT::Type::KEY_RANGE &&
sa2->type == SEL_ROOT::Type::KEY_RANGE) {
const SEL_ARG *sa1_arg = sa1->root->first();
const SEL_ARG *sa2_arg = sa2->root->first();
for (; sa1_arg && sa2_arg && sa1_arg->is_same(sa2_arg);
sa1_arg = sa1_arg->next, sa2_arg = sa2_arg->next)
;
if (sa1_arg || sa2_arg) return false;
return true;
} else
return sa1->type == sa2->type;
}
SEL_TREE::SEL_TREE(SEL_TREE *arg, RANGE_OPT_PARAM *param)
: keys(param->temp_mem_root, param->keys), n_ror_scans(0) {
keys_map = arg->keys_map;
type = arg->type;
for (uint idx = 0; idx < param->keys; idx++) {
if (arg->keys[idx]) {
set_key(idx, arg->keys[idx]->clone_tree(param));
if (!keys[idx]) break;
} else
set_key(idx, nullptr);
}
List_iterator<SEL_IMERGE> it(arg->merges);
for (SEL_IMERGE *el = it++; el; el = it++) {
SEL_IMERGE *merge = new (param->temp_mem_root) SEL_IMERGE(el, param);
if (!merge || merge->trees.empty() || param->has_errors()) {
merges.clear();
return;
}
merges.push_back(merge);
}
/*
SEL_TREEs are only created by get_mm_tree() (and functions called
by get_mm_tree()). Index intersection is checked after
get_mm_tree() has constructed all ranges. In other words, there
should not be any ROR scans to copy when this ctor is called.
*/
assert(n_ror_scans == 0);
}
/*
Perform AND operation on two index_merge lists and store result in *im1.
*/
inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2) {
im1->concat(im2);
}
/*
Perform OR operation on 2 index_merge lists, storing result in first list.
NOTES
The following conversion is implemented:
(a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
=> (a_1||b_1).
i.e. all conjuncts except the first one are currently dropped.
This is done to avoid producing N*K ways to do index_merge.
If (a_1||b_1) produce a condition that is always true, NULL is returned
and index_merge is discarded (while it is actually possible to try
harder).
As a consequence of this, choice of keys to do index_merge read may depend
on the order of conditions in WHERE part of the query.
RETURN
0 OK, result is stored in *im1
other Error, both passed lists are unusable
*/
static int imerge_list_or_list(RANGE_OPT_PARAM *param, bool remove_jump_scans,
List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2) {
SEL_IMERGE *imerge = im1->head();
im1->clear();
im1->push_back(imerge);
return imerge->or_sel_imerge_with_checks(param, remove_jump_scans,
im2->head());
}
/*
Perform OR operation on index_merge list and key tree.
RETURN
false OK, result is stored in *im1.
true Error
*/
static bool imerge_list_or_tree(RANGE_OPT_PARAM *param, bool remove_jump_scans,
List<SEL_IMERGE> *im1, SEL_TREE *tree) {
DBUG_TRACE;
SEL_IMERGE *imerge;
List_iterator<SEL_IMERGE> it(*im1);
uint remaining_trees = im1->elements;
while ((imerge = it++)) {
SEL_TREE *or_tree;
/*
Need to make a copy of 'tree' for all but the last OR operation
because or_sel_tree_with_checks() may change it.
*/
if (--remaining_trees == 0)
or_tree = tree;
else {
or_tree = new (param->temp_mem_root) SEL_TREE(tree, param);
if (!or_tree || param->has_errors()) return true;
if (or_tree->keys_map.is_clear_all() && or_tree->merges.is_empty())
return false;
}
int result_or =
imerge->or_sel_tree_with_checks(param, remove_jump_scans, or_tree);
if (result_or == 1)
it.remove();
else if (result_or == -1)
return true;
}
assert(remaining_trees == 0);
return im1->is_empty();
}
SEL_ARG::SEL_ARG(SEL_ARG &arg)
: min_flag(arg.min_flag),
max_flag(arg.max_flag),
maybe_flag(arg.maybe_flag),
part(arg.part),
rkey_func_flag(arg.rkey_func_flag),
field(arg.field),
min_value(arg.min_value),
max_value(arg.max_value),
left(null_element),
right(null_element),
next(nullptr),
prev(nullptr),
next_key_part(arg.next_key_part),
is_ascending(arg.is_ascending) {
if (next_key_part) ++next_key_part->use_count;
}
SEL_ARG::SEL_ARG(Field *f, const uchar *min_value_arg,
const uchar *max_value_arg, bool asc)
: part(0),
rkey_func_flag(HA_READ_INVALID),
field(f),
min_value(const_cast<uchar *>(min_value_arg)),
max_value(const_cast<uchar *>(max_value_arg)),
left(null_element),
right(null_element),
next(nullptr),
prev(nullptr),
parent(nullptr),
color(BLACK),
is_ascending(asc) {}
SEL_ARG::SEL_ARG(Field *field_, uint8 part_, uchar *min_value_,
uchar *max_value_, uint8 min_flag_, uint8 max_flag_,
bool maybe_flag_, bool asc, ha_rkey_function gis_flag)
: min_flag(min_flag_),
max_flag(max_flag_),
maybe_flag(maybe_flag_),
part(part_),
rkey_func_flag(gis_flag),
field(field_),
min_value(min_value_),
max_value(max_value_),
left(null_element),
right(null_element),
next(nullptr),
prev(nullptr),
parent(nullptr),
color(BLACK),
is_ascending(asc) {}
SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent,
SEL_ARG **next_arg) {
SEL_ARG *tmp;
if (param->has_errors()) return nullptr;
if (!(tmp = new (param->temp_mem_root)
SEL_ARG(field, part, min_value, max_value, min_flag, max_flag,
maybe_flag, is_ascending,
min_flag & GEOM_FLAG ? rkey_func_flag : HA_READ_INVALID)))
return nullptr; // OOM
tmp->parent = new_parent;
tmp->set_next_key_part(next_key_part);
if (left == null_element || left == nullptr) {
tmp->left = left;
} else {
if (!(tmp->left = left->clone(param, tmp, next_arg)))
return nullptr; // OOM
}
tmp->prev = *next_arg; // Link into next/prev chain
(*next_arg)->next = tmp;
(*next_arg) = tmp;
if (right == null_element || right == nullptr) {
tmp->right = right;
} else {
if (!(tmp->right = right->clone(param, tmp, next_arg)))
return nullptr; // OOM
}
tmp->color = color;
return tmp;
}
/**
This gives the first SEL_ARG in the interval list, and the minimal element
in the red-black tree
@return
SEL_ARG first SEL_ARG in the interval list
*/
SEL_ARG *SEL_ARG::first() {
SEL_ARG *next_arg = this;
if (!next_arg->left) return nullptr; // MAYBE_KEY
while (next_arg->left != null_element) next_arg = next_arg->left;
return next_arg;
}
const SEL_ARG *SEL_ARG::first() const {
return const_cast<SEL_ARG *>(this)->first();
}
SEL_ARG *SEL_ARG::last() {
SEL_ARG *next_arg = this;
if (!next_arg->right) return nullptr; // MAYBE_KEY
while (next_arg->right != null_element) next_arg = next_arg->right;
return next_arg;
}
/*
Check if a compare is ok, when one takes ranges in account
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag, uint8 b_flag) {
int cmp;
/* First check if there was a compare to a min or max element */
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) {
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
return 0;
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
}
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
if (field->is_nullable()) // If null is part of key
{
if (*a != *b) {
return *a ? -1 : 1;
}
if (*a) goto end; // NULL where equal
a++;
b++; // Skip NULL marker
}
cmp = field->key_cmp(a, b);
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
// Check if the compared equal arguments was defined with open/closed range
end:
if (a_flag & (NEAR_MIN | NEAR_MAX)) {
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
return 0;
if (!(b_flag & (NEAR_MIN | NEAR_MAX))) return (a_flag & NEAR_MIN) ? 2 : -2;
return (a_flag & NEAR_MIN) ? 1 : -1;
}
if (b_flag & (NEAR_MIN | NEAR_MAX)) return (b_flag & NEAR_MIN) ? -2 : 2;
return 0; // The elements where equal
}
namespace {
size_t count_elements(const SEL_ARG *arg) {
size_t elements = 1;
assert(arg->left);
assert(arg->right);
if (arg->left && arg->left != null_element)
elements += count_elements(arg->left);
if (arg->right && arg->right != null_element)
elements += count_elements(arg->right);
return elements;
}
} // Namespace
SEL_ROOT::SEL_ROOT(SEL_ARG *root_arg)
: type(Type::KEY_RANGE),
root(root_arg),
elements(count_elements(root_arg)) {}
SEL_ROOT::SEL_ROOT(MEM_ROOT *mem_root, Type type_arg)
: type(type_arg), root(new(mem_root) SEL_ARG()), elements(1) {
assert(type_arg == Type::MAYBE_KEY || type_arg == Type::IMPOSSIBLE);
root->make_root();
if (type_arg == Type::MAYBE_KEY) {
// See todo for left/right pointers
root->left = root->right = nullptr;
}
}
SEL_ROOT *SEL_ROOT::clone_tree(RANGE_OPT_PARAM *param) const {
/*
Only SEL_ROOTs of type KEY_RANGE has any elements that need to be cloned.
