1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file sql/sql_select.cc
@brief Evaluate query expressions, throughout resolving, optimization and
execution.
@defgroup Query_Optimizer Query Optimizer
@{
*/
#include "sql/sql_select.h"
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include <cstdio>
#include <cstring>
#include <initializer_list>
#include <memory>
#include <string>
#include "field_types.h"
#include "lex_string.h"
#include "m_ctype.h"
#include "mem_root_deque.h" // mem_root_deque
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_byteorder.h" // int8store, uint8korr
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_pointer_arithmetic.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "scope_guard.h"
#include "sql-common/json_dom.h"
#include "sql/auth/auth_acls.h"
#include "sql/auth/auth_common.h" // *_ACL
#include "sql/auth/sql_security_ctx.h"
#include "sql/current_thd.h"
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/enum_query_type.h"
#include "sql/error_handler.h" // Ignore_error_handler
#include "sql/field.h"
#include "sql/filesort.h" // filesort_free_buffers
#include "sql/handler.h"
#include "sql/intrusive_list_iterator.h"
#include "sql/item.h"
#include "sql/item_func.h"
#include "sql/item_json_func.h"
#include "sql/item_subselect.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/iterators/row_iterator.h"
#include "sql/iterators/sorting_iterator.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/join_optimizer/replace_item.h"
#include "sql/key.h" // key_copy, key_cmp, key_cmp_if_same
#include "sql/key_spec.h"
#include "sql/lock.h" // mysql_unlock_some_tables,
#include "sql/my_decimal.h"
#include "sql/mysqld.h" // stage_init
#include "sql/nested_join.h"
#include "sql/opt_explain.h"
#include "sql/opt_explain_format.h"
#include "sql/opt_hints.h" // hint_key_state()
#include "sql/opt_trace.h"
#include "sql/opt_trace_context.h"
#include "sql/parse_tree_node_base.h"
#include "sql/query_options.h"
#include "sql/query_result.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/set_var.h"
#include "sql/sql_base.h"
#include "sql/sql_class.h"
#include "sql/sql_cmd.h"
#include "sql/sql_do.h"
#include "sql/sql_error.h"
#include "sql/sql_executor.h"
#include "sql/sql_insert.h" // Sql_cmd_insert_base
#include "sql/sql_join_buffer.h" // JOIN_CACHE
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h" // JOIN
#include "sql/sql_parse.h" // bind_fields
#include "sql/sql_planner.h" // calculate_condition_filter
#include "sql/sql_resolver.h"
#include "sql/sql_test.h" // misc. debug printing utilities
#include "sql/sql_timer.h" // thd_timer_set
#include "sql/sql_tmp_table.h" // tmp tables
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/temp_table_param.h"
#include "sql/thd_raii.h"
#include "sql/window.h" // ignore_gaf_const_opt
#include "sql_string.h"
#include "template_utils.h"
#include "thr_lock.h"
using std::max;
using std::min;
static store_key *get_store_key(THD *thd, Item *val, table_map used_tables,
table_map const_tables,
const KEY_PART_INFO *key_part, uchar *key_buff,
uint maybe_null);
using Global_tables_iterator =
IntrusiveListIterator<Table_ref, &Table_ref::next_global>;
/// A list interface over the Table_ref::next_global pointer.
using Global_tables_list = IteratorContainer<Global_tables_iterator>;
/**
Check whether the statement is a SHOW command using INFORMATION_SCHEMA system
views.
@param thd Thread (session) context.
@returns true if command uses INFORMATION_SCHEMA system view, false otherwise
*/
inline bool is_show_cmd_using_system_view(THD *thd) {
return sql_command_flags[thd->lex->sql_command] & CF_SHOW_USES_SYSTEM_VIEW;
}
/**
Get the maximum execution time for a statement.
@return Length of time in milliseconds.
@remark A zero timeout means that no timeout should be
applied to this particular statement.
*/
static inline ulong get_max_execution_time(THD *thd) {
return (thd->lex->max_execution_time ? thd->lex->max_execution_time
: thd->variables.max_execution_time);
}
/**
Check whether max statement time is applicable to statement or not.
@param thd Thread (session) context.
@return true if max statement time is applicable to statement
@return false otherwise.
*/
static inline bool is_timer_applicable_to_statement(THD *thd) {
/*
The following conditions must be met:
- is SELECT statement.
- timer support is implemented and it is initialized.
- statement is not made by the slave threads.
- timer is not set for statement
- timer out value of is set
- SELECT statement is not from any stored programs.
*/
return (thd->lex->sql_command == SQLCOM_SELECT &&
(have_statement_timeout == SHOW_OPTION_YES) && !thd->slave_thread &&
!thd->timer &&
(thd->lex->max_execution_time || thd->variables.max_execution_time) &&
!thd->sp_runtime_ctx);
}
/**
Set the time until the currently running statement is aborted.
@param thd Thread (session) context.
@return true if the timer was armed.
*/
bool set_statement_timer(THD *thd) {
ulong max_execution_time = get_max_execution_time(thd);
/**
whether timer can be set for the statement or not should be checked before
calling set_statement_timer function.
*/
assert(is_timer_applicable_to_statement(thd) == true);
assert(thd->timer == nullptr);
thd->timer = thd_timer_set(thd, thd->timer_cache, max_execution_time);
thd->timer_cache = nullptr;
if (thd->timer)
thd->status_var.max_execution_time_set++;
else
thd->status_var.max_execution_time_set_failed++;
return thd->timer;
}
/**
Deactivate the timer associated with the statement that was executed.
@param thd Thread (session) context.
*/
void reset_statement_timer(THD *thd) {
assert(thd->timer);
/* Cache the timer object if it can be reused. */
thd->timer_cache = thd_timer_reset(thd->timer);
thd->timer = nullptr;
}
/**
* Checks if a query reads a column that is _not_ available in the secondary
* engine (i.e. a column defined with NOT SECONDARY).
*
* @param lex Parse tree descriptor.
*
* @return True if at least one of the read columns is not in the secondary
* engine, false otherwise.
*/
static bool reads_not_secondary_columns(const LEX *lex) {
// Check all read base tables.
const Table_ref *tl = lex->query_tables;
// For INSERT INTO SELECT statements, the table to insert into does not have
// to have a secondary engine. This table is always first in the list.
if (lex->sql_command == SQLCOM_INSERT_SELECT && tl != nullptr)
tl = tl->next_global;
for (; tl != nullptr; tl = tl->next_global) {
if (tl->is_placeholder()) continue;
// Check all read columns of table.
for (unsigned int i = bitmap_get_first_set(tl->table->read_set);
i != MY_BIT_NONE; i = bitmap_get_next_set(tl->table->read_set, i)) {
if (tl->table->field[i]->is_flag_set(NOT_SECONDARY_FLAG)) {
Opt_trace_context *trace = &lex->thd->opt_trace;
if (trace->is_started()) {
std::string message("");
message.append("Column ");
message.append(tl->table->field[i]->field_name);
message.append(" is marked as NOT SECONDARY.");
Opt_trace_object trace_wrapper(trace);
Opt_trace_object oto(trace, "secondary_engine_not_used");
oto.add_alnum("reason", message.c_str());
}
return true;
}
}
}
return false;
}
static bool has_secondary_engine_defined(const LEX *lex) {
for (const Table_ref *tl = lex->query_tables; tl != nullptr;
tl = tl->next_global) {
if (tl == nullptr || tl->table == nullptr || tl->table->s == nullptr ||
!tl->table->s->has_secondary_engine()) {
return false;
}
}
return (lex->table_count > 0);
}
// Compare two engine names using the system collation.
static bool equal_engines(const LEX_CSTRING &engine1,
const LEX_CSTRING &engine2) {
return system_charset_info->coll->strnncollsp(
system_charset_info,
pointer_cast<const unsigned char *>(engine1.str), engine1.length,
pointer_cast<const unsigned char *>(engine2.str),
engine2.length) == 0;
}
// Helper function that checks if the command is eligible for secondary engine
// and if that's true returns the name of that eligible secondary storage
// engine.
static const MYSQL_LEX_CSTRING *get_eligible_secondary_engine_from(
const LEX *lex) {
// Don't use secondary storage engines for statements that call stored
// routines.
if (lex->uses_stored_routines()) return nullptr;
// Now check if the opened tables are available in a secondary
// storage engine. Only use the secondary tables if all the tables
// have a secondary tables, and they are all in the same secondary
// storage engine.
const LEX_CSTRING *secondary_engine = nullptr;
const Table_ref *tl = lex->query_tables;
if (lex->sql_command == SQLCOM_INSERT_SELECT && tl != nullptr) {
// If table from Table_ref is either view or derived table then
// do not perform INSERT AS SELECT.
if (tl->is_view_or_derived()) return nullptr;
// For INSERT INTO SELECT statements, the table to insert into does not have
// to have a secondary engine. This table is always first in the list.
tl = tl->next_global;
}
for (; tl != nullptr; tl = tl->next_global) {
// Schema tables are not available in secondary engines.
if (tl->schema_table != nullptr) return nullptr;
// We're only interested in base tables.
if (tl->is_placeholder()) continue;
assert(!tl->table->s->is_secondary_engine());
// Give up, if the table is not in a secondary engine,
if (!tl->table->s->has_secondary_engine()) return nullptr;
if (secondary_engine == nullptr) {
// First base table. Save its secondary engine name for later.
secondary_engine = &tl->table->s->secondary_engine;
} else if (!equal_engines(*secondary_engine,
tl->table->s->secondary_engine)) {
// In a different secondary engine than the previous base tables.