For other types, just create a new SEL_ROOT object.
*/
if (type != Type::KEY_RANGE)
return new (param->temp_mem_root) SEL_ROOT(param->temp_mem_root, type);
SEL_ARG tmp_link, *next_arg, *new_root;
SEL_ROOT *new_tree;
next_arg = &tmp_link;
// Clone the underlying SEL_ARG tree, starting from the root node.
if (!(new_root = root->clone(param, (SEL_ARG *)nullptr, &next_arg)) ||
(param && param->has_errors()))
return nullptr;
// Make the SEL_ROOT itself.
if (!(new_tree = new (param->temp_mem_root) SEL_ROOT(new_root)))
return nullptr;
new_tree->elements = elements;
next_arg->next = nullptr; // Fix last link
tmp_link.next->prev = nullptr; // Fix first link
new_tree->use_count = 0;
return new_tree;
}
SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2) {
DBUG_TRACE;
if (param->has_errors()) return nullptr;
if (tree1 == nullptr) {
if (tree2 != nullptr) {
tree2->inexact = true;
}
return tree2;
}
if (tree2 == nullptr) {
if (tree1 != nullptr) {
tree1->inexact = true;
}
return tree1;
}
if (tree1->type == SEL_TREE::IMPOSSIBLE) {
return tree1;
}
if (tree2->type == SEL_TREE::IMPOSSIBLE) {
return tree2;
}
if (tree2->type == SEL_TREE::ALWAYS) {
tree1->inexact |= tree2->inexact;
return tree1;
}
if (tree1->type == SEL_TREE::ALWAYS) {
tree2->inexact |= tree1->inexact;
return tree2;
}
dbug_print_tree("tree1", tree1, param);
dbug_print_tree("tree2", tree2, param);
Key_map result_keys;
/* Join the trees key per key */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ROOT *key1 = tree1->release_key(idx);
SEL_ROOT *key2 = tree2->release_key(idx);
if (key1 != nullptr || key2 != nullptr) {
if (key1 == nullptr || key2 == nullptr) {
// If AND-ing two trees together, and one has an expression over a
// different index from the other, we cannot guarantee that the entire
// expression is exact if that index is chosen. (The only time this
// really matters is when there's an AND within an OR; only the
// hypergraph optimizer cares about the inexact flag, and it does its
// own splitting of top-level ANDs.)
tree1->inexact = true;
}
SEL_ROOT *new_key = key_and(param, key1, key2);
tree1->set_key(idx, new_key);
if (new_key) {
if (new_key->type == SEL_ROOT::Type::IMPOSSIBLE) {
tree1->type = SEL_TREE::IMPOSSIBLE;
return tree1;
}
result_keys.set_bit(idx);
#ifndef NDEBUG
/*
Do not test use_count if there is a large range tree created.
It takes too much time to traverse the tree.
*/
if (param->temp_mem_root->allocated_size() < 2097152)
new_key->test_use_count(new_key);
#endif
}
}
}
tree1->keys_map = result_keys;
tree1->inexact |= tree2->inexact;
/* ok, both trees are index_merge trees */
imerge_list_and_list(&tree1->merges, &tree2->merges);
return tree1;
}
/*
Check if two SEL_TREES can be combined into one (i.e. a single key range
read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
using index_merge.
*/
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2,
RANGE_OPT_PARAM *param) {
Key_map common_keys = tree1->keys_map;
DBUG_TRACE;
common_keys.intersect(tree2->keys_map);
dbug_print_tree("tree1", tree1, param);
dbug_print_tree("tree2", tree2, param);
if (common_keys.is_clear_all()) return false;
/* trees have a common key, check if they refer to same key part */
for (uint key_no = 0; key_no < param->keys; key_no++) {
if (common_keys.is_set(key_no)) {
const SEL_ROOT *key1 = tree1->keys[key_no];
const SEL_ROOT *key2 = tree2->keys[key_no];
/* GIS_OPTIMIZER_FIXME: temp solution. key1 could be all nulls */
if (key1 && key2 && key1->root->part == key2->root->part) return true;
}
}
return false;
}
/*
Remove the trees that are not suitable for record retrieval.
SYNOPSIS
param Range analysis parameter
tree Tree to be processed, tree->type is KEY
DESCRIPTION
This function walks through tree->keys[] and removes the SEL_ARG* trees
that are not "maybe" trees (*) and cannot be used to construct quick range
selects.
(*) - have type MAYBE or MAYBE_KEY. Perhaps we should remove trees of
these types here as well.
A SEL_ARG* tree cannot be used to construct quick select if it has
tree->part != 0. (e.g. it could represent "keypart2 < const").
WHY THIS FUNCTION IS NEEDED
Normally we allow construction of SEL_TREE objects that have SEL_ARG
trees that do not allow quick range select construction. For example for
" keypart1=1 AND keypart2=2 " the execution will proceed as follows:
tree1= SEL_TREE { SEL_ARG{keypart1=1} }
tree2= SEL_TREE { SEL_ARG{keypart2=2} } -- can't make quick range select
from this
call tree_and(tree1, tree2) -- this joins SEL_ARGs into a usable SEL_ARG
tree.
There is an exception though: when we construct index_merge SEL_TREE,
any SEL_ARG* tree that cannot be used to construct quick range select can
be removed, because current range analysis code doesn't provide any way
that tree could be later combined with another tree.
Consider an example: we should not construct
st1 = SEL_TREE {
merges = SEL_IMERGE {
SEL_TREE(t.key1part1 = 1),
SEL_TREE(t.key2part2 = 2) -- (*)
}
};
because
- (*) cannot be used to construct quick range select,
- There is no execution path that would cause (*) to be converted to
a tree that could be used.
The latter is easy to verify: first, notice that the only way to convert
(*) into a usable tree is to call tree_and(something, (*)).
Second look at what tree_and/tree_or function would do when passed a
SEL_TREE that has the structure like st1 tree has, and conclude that
tree_and(something, (*)) will not be called.
RETURN
0 Ok, some suitable trees left
1 No tree->keys[] left.
*/
static bool remove_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree) {
bool res = false;
for (uint i = 0; i < param->keys; i++) {
if (tree->keys[i]) {
if (tree->keys[i]->root->part) {
tree->keys[i] = NULL;
tree->keys_map.clear_bit(i);
} else
res = true;
}
}
return !res;
}
SEL_TREE *tree_or(RANGE_OPT_PARAM *param, bool remove_jump_scans,
SEL_TREE *tree1, SEL_TREE *tree2) {
DBUG_TRACE;
if (param->has_errors()) return nullptr;
if (!tree1 || !tree2) return nullptr;
tree1->inexact = tree2->inexact = tree1->inexact | tree2->inexact;
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
return tree2;
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
return tree1;
/*
It is possible that a tree contains both
a) simple range predicates (in tree->keys[]) and
b) index merge range predicates (in tree->merges)
If a tree has both, they represent equally *valid* range
predicate alternatives; both will return all relevant rows from
the table but one may return more unnecessary rows than the
other (additional rows will be filtered later). However, doing
an OR operation on trees with both types of predicates is too
complex at the time. We therefore remove the index merge
predicates (if we have both types) before OR'ing the trees.
TODO: enable tree_or() for trees with both simple and index
merge range predicates.
*/
if (!tree1->merges.is_empty()) {
for (uint i = 0; i < param->keys; i++)
if (tree1->keys[i] != NULL &&
tree1->keys[i]->type == SEL_ROOT::Type::KEY_RANGE) {
tree1->merges.clear();
break;
}
}
if (!tree2->merges.is_empty()) {
for (uint i = 0; i < param->keys; i++)
if (tree2->keys[i] != NULL &&
tree2->keys[i]->type == SEL_ROOT::Type::KEY_RANGE) {
tree2->merges.clear();
break;
}
}
SEL_TREE *result = nullptr;
Key_map result_keys;
if (sel_trees_can_be_ored(tree1, tree2, param)) {
/* Join the trees key per key */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ROOT *key1 = tree1->release_key(idx);
SEL_ROOT *key2 = tree2->release_key(idx);
SEL_ROOT *new_key = key_or(param, key1, key2);
tree1->set_key(idx, new_key);
if (new_key) {
result = tree1; // Added to tree1
result_keys.set_bit(idx);
#ifndef NDEBUG
/*
Do not test use count if there is a large range tree created.
It takes too much time to traverse the tree.
*/
if (param->temp_mem_root->allocated_size() < 2097152)
new_key->test_use_count(new_key);
#endif
}
}
if (result) result->keys_map = result_keys;
} else {
/* ok, two trees have KEY type but cannot be used without index merge */
if (tree1->merges.is_empty() && tree2->merges.is_empty()) {
if (remove_jump_scans) {
bool no_trees = remove_nonrange_trees(param, tree1);
no_trees = no_trees || remove_nonrange_trees(param, tree2);
if (no_trees)
return new (param->temp_mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->temp_mem_root, param->keys);
}
SEL_IMERGE *merge;
/* both trees are "range" trees, produce new index merge structure */
if (!(result = new (param->temp_mem_root)
SEL_TREE(param->temp_mem_root, param->keys)) ||
!(merge =
new (param->temp_mem_root) SEL_IMERGE(param->temp_mem_root)) ||
result->merges.push_back(merge) || merge->or_sel_tree(tree1) ||
merge->or_sel_tree(tree2))
result = nullptr;
else
result->type = tree1->type;
} else if (!tree1->merges.is_empty() && !tree2->merges.is_empty()) {
if (imerge_list_or_list(param, remove_jump_scans, &tree1->merges,
&tree2->merges))
result = new (param->temp_mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->temp_mem_root, param->keys);
else
result = tree1;
} else {
/* one tree is index merge tree and another is range tree */
if (tree1->merges.is_empty()) std::swap(tree1, tree2);
if (remove_jump_scans && remove_nonrange_trees(param, tree2))
return new (param->temp_mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->temp_mem_root, param->keys);
/* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
if (imerge_list_or_tree(param, remove_jump_scans, &tree1->merges, tree2))
result = new (param->temp_mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->temp_mem_root, param->keys);
else
result = tree1;
}
}
return result;
}
/**
And key trees where key1->part < key2->part
key2 will be connected to every key in key1, and thus
have its use_count incremented many times. The returned node
will not have its use_count increased; you are supposed to do
that yourself when you connect it to a root.
@param param Range analysis context (needed to track if we have allocated
too many SEL_ARGs)
@param key1 Root of first tree to AND together
@param key2 Root of second tree to AND together
@return Root of (key1 AND key2)
*/
static SEL_ROOT *and_all_keys(RANGE_OPT_PARAM *param, SEL_ROOT *key1,
SEL_ROOT *key2) {
SEL_ARG *next;
// We will be modifying key1, so clone it if we need to.
if (key1->use_count > 0) {
if (!(key1 = key1->clone_tree(param))) return nullptr; // OOM
}
/*
We will be using key2 several times, so temporarily increase
its use_count artificially to keep key_and() below from modifying
it in-place.
Note that this makes test_use_count() fail since our use_count is
now higher than the actual number of references, but that is only ever
called from tree_and() and tree_or(), not from anything below this,
and we undo it below.
*/
++key2->use_count;
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) {
// See todo for left/right pointers
assert(!key1->root->left);
assert(!key1->root->right);
key1->root->next = key1->root->prev = nullptr;
}
for (next = key1->root->first(); next; next = next->next) {
if (next->next_key_part) {
/*
The more complicated case; there's already another AND clause,
so we cannot connect key2 to key1 directly, but need to recurse.
*/
SEL_ROOT *tmp = key_and(param, next->release_next_key_part(), key2);
next->set_next_key_part(tmp);
if (tmp && tmp->type == SEL_ROOT::Type::IMPOSSIBLE) {
key1->tree_delete(next);
}
} else {
// The trivial case.
next->set_next_key_part(key2);
}
}
// Undo the temporary use_count modification above.
--key2->use_count;
return key1;
}
/*
Produce a SEL_ARG graph that represents "key1 AND key2"
SYNOPSIS
key_and()
param Range analysis context (needed to track if we have allocated
too many SEL_ARGs)
key1 First argument, root of its RB-tree
key2 Second argument, root of its RB-tree
key_and() does not modify key1 nor key2 if they are in use by other roots
(although typical use is that key1 has been disconnected from its root
and thus can be modified in-place). Thus, it does not change their use_count
in the typical case.
The returned node will not have its use_count increased; you are supposed
to do that yourself when you connect it to a root.
RETURN
RB-tree root of the resulting SEL_ARG graph.
NULL if the result of AND operation is an empty interval {0}.
*/
SEL_ROOT *key_and(RANGE_OPT_PARAM *param, SEL_ROOT *key1, SEL_ROOT *key2) {
if (param->has_errors()) return nullptr;
if (key1 == nullptr || key1->is_always()) {
if (key1) key1->free_tree();
return key2;
}
if (key2 == nullptr || key2->is_always()) {
if (key2) key2->free_tree();
return key1;
}
if (key1->root->part != key2->root->part) {
if (key1->root->part > key2->root->part) {
std::swap(key1, key2);
}
assert(key1->root->part < key2->root->part);
return and_all_keys(param, key1, key2);
}
if ((!key2->simple_key() && key1->simple_key() &&
key2->type != SEL_ROOT::Type::MAYBE_KEY) ||
key1->type == SEL_ROOT::Type::MAYBE_KEY) { // Put simple key in key2
std::swap(key1, key2);
}
/* If one of the key is MAYBE_KEY then the found region may be smaller */
if (key2->type == SEL_ROOT::Type::MAYBE_KEY) {
if (key1->use_count > 0) {
// We are going to modify key1, so we need to clone it.
if (!(key1 = key1->clone_tree(param))) return nullptr; // OOM
}
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) { // Both are maybe key
SEL_ROOT *new_part = key_and(param, key1->root->release_next_key_part(),
key2->root->next_key_part);
key1->root->set_next_key_part(new_part);
return key1;
} else {
key1->root->maybe_smaller();
if (key2->root->next_key_part) {
return and_all_keys(param, key1, key2);
} else {
/*
key2 is MAYBE_KEY and nothing more; simply discard it,
since we've now moved that information into key1's maybe_flag.