return nullptr;
}
}
return secondary_engine;
}
const handlerton *get_secondary_engine_handlerton(const LEX *lex) {
if (const handlerton *hton = SecondaryEngineHandlerton(lex->thd);
hton != nullptr) {
return hton;
}
const LEX_CSTRING *storage_engine = get_eligible_secondary_engine_from(lex);
if (storage_engine != nullptr) {
plugin_ref ref = ha_resolve_by_name(lex->thd, storage_engine, false);
if (ref != nullptr) {
return plugin_data<handlerton *>(ref);
}
}
return nullptr;
}
static const char *get_secondary_engine_fail_reason(const LEX *lex) {
auto *hton = get_secondary_engine_handlerton(lex);
if (hton != nullptr &&
hton->get_secondary_engine_offload_or_exec_fail_reason != nullptr &&
lex->thd->variables.use_secondary_engine == SECONDARY_ENGINE_FORCED) {
return hton->get_secondary_engine_offload_or_exec_fail_reason(lex->thd);
}
return nullptr;
}
void set_external_engine_fail_reason(const LEX *lex, const char *reason) {
if (lex->thd->variables.use_secondary_engine != SECONDARY_ENGINE_FORCED &&
reason != nullptr) {
for (Table_ref *ref = lex->query_tables; ref != nullptr;
ref = ref->next_global) {
if (ref->is_external()) {
ref->table->get_primary_handler()->set_external_table_offload_error(
reason);
break;
}
}
}
}
static void external_engine_fail_reason(const LEX *lex) {
for (Table_ref *ref = lex->query_tables; ref != nullptr;
ref = ref->next_global) {
if (ref->is_external()) {
ref->table->get_primary_handler()->external_table_offload_error();
return;
}
}
}
static bool set_secondary_engine_fail_reason(const LEX *lex,
const char *reason) {
auto *hton = get_secondary_engine_handlerton(lex);
if (hton != nullptr &&
hton->set_secondary_engine_offload_fail_reason != nullptr &&
lex->thd->variables.use_secondary_engine == SECONDARY_ENGINE_FORCED) {
hton->set_secondary_engine_offload_fail_reason(lex->thd, reason);
return true;
}
return false;
}
static void set_fail_reason_and_raise_error(const LEX *lex,
const char *reason) {
assert(reason != nullptr && strlen(reason) > 0);
if (set_secondary_engine_fail_reason(lex, reason)) {
my_error(ER_SECONDARY_ENGINE, MYF(0),
get_secondary_engine_fail_reason(lex));
} else {
my_error(ER_SECONDARY_ENGINE, MYF(0), reason);
}
}
static bool find_and_set_offload_fail_reason(const LEX *lex) {
// If we are unable to gather secondary-engine-specific error message,
// check known unsupported features and raise a specific offload error.
std::string err_msg;
if (lex->uses_stored_routines()) {
// We don't support secondary storage engine execution,
// if the query has statements that call stored routines.
err_msg = "Stored routines are not supported in secondary engines";
} else if (!has_secondary_engine_defined(lex)) {
// We don't support secondary storage engine execution,
// if at least one of the query tables have no secondary engine defined.
err_msg =
"No secondary engine defined for at least one of the query tables";
}
if (err_msg.length() > 0) {
set_fail_reason_and_raise_error(lex, err_msg.c_str());
return true;
}
return false;
}
bool validate_use_secondary_engine(const LEX *lex) {
if (lex->m_sql_cmd == nullptr) {
return false;
}
THD *thd = lex->thd;
const Sql_cmd *sql_cmd = lex->m_sql_cmd;
// Ensure that all read columns are in the secondary engine.
if (sql_cmd->using_secondary_storage_engine()) {
if (reads_not_secondary_columns(lex)) {
const char *err_msg =
"One or more read columns are marked as NOT SECONDARY";
set_fail_reason_and_raise_error(lex, err_msg);
return true;
}
return false;
}
// A query must be executed in secondary engine if these conditions are met:
//
// (1) use_secondary_engine is FORCED.
// (and either)
// (2) Is a SELECT statement that accesses one or more base tables.
// (or)
// (3) Is an INSERT SELECT or CREATE TABLE AS SELECT statement that accesses
// two or more base tables.
if (thd->variables.use_secondary_engine == SECONDARY_ENGINE_FORCED && // 1
((sql_cmd->sql_command_code() == SQLCOM_SELECT &&
lex->table_count >= 1) || // 2
((sql_cmd->sql_command_code() == SQLCOM_INSERT_SELECT ||
sql_cmd->sql_command_code() == SQLCOM_CREATE_TABLE) &&
lex->table_count >= 2))) { // 3
// Gather secondary-engine-specific error message.
const char *offloadfail_reason = get_secondary_engine_fail_reason(lex);
if (offloadfail_reason != nullptr && strlen(offloadfail_reason) > 0) {
if (thd->is_error()) {
thd->clear_error();
}
my_error(ER_SECONDARY_ENGINE, MYF(0), offloadfail_reason);
return true;
}
// If we haven't generated a specific error so far,
// we try to generate one here.
if (!thd->is_error() && find_and_set_offload_fail_reason(lex)) {
return true;
}
// If no specifc error could be generated so far,
// we give out a generic one.
if (!thd->is_error()) {
const char *err_msg =
"use_secondary_engine is FORCED but query could not be executed in "
"secondary engine";
set_fail_reason_and_raise_error(lex, err_msg);
return true;
}
}
return false;
}
bool Sql_cmd_dml::prepare(THD *thd) {
DBUG_TRACE;
bool error_handler_active = false;
Ignore_error_handler ignore_handler;
Strict_error_handler strict_handler;
// @todo: Move this to constructor?
lex = thd->lex;
// Parser may have assigned a specific query result handler
result = lex->result;
assert(!is_prepared());
assert(!lex->unit->is_prepared() && !lex->unit->is_optimized() &&
!lex->unit->is_executed());
/*
Constant folding could cause warnings during preparation. Make
sure they are promoted to errors when strict mode is enabled.