*/
key2->free_tree();
return key1;
}
}
// Unreachable.
assert(false);
return nullptr;
}
if ((key1->root->min_flag | key2->root->min_flag) & GEOM_FLAG) {
/*
Cannot optimize geometry ranges. The next best thing is to keep
one of them.
*/
key2->free_tree();
return key1;
}
// Two non-overlapped key ranges for multi-valued index do not mean
// an always false condition.
// For example, "1 member of(f) AND 2 member of(f)" for f=[1, 2].
if (key1->root->field->is_array() || key2->root->field->is_array()) {
return and_all_keys(param, key1, key2);
}
SEL_ARG *e1 = key1->root->first(), *e2 = key2->root->first();
SEL_ROOT *new_tree = nullptr;
while (e1 && e2) {
int cmp = e1->cmp_min_to_min(e2);
if (cmp < 0) {
if (get_range(&e1, &e2, key1)) continue;
} else if (get_range(&e2, &e1, key2))
continue;
/*
NOTE: We don't destroy e1->next_key_part nor e2->next_key_part
(if used at all, the return value here goes into a brand new element;
it does not overwrite either of them), so we keep their use_counts
intact here.
*/
SEL_ROOT *next = key_and(param, e1->next_key_part, e2->next_key_part);
if (next && next->type == SEL_ROOT::Type::IMPOSSIBLE)
next->free_tree();
else {
SEL_ARG *new_arg = e1->clone_and(e2, param->temp_mem_root);
if (!new_arg) return nullptr; // End of memory
new_arg->set_next_key_part(next);
if (!new_tree) {
new_tree = new (param->temp_mem_root) SEL_ROOT(new_arg);
} else
new_tree->insert(new_arg);
}
if (e1->cmp_max_to_max(e2) < 0)
e1 = e1->next; // e1 can't overlap next e2
else
e2 = e2->next;
}
key1->free_tree();
key2->free_tree();
if (!new_tree)
// Impossible range
return new (param->temp_mem_root)
SEL_ROOT(param->temp_mem_root, SEL_ROOT::Type::IMPOSSIBLE);
return new_tree;
}
static bool get_range(SEL_ARG **e1, SEL_ARG **e2, const SEL_ROOT *root1) {
(*e1) = root1->find_range(*e2); // first e1->min < e2->min
if ((*e1)->cmp_max_to_min(*e2) < 0) {
if (!((*e1) = (*e1)->next)) return true;
if ((*e1)->cmp_min_to_max(*e2) > 0) {
(*e2) = (*e2)->next;
return true;
}
}
return false;
}
/**
Combine two range expression under a common OR. On a logical level, the
transformation is key_or( expr1, expr2 ) => expr1 OR expr2.
Both expressions are assumed to be in the SEL_ARG format. In a logic sense,
the format is reminiscent of DNF, since an expression such as the following
( 1 < kp1 < 10 AND p1 ) OR ( 10 <= kp2 < 20 AND p2 )
where there is a key consisting of keyparts ( kp1, kp2, ..., kpn ) and p1
and p2 are valid SEL_ARG expressions over keyparts kp2 ... kpn, is a valid
SEL_ARG condition. The disjuncts appear ordered by the minimum endpoint of
the first range and ranges must not overlap. It follows that they are also
ordered by maximum endpoints. Thus
( 1 < kp1 <= 2 AND ( kp2 = 2 OR kp2 = 3 ) ) OR kp1 = 3
Is a a valid SER_ARG expression for a key of at least 2 keyparts.
For simplicity, we will assume that expr2 is a single range predicate,
i.e. on the form ( a < x < b AND ... ). It is easy to generalize to a
disjunction of several predicates by subsequently call key_or for each
disjunct.
The algorithm iterates over each disjunct of expr1, and for each disjunct
where the first keypart's range overlaps with the first keypart's range in
expr2:
If the predicates are equal for the rest of the keyparts, or if there are
no more, the range in expr2 has its endpoints copied in, and the SEL_ARG
node in expr2 is deallocated. If more ranges became connected in expr1, the
surplus is also dealocated. If they differ, two ranges are created.
- The range leading up to the overlap. Empty if endpoints are equal.
- The overlapping sub-range. May be the entire range if they are equal.
Finally, there may be one more range if expr2's first keypart's range has a
greater maximum endpoint than the last range in expr1.
For the overlapping sub-range, we recursively call key_or. Thus in order to
compute key_or of
(1) ( 1 < kp1 < 10 AND 1 < kp2 < 10 )
(2) ( 2 < kp1 < 20 AND 4 < kp2 < 20 )
We create the ranges 1 < kp <= 2, 2 < kp1 < 10, 10 <= kp1 < 20. For the
first one, we simply hook on the condition for the second keypart from (1)
: 1 < kp2 < 10. For the second range 2 < kp1 < 10, key_or( 1 < kp2 < 10, 4
< kp2 < 20 ) is called, yielding 1 < kp2 < 20. For the last range, we reuse
the range 4 < kp2 < 20 from (2) for the second keypart. The result is thus
( 1 < kp1 <= 2 AND 1 < kp2 < 10 ) OR
( 2 < kp1 < 10 AND 1 < kp2 < 20 ) OR
( 10 <= kp1 < 20 AND 4 < kp2 < 20 )
key_or() does not modify key1 nor key2 if they are in use by other roots
(although typical use is that key1 has been disconnected from its root
and thus can be modified in-place). Thus, it does not change their
use_count.
The returned node will not have its use_count increased; you are supposed
to do that yourself when you connect it to a root.
@param param RANGE_OPT_PARAM from test_quick_select
@param key1 Root of RB-tree of SEL_ARGs to be ORed with key2
@param key2 Root of RB-tree of SEL_ARGs to be ORed with key1
*/
SEL_ROOT *key_or(RANGE_OPT_PARAM *param, SEL_ROOT *key1, SEL_ROOT *key2) {
if (param->has_errors()) return nullptr;
if (key1 == nullptr || key1->is_always()) {
if (key2) key2->free_tree();
return key1;
}
if (key2 == nullptr || key2->is_always())
// Case is symmetric to the one above, just flip parameters.
return key_or(param, key2, key1);
if (key1->root->part != key2->root->part ||
(key1->root->min_flag | key2->root->min_flag) & GEOM_FLAG) {
key1->free_tree();
key2->free_tree();
return nullptr; // Can't optimize this
}
// If one of the key is MAYBE_KEY then the found region may be bigger
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) {
key2->free_tree();
return key1;
}
if (key2->type == SEL_ROOT::Type::MAYBE_KEY) {
key1->free_tree();
return key2;
}
// (cond) OR (IMPOSSIBLE) <=> (cond).
if (key1->type == SEL_ROOT::Type::IMPOSSIBLE) {
key1->free_tree();
return key2;
}
if (key2->type == SEL_ROOT::Type::IMPOSSIBLE) {
key2->free_tree();
return key1;
}
/*
We need to modify one of key1 or key2 (whichever we choose, we will
call it key1 afterwards). If either is used only by us (use_count == 0),
we can use that directly. If not, we need to clone one of them; we pick
the one with the fewest elements since that is the cheapest.
*/
if (key1->use_count > 0) {
if (key2->use_count == 0 || key1->elements > key2->elements) {
std::swap(key1, key2);
}
if (key1->use_count > 0 && (key1 = key1->clone_tree(param)) == nullptr)
return nullptr; // OOM
}
assert(key1->use_count == 0);
/*
Add tree at key2 to tree at key1. If key2 is used by nobody else,
we can cannibalize its nodes and add them directly into key1.
If not, we'll need to make copies of them.
*/
const bool key2_shared = (key2->use_count != 0);
key1->root->maybe_flag |= key2->root->maybe_flag;
/*
Notation for illustrations used in the rest of this function:
Range: [--------]
^ ^
start stop
Two overlapping ranges:
[-----] [----] [--]
[---] or [---] or [-------]
Ambiguity: ***
The range starts or stops somewhere in the "***" range.
Example: a starts before b and may end before/the same place/after b
a: [----***]
b: [---]
Adjacent ranges:
Ranges that meet but do not overlap. Example: a = "x < 3", b = "x >= 3"
a: ----]
b: [----
*/
SEL_ARG *cur_key2 = key2->root->first();
while (cur_key2) {
/*
key1 consists of one or more ranges. cur_key1 is the
range currently being handled.
initialize cur_key1 to the latest range in key1 that starts the
same place or before the range in cur_key2 starts
cur_key2: [------]
key1: [---] [-----] [----]
^
cur_key1
*/
SEL_ARG *cur_key1 = key1->find_range(cur_key2);
/*
Used to describe how two key values are positioned compared to
each other. Consider key_value_a.<cmp_func>(key_value_b):
-2: key_value_a is smaller than key_value_b, and they are adjacent
-1: key_value_a is smaller than key_value_b (not adjacent)
0: the key values are equal
1: key_value_a is bigger than key_value_b (not adjacent)
2: key_value_a is bigger than key_value_b, and they are adjacent
Example: "cmp= cur_key1->cmp_max_to_min(cur_key2)"
cur_key2: [-------- (10 <= x ... )
cur_key1: -----] ( ... x < 10) => cmp==-2
cur_key1: ----] ( ... x < 9) => cmp==-1
cur_key1: ------] ( ... x <= 10) => cmp== 0
cur_key1: --------] ( ... x <= 12) => cmp== 1
(cmp == 2 does not make sense for cmp_max_to_min())
*/
int cmp = 0;
if (!cur_key1) {
/*
The range in cur_key2 starts before the first range in key1. Use
the first range in key1 as cur_key1.
cur_key2: [--------]
key1: [****--] [----] [-------]
^
cur_key1
*/
cur_key1 = key1->root->first();
cmp = -1;
} else if ((cmp = cur_key1->cmp_max_to_min(cur_key2)) < 0) {
/*
This is the case:
cur_key2: [-------]
cur_key1: [----**]
*/
SEL_ARG *next_key1 = cur_key1->next;
if (cmp == -2 &&
eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
/*
Adjacent (cmp==-2) and equal next_key_parts => ranges can be merged
This is the case:
cur_key2: [-------]
cur_key1: [----]
Result:
cur_key2: [-------------] => inserted into key1 below
cur_key1: => deleted
*/
SEL_ARG *next_key2 = cur_key2->next;
if (key2_shared) {
if (!(cur_key2 = new (param->temp_mem_root) SEL_ARG(*cur_key2)))
return nullptr; // out of memory
cur_key2->next = next_key2; // New copy of cur_key2
}
if (cur_key2->copy_min(cur_key1)) {
// cur_key2 is full range: [-inf <= cur_key2 <= +inf]
key1->free_tree();
key2->free_tree();
if (key1->root->maybe_flag)
return new (param->temp_mem_root)
SEL_ROOT(param->temp_mem_root, SEL_ROOT::Type::MAYBE_KEY);
return nullptr;
}
key1->tree_delete(cur_key1);
if (key1->type == SEL_ROOT::Type::IMPOSSIBLE) {
/*
cur_key1 was the last range in key1; move the cur_key2
range that was merged above to key1
*/
key1->insert(cur_key2);
cur_key2 = next_key2;
break;
}
}
// Move to next range in key1. Now cur_key1.min > cur_key2.min
if (!(cur_key1 = next_key1))
break; // No more ranges in key1. Copy rest of key2
}
if (cmp < 0) {
/*
This is the case:
cur_key2: [--***]
cur_key1: [----]
*/
int cur_key1_cmp;
if ((cur_key1_cmp = cur_key1->cmp_min_to_max(cur_key2)) > 0) {
/*
This is the case:
cur_key2: [------**]
cur_key1: [----]
*/
if (cur_key1_cmp == 2 &&
eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
/*
Adjacent ranges with equal next_key_part. Merge like this:
This is the case:
cur_key2: [------]
cur_key1: [-----]
Result:
cur_key2: [------]
cur_key1: [-------------]
Then move on to next key2 range.
*/
cur_key1->copy_min_to_min(cur_key2);
key1->root->merge_flags(cur_key2); // should be cur_key1->merge...()
// ?
if (cur_key1->min_flag & NO_MIN_RANGE &&
cur_key1->max_flag & NO_MAX_RANGE) {
key1->free_tree();
key2->free_tree();
if (key1->root->maybe_flag)
return new (param->temp_mem_root)
SEL_ROOT(param->temp_mem_root, SEL_ROOT::Type::MAYBE_KEY);
return nullptr;
}
cur_key2->release_next_key_part(); // Free not used tree
cur_key2 = cur_key2->next;
continue;
} else {
/*
cur_key2 not adjacent to cur_key1 or has different next_key_part.
Insert into key1 and move to next range in key2
This is the case:
cur_key2: [------**]
cur_key1: [----]
Result:
key1: [------**][----]
^ ^
insert cur_key1
*/
SEL_ARG *next_key2 = cur_key2->next;
if (key2_shared) {
SEL_ARG *cpy = new (param->temp_mem_root)
SEL_ARG(*cur_key2); // Must make copy
if (!cpy) return nullptr; // OOM
key1->insert(cpy);
} else
key1->insert(cur_key2);
cur_key2 = next_key2;
continue;
}
}
}
/*
The ranges in cur_key1 and cur_key2 are overlapping:
cur_key2: [----------]
cur_key1: [*****-----*****]
Corollary: cur_key1.min <= cur_key2.max
*/
if (eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
// Merge overlapping ranges with equal next_key_part
if (cur_key1->is_same(cur_key2)) {
/*
cur_key1 covers exactly the same range as cur_key2
Use the relevant range in key1.
*/
cur_key1->merge_flags(cur_key2); // Copy maybe flags
cur_key2->release_next_key_part(); // Free not used tree
// Move to the next range in cur_key2
cur_key2 = cur_key2->next;
continue;
} else {
SEL_ARG *last = cur_key1;
SEL_ARG *first = cur_key1;
/*
Find the last range in key1 that overlaps cur_key2 and
where all ranges first...last have the same next_key_part as
cur_key2.
cur_key2: [****----------------------*******]
key1: [--] [----] [---] [-----] [xxxx]
^ ^ ^
first last different next_key_part
Since cur_key2 covers them, the ranges between first and last
are merged into one range by deleting first...last-1 from
the key1 tree. In the figure, this applies to first and the
two consecutive ranges. The range of last is then extended:
* last.min: Set to min(cur_key2.min, first.min)
* last.max: If there is a last->next that overlaps cur_key2
(i.e., last->next has a different next_key_part):
Set adjacent to last->next.min
Otherwise: Set to max(cur_key2.max, last.max)
Result:
cur_key2: [****----------------------*******]
[--] [----] [---] => deleted from key1
key1: [**------------------------***][xxxx]
^ ^
cur_key1=last different next_key_part
*/
while (last->next && last->next->cmp_min_to_max(cur_key2) <= 0 &&
eq_tree(last->next->next_key_part, cur_key2->next_key_part)) {
/*
last->next is covered by cur_key2 and has same next_key_part.
last can be deleted
*/
SEL_ARG *save = last;
last = last->next;
key1->tree_delete(save);
}
// Redirect cur_key1 to last which will cover the entire range
cur_key1 = last;
/*
Extend last to cover the entire range of
[min(first.min_value,cur_key2.min_value)...last.max_value].
If this forms a full range (the range covers all possible
values) we return no SEL_ARG RB-tree.