*/
if (is_data_change_stmt() && needs_explicit_preparation()) {
// Push ignore / strict error handler
if (lex->is_ignore()) {
thd->push_internal_handler(&ignore_handler);
error_handler_active = true;
} else if (thd->is_strict_mode()) {
thd->push_internal_handler(&strict_handler);
error_handler_active = true;
}
}
// Perform a coarse statement-specific privilege check.
if (precheck(thd)) goto err;
// Trigger out_of_memory condition inside open_tables_for_query()
DBUG_EXECUTE_IF("sql_cmd_dml_prepare__out_of_memory",
DBUG_SET("+d,simulate_out_of_memory"););
/*
Open tables and expand views.
During prepare of query (not as part of an execute), acquire only
S metadata locks instead of SW locks to be compatible with concurrent
LOCK TABLES WRITE and global read lock.
*/
if (open_tables_for_query(
thd, lex->query_tables,
needs_explicit_preparation() ? MYSQL_OPEN_FORCE_SHARED_MDL : 0)) {
if (thd->is_error()) // @todo - dictionary code should be fixed
goto err;
if (error_handler_active) thd->pop_internal_handler();
lex->cleanup(false);
return true;
}
DEBUG_SYNC(thd, "after_open_tables");
#ifndef NDEBUG
if (sql_command_code() == SQLCOM_SELECT) DEBUG_SYNC(thd, "after_table_open");
#endif
lex->set_using_hypergraph_optimizer(
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_HYPERGRAPH_OPTIMIZER));
if (lex->set_var_list.elements && resolve_var_assignments(thd, lex))
goto err; /* purecov: inspected */
{
Prepare_error_tracker tracker(thd);
Prepared_stmt_arena_holder ps_arena_holder(thd);
Enable_derived_merge_guard derived_merge_guard(
thd, is_show_cmd_using_system_view(thd));
if (prepare_inner(thd)) goto err;
if (needs_explicit_preparation() && result != nullptr) {
result->cleanup();
}
if (!is_regular()) {
if (save_cmd_properties(thd)) goto err;
lex->set_secondary_engine_execution_context(nullptr);
}
set_prepared();
}
// Pop ignore / strict error handler
if (error_handler_active) thd->pop_internal_handler();
// Revertable changes are not supported during preparation
assert(thd->change_list.is_empty());
return false;
err:
assert(thd->is_error());
DBUG_PRINT("info", ("report_error: %d", thd->is_error()));
lex->set_secondary_engine_execution_context(nullptr);
if (error_handler_active) thd->pop_internal_handler();
if (result != nullptr) result->cleanup();
lex->cleanup(false);
return true;
}
bool Sql_cmd_select::accept(THD *thd, Select_lex_visitor *visitor) {
return thd->lex->unit->accept(visitor);
}
const MYSQL_LEX_CSTRING *Sql_cmd_select::eligible_secondary_storage_engine()
const {
return get_eligible_secondary_engine();
}
/**
Prepare a SELECT statement.
*/
bool Sql_cmd_select::prepare_inner(THD *thd) {
if (lex->is_explain()) {
/*
Always use Query_result_send for EXPLAIN, even if it's an EXPLAIN for
SELECT ... INTO OUTFILE: a user application should be able to prepend
EXPLAIN to any query and receive output for it, even if the query itself
redirects the output.
*/
result = new (thd->mem_root) Query_result_send();
if (result == nullptr) return true; /* purecov: inspected */
} else {
if (result == nullptr) {
if (sql_command_code() == SQLCOM_SELECT)
result = new (thd->mem_root) Query_result_send();
else if (sql_command_code() == SQLCOM_DO)
result = new (thd->mem_root) Query_result_do();
else // Currently assumed to be a SHOW command
result = new (thd->mem_root) Query_result_send();
if (result == nullptr) return true; /* purecov: inspected */
}
}
Query_expression *const unit = lex->unit;
Query_block *parameters = unit->global_parameters();
if (!parameters->has_limit()) {
parameters->m_use_select_limit = true;
}
if (unit->is_simple()) {
Query_block *const select = unit->first_query_block();
select->context.resolve_in_select_list = true;
select->set_query_result(result);
unit->set_query_result(result);
// Unlock the table as soon as possible, so don't set SELECT_NO_UNLOCK.
select->make_active_options(0, 0);
if (select->prepare(thd, nullptr)) return true;
unit->set_prepared();
} else {
// If we have multiple query blocks, don't unlock and re-lock
// tables between each each of them.
if (unit->prepare(thd, result, nullptr, SELECT_NO_UNLOCK, 0)) return true;
}
return false;
}
bool Sql_cmd_dml::execute(THD *thd) {
DBUG_TRACE;
lex = thd->lex;
Query_expression *const unit = lex->unit;
bool statement_timer_armed = false;
bool error_handler_active = false;
// flag to determine if execution was not offloaded to the secondary engine
// and ended up in the external engine in which case we throw an error.
bool external_table_not_offloaded = false;
Ignore_error_handler ignore_handler;
Strict_error_handler strict_handler;
// If statement is preparable, it must be prepared
assert(owner() == nullptr || is_prepared());
// If statement is regular, it must be unprepared
assert(!is_regular() || !is_prepared());
// If statement is part of SP, it can be both prepared and unprepared.
// If a timer is applicable to statement, then set it.
if (is_timer_applicable_to_statement(thd))
statement_timer_armed = set_statement_timer(thd);
if (is_data_change_stmt()) {
// Push ignore / strict error handler
if (lex->is_ignore()) {
thd->push_internal_handler(&ignore_handler);
error_handler_active = true;
/*
UPDATE IGNORE can be unsafe. We therefore use row based
logging if mixed or row based logging is available.
TODO: Check if the order of the output of the select statement is
deterministic. Waiting for BUG#42415
*/
if (lex->sql_command == SQLCOM_UPDATE)
lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_UPDATE_IGNORE);
} else if (thd->is_strict_mode()) {
thd->push_internal_handler(&strict_handler);
error_handler_active = true;
}
}
if (!is_prepared()) {
if (prepare(thd)) goto err;
} else {
/*
Prepared statement, open tables referenced in statement and check
privileges for it.
*/
cleanup(thd);
if (open_tables_for_query(thd, lex->query_tables, 0)) goto err;
#ifndef NDEBUG
if (sql_command_code() == SQLCOM_SELECT)
DEBUG_SYNC(thd, "after_table_open");
#endif
// Bind table and field information
if (restore_cmd_properties(thd)) return true;
if (check_privileges(thd)) goto err;
if (m_lazy_result) {
Prepared_stmt_arena_holder ps_arena_holder(thd);
if (result->prepare(thd, *unit->get_unit_column_types(), unit)) goto err;
m_lazy_result = false;
}
}
if (lex->thd->variables.use_secondary_engine == SECONDARY_ENGINE_OFF) {
if (lex->has_external_tables()) {
my_error(ER_SECONDARY_ENGINE_PLUGIN, MYF(0),
"Query could not be offloaded to the secondary engine");
external_table_not_offloaded = true;
goto err; // NOLINT
}
} else if ((thd->secondary_engine_optimization() ==
Secondary_engine_optimization::PRIMARY_ONLY &&
lex->thd->variables.use_secondary_engine !=
SECONDARY_ENGINE_FORCED) &&
lex->has_external_tables()) {
// throw the propagated error from the external engine in case there is an
// external table
external_engine_fail_reason(lex);
// reset error message
set_external_engine_fail_reason(lex, nullptr);
external_table_not_offloaded = true;
goto err; // NOLINT
}
if (validate_use_secondary_engine(lex)) goto err;
lex->set_exec_started();
DBUG_EXECUTE_IF("use_attachable_trx",
thd->begin_attachable_ro_transaction(););
THD_STAGE_INFO(thd, stage_init);
thd->clear_current_query_costs();
// Replication may require extra check of data change statements
if (is_data_change_stmt() && run_before_dml_hook(thd)) goto err;
// Revertable changes are not supported during preparation
assert(thd->change_list.is_empty());
assert(!lex->is_query_tables_locked());
/*
Locking of tables is done after preparation but before optimization.
This allows to do better partition pruning and avoid locking unused
partitions. As a consequence, in such a case, prepare stage can rely only
on metadata about tables used and not data from them.
*/
if (!is_empty_query()) {
if (lock_tables(thd, lex->query_tables, lex->table_count, 0)) goto err;
}
// Perform statement-specific execution
if (execute_inner(thd)) goto err;
// Count the number of statements offloaded to a secondary storage engine.
if (using_secondary_storage_engine() && lex->unit->is_executed())
++thd->status_var.secondary_engine_execution_count;
assert(!thd->is_error());
// Pop ignore / strict error handler
if (error_handler_active) thd->pop_internal_handler();
THD_STAGE_INFO(thd, stage_end);
// Do partial cleanup (preserve plans for EXPLAIN).
lex->cleanup(false);
lex->clear_values_map();
lex->set_secondary_engine_execution_context(nullptr);
// Perform statement-specific cleanup for Query_result
if (result != nullptr) result->cleanup();
thd->save_current_query_costs();
thd->update_previous_found_rows();
DBUG_EXECUTE_IF("use_attachable_trx", thd->end_attachable_transaction(););
if (statement_timer_armed && thd->timer) reset_statement_timer(thd);
/*
This sync point is normally right before thd->query_plan is reset, so
EXPLAIN FOR CONNECTION can catch the plan. It is copied here as
after unprepare() EXPLAIN considers the query as "not ready".
@todo remove in WL#6570 when unprepare() is gone.
*/
DEBUG_SYNC(thd, "before_reset_query_plan");
return false;
err:
assert(thd->is_error() || thd->killed);
DBUG_PRINT("info", ("report_error: %d", thd->is_error()));
THD_STAGE_INFO(thd, stage_end);
lex->cleanup(false);
lex->clear_values_map();
lex->set_secondary_engine_execution_context(nullptr);
// check if we already have a secondary-engine-specific error message
// populate otherwise
if (!external_table_not_offloaded) {
const char *offloadfail_reason = get_secondary_engine_fail_reason(lex);
if (offloadfail_reason == nullptr || strlen(offloadfail_reason) == 0) {
if (thd->is_error()) {
assert(thd->get_stmt_da() != nullptr);
// here we check if there is any table in an external engine to set the
// error there as well.
if (lex->has_external_tables()) {
set_external_engine_fail_reason(lex,
thd->get_stmt_da()->message_text());
}
set_secondary_engine_fail_reason(lex,
thd->get_stmt_da()->message_text());
}
}
}
// Abort and cleanup the result set (if it has been prepared).
if (result != nullptr) {
result->abort_result_set(thd);
result->cleanup();
}
if (error_handler_active) thd->pop_internal_handler();
if (statement_timer_armed && thd->timer) reset_statement_timer(thd);
/*
There are situations where we want to know the cost of a query that
has failed during execution, e.g because of a timeout.