*/
bool full_range = last->copy_min(first);
if (!full_range) full_range = last->copy_min(cur_key2);
if (!full_range) {
if (last->next && cur_key2->cmp_max_to_min(last->next) >= 0) {
/*
This is the case:
cur_key2: [-------------]
key1: [***------] [xxxx]
^ ^
last different next_key_part
Extend range of last up to last->next:
cur_key2: [-------------]
key1: [***--------][xxxx]
*/
last->copy_min_to_max(last->next);
} else
/*
This is the case:
cur_key2: [--------*****]
key1: [***---------] [xxxx]
^ ^
last different next_key_part
Extend range of last up to max(last.max, cur_key2.max):
cur_key2: [--------*****]
key1: [***----------**] [xxxx]
*/
full_range = last->copy_max(cur_key2);
}
if (full_range) { // Full range
key1->free_tree();
cur_key2->release_next_key_part();
if (key1->root->maybe_flag)
return new (param->temp_mem_root)
SEL_ROOT(param->temp_mem_root, SEL_ROOT::Type::MAYBE_KEY);
return nullptr;
}
}
}
if (cmp >= 0 && cur_key1->cmp_min_to_min(cur_key2) < 0) {
/*
This is the case ("cmp>=0" means that cur_key1.max >= cur_key2.min):
cur_key2: [-------]
cur_key1: [----------*******]
*/
if (!cur_key1->next_key_part) {
/*
cur_key1->next_key_part is empty: cut the range that
is covered by cur_key1 from cur_key2.
Reason: (cur_key2->next_key_part OR
cur_key1->next_key_part) will be empty and therefore
equal to cur_key1->next_key_part. Thus, this part of
the cur_key2 range is completely covered by cur_key1.
*/
if (cur_key1->cmp_max_to_max(cur_key2) >= 0) {
/*
cur_key1 covers the entire range in cur_key2.
cur_key2: [-------]
cur_key1: [-----------------]
Move on to next range in key2
*/
cur_key2 = cur_key2->next;
continue;
} else {
/*
This is the case:
cur_key2: [-------]
cur_key1: [---------]
Result:
cur_key2: [---]
cur_key1: [---------]
*/
cur_key2->copy_max_to_min(cur_key1);
// FIXME: what if key2_shared?
continue;
}
}
/*
The ranges are overlapping but have not been merged because
next_key_part of cur_key1 and cur_key2 differ.
cur_key2: [----]
cur_key1: [------------*****]
Split cur_key1 in two where cur_key2 starts:
cur_key2: [----]
key1: [--------][--*****]
^ ^
insert cur_key1
*/
SEL_ARG *new_arg = cur_key1->clone_first(cur_key2, param->temp_mem_root);
if (!new_arg) return nullptr; // OOM
new_arg->set_next_key_part(cur_key1->next_key_part);
cur_key1->copy_min_to_min(cur_key2);
key1->insert(new_arg);
} // cur_key1.min >= cur_key2.min due to this if()
/*
Now cur_key2.min <= cur_key1.min <= cur_key2.max:
cur_key2: [---------]
cur_key1: [****---*****]
*/
/*
Get a copy we can modify. Note that this will keep an extra reference
to its next_key_part (if any), but the destructor will clean that up
when we exit from the function. key2_cpy is ephemeral and will not be
inserted in any tree, although copies of it might be.
*/
SEL_ARG key2_cpy(*cur_key2);
for (;;) {
if (cur_key1->cmp_min_to_min(&key2_cpy) > 0) {
/*
This is the case:
key2_cpy: [------------]
key1: [-*****]
^
cur_key1
Result:
key2_cpy: [---]
key1: [-------][-*****]
^ ^
insert cur_key1
*/
SEL_ARG *new_arg = key2_cpy.clone_first(cur_key1, param->temp_mem_root);
if (!new_arg) return nullptr; // OOM
new_arg->set_next_key_part(key2_cpy.next_key_part);
key1->insert(new_arg);
key2_cpy.copy_min_to_min(cur_key1);
}
// Now key2_cpy.min == cur_key1.min
if ((cmp = cur_key1->cmp_max_to_max(&key2_cpy)) <= 0) {
/*
cur_key1.max <= key2_cpy.max:
key2_cpy: a) [-------] or b) [----]
cur_key1: [----] [----]
Steps:
1) Update next_key_part of cur_key1: OR it with
key2_cpy->next_key_part.
2) If case a: Insert range [cur_key1.max, key2_cpy.max]
into key1 using next_key_part of key2_cpy
Result:
key1: a) [----][-] or b) [----]
*/
cur_key1->maybe_flag |= key2_cpy.maybe_flag;
cur_key1->set_next_key_part(key_or(
param, cur_key1->release_next_key_part(), key2_cpy.next_key_part));
if (!cmp) break; // case b: done with this key2 range
// Make key2_cpy the range [cur_key1.max, key2_cpy.max]
key2_cpy.copy_max_to_min(cur_key1);
if (!(cur_key1 = cur_key1->next)) {
/*
No more ranges in key1. Insert key2_cpy and go to "end"
label to insert remaining ranges in key2 if any.
*/
SEL_ARG *new_key1_range =
new (param->temp_mem_root) SEL_ARG(key2_cpy);
if (!new_key1_range) return nullptr; // OOM
key1->insert(new_key1_range);
cur_key2 = cur_key2->next;
goto end;
}
if (cur_key1->cmp_min_to_max(&key2_cpy) > 0) {
/*
The next range in key1 does not overlap with key2_cpy.
Insert this range into key1 and move on to the next range
in key2.
*/
SEL_ARG *new_key1_range =
new (param->temp_mem_root) SEL_ARG(key2_cpy);
if (!new_key1_range) return nullptr; // OOM
key1->insert(new_key1_range);
break;
}
/*
key2_cpy overlaps with the next range in key1 and the case
is now "cur_key2.min <= cur_key1.min <= cur_key2.max". Go back
to for(;;) to handle this situation.
*/
continue;
} else {
/*
This is the case:
key2_cpy: [-------]
cur_key1: [------------]
Result:
key1: [-------][---]
^ ^
new_arg cur_key1
Steps:
0) If cur_key1->next_key_part is empty: do nothing.
Reason: (key2_cpy->next_key_part OR
cur_key1->next_key_part) will be empty and
therefore equal to cur_key1->next_key_part. Thus,
the range in key2_cpy is completely covered by
cur_key1
1) Make new_arg with range [cur_key1.min, key2_cpy.max].
new_arg->next_key_part is OR between next_key_part of
cur_key1 and key2_cpy
2) Make cur_key1 the range [key2_cpy.max, cur_key1.max]
3) Insert new_arg into key1
*/
if (!cur_key1->next_key_part) // Step 0
{
key2_cpy.release_next_key_part(); // Free not used tree
break;
}
SEL_ARG *new_arg =
cur_key1->clone_last(&key2_cpy, param->temp_mem_root);
if (!new_arg) return nullptr; // OOM
cur_key1->copy_max_to_min(&key2_cpy);
new_arg->set_next_key_part(
key_or(param, cur_key1->next_key_part, key2_cpy.next_key_part));
key1->insert(new_arg);
break;
}
}
// Move on to next range in key2
cur_key2 = cur_key2->next;
}
end:
/*
Add key2 ranges that are non-overlapping with and higher than the
highest range in key1.
*/
while (cur_key2) {
SEL_ARG *next = cur_key2->next;
if (key2_shared) {
SEL_ARG *key2_cpy =
new (param->temp_mem_root) SEL_ARG(*cur_key2); // Must make copy
if (!key2_cpy) return nullptr;
key1->insert(key2_cpy);
} else
key1->insert(cur_key2);
cur_key2 = next;
}
/*
TODO: We should call key2->free_tree() here, since this might be the
last reference to the tree (if !key2_shared). However, the tree might
be in an invalid state since we may have inserted nodes into key1 without
taking them out of key2, so we need to clean that up first. As a temporary
measure, we TRASH() it to expose any bugs where people hold on to it
where we thought they wouldn't.