*/
thd->save_current_query_costs();
DBUG_EXECUTE_IF("use_attachable_trx", thd->end_attachable_transaction(););
return thd->is_error();
}
void accumulate_statement_cost(const LEX *lex) {
Opt_trace_context *trace = &lex->thd->opt_trace;
Opt_trace_disable_I_S disable_trace(trace, true);
double total_cost = 0.0;
for (const Query_block *query_block = lex->all_query_blocks_list;
query_block != nullptr;
query_block = query_block->next_select_in_list()) {
if (query_block->join == nullptr) continue;
// Get the cost of this query block.
double query_block_cost = query_block->join->best_read;
// If it is a non-cacheable subquery, estimate how many times it
// needs to be executed, and adjust the cost accordingly.
const Item_subselect *item = query_block->master_query_expression()->item;
if (item != nullptr && !query_block->is_cacheable())
query_block_cost *= calculate_subquery_executions(item, trace);
total_cost += query_block_cost;
}
lex->thd->m_current_query_cost = total_cost;
}
/**
Checks if a query should be retried using a secondary storage engine.
@param thd the current session
@retval true if the statement should be retried in a secondary engine
@retval false if the statement should not be retried
*/
static bool retry_with_secondary_engine(THD *thd) {
// Only retry if the current statement is being tentatively
// optimized for the primary engine.
if (thd->secondary_engine_optimization() !=
Secondary_engine_optimization::PRIMARY_TENTATIVELY)
return false;
Sql_cmd *const sql_cmd = thd->lex->m_sql_cmd;
assert(!sql_cmd->using_secondary_storage_engine());
// Don't retry if there is a property of the statement that prevents use of
// secondary engines.
if (sql_cmd->eligible_secondary_storage_engine() == nullptr) {
sql_cmd->disable_secondary_storage_engine();
return false;
}
// Don't retry if it's already determined that the statement should not be
// executed by a secondary engine.
if (sql_cmd->secondary_storage_engine_disabled()) {
return false;
}
// Don't retry if there is a property of the environment that prevents use of
// secondary engines.
if (!thd->is_secondary_storage_engine_eligible()) {
return false;
}
// Only attempt to use the secondary engine if the estimated cost of the query
// is higher than the specified cost threshold.
// We allow any query to be executed in the secondary_engine when it involves
// external tables.
if (!thd->lex->has_external_tables() &&
(thd->m_current_query_cost <=
thd->variables.secondary_engine_cost_threshold)) {
Opt_trace_context *const trace = &thd->opt_trace;
if (trace->is_started()) {
Opt_trace_object wrapper(trace);
Opt_trace_object oto(trace, "secondary_engine_not_used");
oto.add_alnum("reason",
"The estimated query cost does not exceed "
"secondary_engine_cost_threshold.");
oto.add("cost", thd->m_current_query_cost);
oto.add("threshold", thd->variables.secondary_engine_cost_threshold);
}
return false;
}
return true;
}
bool optimize_secondary_engine(THD *thd) {
if (retry_with_secondary_engine(thd)) {
thd->get_stmt_da()->reset_diagnostics_area();
thd->get_stmt_da()->set_error_status(thd, ER_PREPARE_FOR_SECONDARY_ENGINE);
return true;
}
if (thd->secondary_engine_optimization() ==
Secondary_engine_optimization::PRIMARY_TENTATIVELY &&
thd->lex->m_sql_cmd != nullptr &&
thd->lex->m_sql_cmd->is_optional_transform_prepared()) {
// A previous preparation did a secondary engine specific transform,
// and this transform wasn't requested for the primary engine (in
// 'optimizer_switch'), so in this new execution we need to reprepare for
// the primary engine without the optional transform, for likely better
// performance.
thd->lex->m_sql_cmd->set_optional_transform_prepared(false);
thd->get_stmt_da()->reset_diagnostics_area();
thd->get_stmt_da()->set_error_status(thd, ER_PREPARE_FOR_PRIMARY_ENGINE);
return true;
}
const handlerton *secondary_engine = thd->lex->m_sql_cmd->secondary_engine();
/* When there is a secondary engine hook, return its return value,
* otherwise return false (success). */
return secondary_engine != nullptr &&
secondary_engine->optimize_secondary_engine != nullptr &&
secondary_engine->optimize_secondary_engine(thd, thd->lex);
}
/**
Execute a DML statement.
This is the default implementation for a DML statement and uses a
nested-loop join processor per outer-most query block.
The implementation is split in two: One for query expressions containing
a single query block and one for query expressions containing multiple
query blocks combined with UNION.