*/
#ifndef NDEBUG
if (!key2_shared) TRASH(key2, sizeof(*key2));
#endif
return key1;
}
/**
Compare if two trees are equal, recursively (not necessarily the same
elements, but in terms of structure and values in each leaf).
NOTE: The demand for the same structure means that some trees that are
equivalent could be deemed inequal by this function, depending on insertion
order.
@param a First tree to compare.
@param b Second tree to compare.
@return true iff they are equivalent.
*/
static bool eq_tree(const SEL_ROOT *a, const SEL_ROOT *b) {
if (a == b) return true;
if (!a || !b) return false;
if (a->type == SEL_ROOT::Type::KEY_RANGE &&
b->type == SEL_ROOT::Type::KEY_RANGE)
return eq_tree(a->root, b->root);
else
return a->type == b->type;
}
static bool eq_tree(const SEL_ARG *a, const SEL_ARG *b) {
if (a == b) return true;
if (!a || !b || !a->is_same(b)) return false;
if (a->left != null_element && b->left != null_element) {
if (!eq_tree(a->left, b->left)) return false;
} else if (a->left != null_element || b->left != null_element)
return false;
if (a->right != null_element && b->right != null_element) {
if (!eq_tree(a->right, b->right)) return false;
} else if (a->right != null_element || b->right != null_element)
return false;
if (a->next_key_part != b->next_key_part) { // Sub range
if (!a->next_key_part != !b->next_key_part ||
!eq_tree(a->next_key_part, b->next_key_part))
return false;
}
return true;
}
void SEL_ROOT::insert(SEL_ARG *key) {
SEL_ARG *element, **par = nullptr, *last_element = nullptr;
if (type == Type::IMPOSSIBLE) {
/*
Used to be impossible, but now gets a new range; remove the dummy node
that exists in that kind of tree, and set this one as the root
(and sole element) instead.
*/
root->release_next_key_part();
uint8 maybe_flag = root->maybe_flag;
root = key;
root->maybe_flag = maybe_flag;
root->make_root();
type = Type::KEY_RANGE;
return;
}
assert(type == Type::KEY_RANGE);
assert(root->parent == nullptr);
assert(root != null_element);
for (element = root; element != null_element;) {
last_element = element;
if (key->cmp_min_to_min(element) > 0) {
par = &element->right;
element = element->right;
} else {
par = &element->left;
element = element->left;
}
}
*par = key;
key->parent = last_element;
/* Link in list */
if (par == &last_element->left) {
key->next = last_element;
if ((key->prev = last_element->prev)) key->prev->next = key;
last_element->prev = key;
} else {
if ((key->next = last_element->next)) key->next->prev = key;
key->prev = last_element;
last_element->next = key;
}
key->left = key->right = null_element;
uint8 maybe_flag = root->maybe_flag;
root = root->rb_insert(key); // rebalance tree
root->maybe_flag = maybe_flag;
++elements;
}
SEL_ARG *SEL_ROOT::find_range(const SEL_ARG *key) const {
SEL_ARG *element = root, *found = nullptr;
for (;;) {
if (element == null_element) return found;
int cmp = element->cmp_min_to_min(key);
if (cmp == 0) return element;
if (cmp < 0) {
found = element;
element = element->right;
} else
element = element->left;
}
}
/*
Remove a element from the tree
SYNOPSIS
tree_delete()
key Key that is to be deleted from tree (this)
NOTE
This also frees all sub trees that is used by the element
*/
void SEL_ROOT::tree_delete(SEL_ARG *key) {
enum SEL_ARG::leaf_color remove_color;
SEL_ARG *nod, **par, *fix_par;
DBUG_TRACE;
assert(this->type == Type::KEY_RANGE);
assert(this->root->parent == nullptr);
/*
If deleting the last element, we are now of type IMPOSSIBLE.
Keep the element around so that we have somewhere to store
next_key_part etc. if needed in the future.
*/
if (elements == 1) {
assert(key == root);
type = Type::IMPOSSIBLE;
key->release_next_key_part();
return;
}
/* Unlink from list */
if (key->prev) key->prev->next = key->next;
if (key->next) key->next->prev = key->prev;
if (key->next_key_part) --key->next_key_part->use_count;
if (!key->parent)
par = &root;
else
par = key->parent_ptr();
if (key->left == null_element) {
*par = nod = key->right;
fix_par = key->parent;
if (nod != null_element) nod->parent = fix_par;
remove_color = key->color;
} else if (key->right == null_element) {
*par = nod = key->left;
nod->parent = fix_par = key->parent;
remove_color = key->color;
} else {
SEL_ARG *tmp = key->next; // next bigger key (exist!)
nod = *tmp->parent_ptr() = tmp->right; // unlink tmp from tree
fix_par = tmp->parent;
if (nod != null_element) nod->parent = fix_par;
remove_color = tmp->color;
tmp->parent = key->parent; // Move node in place of key
(tmp->left = key->left)->parent = tmp;
if ((tmp->right = key->right) != null_element) tmp->right->parent = tmp;
tmp->color = key->color;
*par = tmp;
if (fix_par == key) // key->right == key->next
fix_par = tmp; // new parent of nod
}
--elements;
if (root == null_element) return; // Maybe root later
if (remove_color == SEL_ARG::BLACK) {
uint8 maybe_flag = root->maybe_flag;
root = rb_delete_fixup(root, nod, fix_par);
root->maybe_flag = maybe_flag;
}
#ifndef NDEBUG
test_rb_tree(root, root->parent);
#endif
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(SEL_ARG **root, SEL_ARG *leaf) {
SEL_ARG *y = leaf->right;
leaf->right = y->left;
if (y->left != null_element) y->left->parent = leaf;
if (!(y->parent = leaf->parent))
*root = y;
else
*leaf->parent_ptr() = y;
y->left = leaf;
leaf->parent = y;
}
static void right_rotate(SEL_ARG **root, SEL_ARG *leaf) {
SEL_ARG *y = leaf->left;
leaf->left = y->right;
if (y->right != null_element) y->right->parent = leaf;
if (!(y->parent = leaf->parent))
*root = y;
else
*leaf->parent_ptr() = y;
y->right = leaf;
leaf->parent = y;
}
SEL_ARG *SEL_ARG::rb_insert(SEL_ARG *leaf) {
SEL_ARG *y, *par, *par2, *root;
root = this;
assert(!root->parent);
assert(root->color == BLACK);
leaf->color = RED;
while (leaf != root && (par = leaf->parent)->color ==
RED) { // This can't be root or 1 level under
assert(leaf->parent->parent);
if (par == (par2 = leaf->parent->parent)->left) {
y = par2->right;
if (y->color == RED) {
par->color = BLACK;
y->color = BLACK;
leaf = par2;
leaf->color = RED; /* And the loop continues */
} else {
if (leaf == par->right) {
left_rotate(&root, leaf->parent);
par = leaf; /* leaf is now parent to old leaf */
}
par->color = BLACK;
par2->color = RED;
right_rotate(&root, par2);
break;
}
} else {
y = par2->left;
if (y->color == RED) {
par->color = BLACK;
y->color = BLACK;
leaf = par2;
leaf->color = RED; /* And the loop continues */
} else {
if (leaf == par->left) {
right_rotate(&root, par);
par = leaf;
}
par->color = BLACK;
par2->color = RED;
left_rotate(&root, par2);
break;
}
}
}
root->color = BLACK;
#ifndef NDEBUG
test_rb_tree(root, root->parent);
#endif
return root;
}
SEL_ARG *rb_delete_fixup(SEL_ARG *root, SEL_ARG *key, SEL_ARG *par) {
SEL_ARG *x, *w;
root->parent = nullptr;
x = key;
while (x != root && x->color == SEL_ARG::BLACK) {
if (x == par->left) {
w = par->right;
if (w->color == SEL_ARG::RED) {
w->color = SEL_ARG::BLACK;
par->color = SEL_ARG::RED;
left_rotate(&root, par);
w = par->right;
}
if (w->left->color == SEL_ARG::BLACK &&
w->right->color == SEL_ARG::BLACK) {
w->color = SEL_ARG::RED;
x = par;
} else {
if (w->right->color == SEL_ARG::BLACK) {
w->left->color = SEL_ARG::BLACK;
w->color = SEL_ARG::RED;
right_rotate(&root, w);
w = par->right;
}
w->color = par->color;
par->color = SEL_ARG::BLACK;
w->right->color = SEL_ARG::BLACK;
left_rotate(&root, par);
x = root;
break;
}
} else {
w = par->left;
if (w->color == SEL_ARG::RED) {
w->color = SEL_ARG::BLACK;
par->color = SEL_ARG::RED;
right_rotate(&root, par);
w = par->left;
}
if (w->right->color == SEL_ARG::BLACK &&
w->left->color == SEL_ARG::BLACK) {
w->color = SEL_ARG::RED;
x = par;
} else {
if (w->left->color == SEL_ARG::BLACK) {
w->right->color = SEL_ARG::BLACK;
w->color = SEL_ARG::RED;
left_rotate(&root, w);
w = par->left;
}
w->color = par->color;
par->color = SEL_ARG::BLACK;
w->left->color = SEL_ARG::BLACK;
right_rotate(&root, par);
x = root;
break;
}
}
par = x->parent;
}
x->color = SEL_ARG::BLACK;
return root;
}
#ifndef NDEBUG
/* Test that the properties for a red-black tree hold */
int test_rb_tree(SEL_ARG *element, SEL_ARG *parent) {
int count_l, count_r;
if (element == null_element) return 0; // Found end of tree
if (element->parent != parent) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_PARENT_SHOULD_POINT_AT_PARENT);
return -1;
}
if (!parent && element->color != SEL_ARG::BLACK) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_ROOT_SHOULD_BE_BLACK);
return -1;
}
if (element->color == SEL_ARG::RED &&
(element->left->color == SEL_ARG::RED ||
element->right->color == SEL_ARG::RED)) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_2_CONSECUTIVE_REDS);
return -1;
}
if (element->left == element->right &&
element->left != null_element) { // Dummy test
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_RIGHT_IS_LEFT);
return -1;
}
count_l = test_rb_tree(element->left, element);
count_r = test_rb_tree(element->right, element);
if (count_l >= 0 && count_r >= 0) {
if (count_l == count_r) return count_l + (element->color == SEL_ARG::BLACK);
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_INCORRECT_BLACK_COUNT, count_l,
count_r);
}
return -1; // Error, no more warnings
}
#endif
/**
Count how many times SEL_ARG graph "root" refers to its part "key" via
transitive closure.
@param root An RB-Root node in a SEL_ARG graph.
@param key Another RB-Root node in that SEL_ARG graph.
@param seen Which SEL_ARGs we have already seen in this traversal.
Used for deduplication, so that we only count each
SEL_ARG once.
The passed "root" node may refer to "key" node via root->next_key_part,
root->next->n
This function counts how many times the node "key" is referred (via
SEL_ARG::next_key_part) by
- intervals of RB-tree pointed by "root",
- intervals of RB-trees that are pointed by SEL_ARG::next_key_part from
intervals of RB-tree pointed by "root",
- and so on.
Here is an example (horizontal links represent next_key_part pointers,
vertical links - next/prev prev pointers):
+----+ $
|root|-----------------+
+----+ $ |
| $ |
| $ |
+----+ +---+ $ | +---+ Here the return value
| |- ... -| |---$-+--+->|key| will be 4.
+----+ +---+ $ | | +---+
| $ | |
... $ | |
| $ | |
+----+ +---+ $ | |
| |---| |---------+ |
+----+ +---+ $ |
| | $ |
... +---+ $ |
| |------------+
+---+ $
@return
Number of links to "key" from nodes reachable from "root".
*/
static ulong count_key_part_usage(const SEL_ROOT *root, const SEL_ROOT *key,
std::set<const SEL_ROOT *> *seen) {
// Don't count paths from a given key twice.
if (seen->count(root)) return 0;
seen->insert(root);
ulong count = 0;
for (SEL_ARG *node = root->root->first(); node; node = node->next) {
if (node->next_key_part) {
if (node->next_key_part == key) count++;
if (node->next_key_part->root->part < key->root->part)
count += count_key_part_usage(node->next_key_part, key, seen);
}
}
return count;
}
bool SEL_ROOT::test_use_count(const SEL_ROOT *origin) const {
uint e_count = 0;
if (this == origin && use_count != 1) {
LogErr(INFORMATION_LEVEL, ER_WRONG_COUNT_FOR_ORIGIN, use_count, this);
assert(false);
return true;
}
if (type != SEL_ROOT::Type::KEY_RANGE) return false;
for (SEL_ARG *pos = root->first(); pos; pos = pos->next) {
e_count++;
if (pos->next_key_part) {
std::set<const SEL_ROOT *> seen;
ulong count = count_key_part_usage(origin, pos->next_key_part, &seen);
/*
This cannot be a strict equality test, since there might be
connections from the keys[] array that we don't see.
*/
if (count > pos->next_key_part->use_count) {
LogErr(INFORMATION_LEVEL, ER_WRONG_COUNT_FOR_KEY, pos->next_key_part,
pos->next_key_part->use_count, count);
assert(false);
return true;
}
pos->next_key_part->test_use_count(origin);
}
}
if (e_count != elements) {
LogErr(WARNING_LEVEL, ER_WRONG_COUNT_OF_ELEMENTS, e_count, elements, this);
assert(false);
return true;
}
return false;
}
bool get_sel_root_for_keypart(uint key_part_num, SEL_ROOT *keypart_tree,
SEL_ROOT **cur_range) {
if (keypart_tree == nullptr) return false;
if (keypart_tree->type != SEL_ROOT::Type::KEY_RANGE) {
/*
A range predicate not usable by Loose Index Scan is found.
Predicates for keypart 'keypart_tree->root->part' and later keyparts
cannot be used.
*/
*cur_range = keypart_tree;
return false;
}
if (keypart_tree->root->part == key_part_num) {
*cur_range = keypart_tree;
return false;
}
SEL_ROOT *tree_first_range = nullptr;
SEL_ARG *first_kp = keypart_tree->root->first();
for (SEL_ARG *cur_kp = first_kp; cur_kp; cur_kp = cur_kp->next) {
SEL_ROOT *curr_tree = nullptr;
if (cur_kp->next_key_part) {
if (get_sel_root_for_keypart(key_part_num, cur_kp->next_key_part,
&curr_tree))
return true;
}
/**
Check if the SEL_ARG tree for 'field' is identical for all ranges in
'keypart_tree'.
*/
if (cur_kp == first_kp)
tree_first_range = curr_tree;
else if (!all_same(tree_first_range, curr_tree))
return true;
}
*cur_range = tree_first_range;
return false;
}
#ifndef NDEBUG
void print_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree, Key_map *tree_map,
const char *msg) {
char buff[1024];
DBUG_TRACE;
String tmp(buff, sizeof(buff), &my_charset_bin);
tmp.length(0);
for (uint idx = 0; idx < param->keys; idx++) {
if (tree_map->is_set(idx)) {
uint keynr = param->real_keynr[idx];
if (tmp.length()) tmp.append(',');
tmp.append(param->table->key_info[keynr].name);
}
}
if (!tmp.length()) tmp.append(STRING_WITH_LEN("(empty)"));
DBUG_PRINT("info", ("SEL_TREE: %p (%s) scans: %s", tree, msg, tmp.ptr()));
}
#endif
|