*/
bool Sql_cmd_dml::execute_inner(THD *thd) {
Query_expression *unit = lex->unit;
if (unit->optimize(thd, /*materialize_destination=*/nullptr,
/*create_iterators=*/true, /*finalize_access_paths=*/true))
return true;
// Calculate the current statement cost.
accumulate_statement_cost(lex);
// Perform secondary engine optimizations, if needed.
if (optimize_secondary_engine(thd)) return true;
// We know by now that execution will complete (successful or with error)
lex->set_exec_completed();
if (lex->is_explain()) {
if (explain_query(thd, thd, unit)) return true; /* purecov: inspected */
} else {
if (unit->execute(thd)) return true;
}
return false;
}
bool Sql_cmd_dml::restore_cmd_properties(THD *thd) {
lex->restore_cmd_properties();
bind_fields(thd->stmt_arena->item_list());
return false;
}
bool Sql_cmd_dml::save_cmd_properties(THD *thd) {
return lex->save_cmd_properties(thd);
}
Query_result *Sql_cmd_dml::query_result() const {
assert(is_prepared());
return lex->unit->query_result() != nullptr
? lex->unit->query_result()
: lex->unit->first_query_block()->query_result();
}
void Sql_cmd_dml::set_query_result(Query_result *result_arg) {
result = result_arg;
Query_expression *unit = lex->unit;
unit->query_term()->query_block()->set_query_result(result);
unit->set_query_result(result);
}
/**
Performs access check for the locking clause, if present.
@param thd Current session, used for checking access and raising error.
@param tables Tables in the query's from clause.
@retval true There was a locking clause and access was denied. An error has
been raised.
@retval false There was no locking clause or access was allowed to it. This
is always returned in an embedded build.
*/
static bool check_locking_clause_access(THD *thd, Global_tables_list tables) {
for (Table_ref *table_ref : tables)
if (table_ref->lock_descriptor().type == TL_WRITE) { // i.e. FOR UPDATE
bool access_is_granted = false;
/*
If either of these privileges is present along with SELECT, access is
granted.
*/
for (Access_bitmask allowed_priv :
{UPDATE_ACL, DELETE_ACL, LOCK_TABLES_ACL}) {
Access_bitmask priv = SELECT_ACL | allowed_priv;
if (!check_table_access(thd, priv, table_ref, false, 1, true)) {
access_is_granted = true;
// No need to check for other privileges for this table.
// However, we still need to check privileges for other tables.
break;
}
}
if (!access_is_granted) {
const Security_context *sctx = thd->security_context();
my_error(ER_TABLEACCESS_DENIED_ERROR, MYF(0),
"SELECT with locking clause", sctx->priv_user().str,
sctx->host_or_ip().str, table_ref->get_table_name());
return true;
}
}
return false;
}
/**
Perform an authorization precheck for an unprepared SELECT statement.
This function will check that we have some privileges to all involved tables
of the query (and possibly to other entities).
*/
bool Sql_cmd_select::precheck(THD *thd) {
/*
lex->exchange != NULL implies SELECT .. INTO OUTFILE and this
requires FILE_ACL access.
*/
bool check_file_acl =
(lex->result != nullptr && lex->result->needs_file_privilege());
/*
Check following,
1) Check FILE privileges for current user who runs a query if needed.
2) Check privileges for every user specified as a definer for a view or
check privilege to access any DB in case a table wasn't specified.
Although calling of check_access() when no tables are specified results
in returning false value immediately, this call has important side
effect: the counter 'stage/sql/checking permissions' in performance
schema is incremented. Therefore, this function is called in order to
save backward compatibility.
3) Performs access check for the locking clause, if present.
*/
Table_ref *tables = lex->query_tables;
if (check_file_acl && check_global_access(thd, FILE_ACL)) return true;
bool res;
if (tables)
res = check_table_access(thd, SELECT_ACL, tables, false, UINT_MAX, false);
else
res = check_access(thd, SELECT_ACL, any_db, nullptr, nullptr, false, false);
return res || check_locking_clause_access(thd, Global_tables_list(tables));
}
/**
Perform an authorization check for a prepared SELECT statement.
*/
bool Sql_cmd_select::check_privileges(THD *thd) {
/*
lex->exchange != nullptr implies SELECT .. INTO OUTFILE and this
requires FILE_ACL access.
*/
if (result->needs_file_privilege() &&
check_access(thd, FILE_ACL, any_db, nullptr, nullptr, false, false))
return true;
if (check_all_table_privileges(thd)) return true;
if (check_locking_clause_access(thd, Global_tables_list(lex->query_tables)))
return true;
Query_expression *const unit = lex->unit;
for (auto qt : unit->query_terms<>())
if (qt->query_block()->check_column_privileges(thd)) return true;
return false;
}
bool Sql_cmd_dml::check_all_table_privileges(THD *thd) {
// Check for all possible DML privileges
const Table_ref *const first_not_own_table = thd->lex->first_not_own_table();
for (Table_ref *tr = lex->query_tables; tr != first_not_own_table;
tr = tr->next_global) {
if (tr->is_internal()) // No privilege check required for internal tables
continue;
// Calculated wanted privilege based on how table/view is used:
Access_bitmask want_privilege = 0;
if (tr->is_inserted()) {
want_privilege |= INSERT_ACL;
}
if (tr->is_updated()) {
want_privilege |= UPDATE_ACL;
}
if (tr->is_deleted()) {
want_privilege |= DELETE_ACL;
}
if (want_privilege == 0) {
want_privilege = SELECT_ACL;
}
if (tr->referencing_view == nullptr) {
// This is a base table
if (check_single_table_access(thd, want_privilege, tr, false))
return true;
} else {
// This is a view, set handler for transformation of errors
Internal_error_handler_holder<View_error_handler, Table_ref> view_handler(
thd, true, tr);
for (Table_ref *t = tr; t->referencing_view; t = t->referencing_view) {
if (check_single_table_access(thd, want_privilege, t, false))
return true;
}
}
}
return false;
}
const MYSQL_LEX_CSTRING *Sql_cmd_dml::get_eligible_secondary_engine() const {
return get_eligible_secondary_engine_from(lex);
}
/*****************************************************************************
Check fields, find best join, do the select and output fields.
All tables must be opened.
*****************************************************************************/
/**
@brief Check if two items are compatible wrt. materialization.
@param outer Expression from outer query
@param inner Expression from inner query
@retval true If subquery types allow materialization.
@retval false Otherwise.
@note the purpose is similar to that of comparable_in_index().
*/
bool types_allow_materialization(Item *outer, Item *inner) {
auto res_outer = outer->result_type();
auto res_inner = inner->result_type();
// Materialization of rows nested inside rows is not currently supported.
if (res_outer == ROW_RESULT || res_inner == ROW_RESULT) return false;
bool num_outer = res_outer == INT_RESULT || res_outer == REAL_RESULT ||
res_outer == DECIMAL_RESULT;
bool num_inner = res_inner == INT_RESULT || res_inner == REAL_RESULT ||
res_inner == DECIMAL_RESULT;
/*
Materialization uses index lookup which implicitly converts the type of
res_outer into that of res_inner.
However, this can be done only if it respects rules in:
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-type-conversion.html
Those rules say that, generally, if types differ, we convert them to
REAL.
So, looking up into a number is ok: outer will be converted to
number. Collations don't matter.
This covers e.g. looking up INT into DECIMAL, CHAR into INT, DECIMAL into
BIT.
*/
if (num_inner) return true;
// Conversely, looking up one number into a non-number is not possible.
if (num_outer) return false;
/*
Arguments are strings or temporal.
Require same collation for correct comparison.
*/
assert(res_outer == STRING_RESULT && res_inner == STRING_RESULT);
if (outer->collation.collation != inner->collation.collation) return false;
bool temp_outer = outer->is_temporal();
bool temp_inner = inner->is_temporal();
/*
Same logic as for numbers.
As explained in add_key_field(), IndexedTimeComparedToDate is not working;
see also field_time_cmp_date().
@todo unify all pieces of code which deal with this same problem.
*/
if (temp_inner) {
if (!inner->is_temporal_with_date())
return temp_outer && !outer->is_temporal_with_date();
return true;
}
if (temp_outer) return false;
return true;
}
/*
Check if the table's rowid is included in the temptable
SYNOPSIS
sj_table_is_included()
join The join
join_tab The table to be checked
DESCRIPTION
SemiJoinDuplicateElimination: check the table's rowid should be included
in the temptable. This is so if
1. The table is not embedded within some semi-join nest
2. The has been pulled out of a semi-join nest, or
3. The table is functionally dependent on some previous table
[4. This is also true for constant tables that can't be
NULL-complemented but this function is not called for such tables]
RETURN
true - Include table's rowid
false - Don't
*/
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab) {
if (join_tab->emb_sj_nest) return false;
/* Check if this table is functionally dependent on the tables that
are within the same outer join nest
*/
Table_ref *embedding = join_tab->table_ref->embedding;
if (join_tab->type() == JT_EQ_REF) {
table_map depends_on = 0;
uint idx;
for (uint kp = 0; kp < join_tab->ref().key_parts; kp++)
depends_on |= join_tab->ref().items[kp]->used_tables();
Table_map_iterator it(depends_on & ~PSEUDO_TABLE_BITS);
while ((idx = it.next_bit()) != Table_map_iterator::BITMAP_END) {
JOIN_TAB *ref_tab = join->map2table[idx];
if (embedding != ref_tab->table_ref->embedding) return true;
}
/* Ok, functionally dependent */
return false;
}
/* Not functionally dependent => need to include*/
return true;
}
SJ_TMP_TABLE *create_sj_tmp_table(THD *thd, JOIN *join,
SJ_TMP_TABLE_TAB *first_tab,
SJ_TMP_TABLE_TAB *last_tab) {
uint jt_rowid_offset =
0; // # tuple bytes are already occupied (w/o NULL bytes)
uint jt_null_bits = 0; // # null bits in tuple bytes
for (SJ_TMP_TABLE_TAB *tab = first_tab; tab != last_tab; ++tab) {
QEP_TAB *qep_tab = tab->qep_tab;
tab->rowid_offset = jt_rowid_offset;
jt_rowid_offset += qep_tab->table()->file->ref_length;
if (qep_tab->table()->is_nullable()) {
tab->null_byte = jt_null_bits / 8;
tab->null_bit = jt_null_bits++;
}
qep_tab->table()->prepare_for_position();
}
SJ_TMP_TABLE *sjtbl;
if (jt_rowid_offset) /* Temptable has at least one rowid */
{
sjtbl = new (thd->mem_root) SJ_TMP_TABLE;
if (sjtbl == nullptr) return nullptr;
sjtbl->tabs =
thd->mem_root->ArrayAlloc<SJ_TMP_TABLE_TAB>(last_tab - first_tab);
if (sjtbl->tabs == nullptr) return nullptr;
sjtbl->tabs_end = std::uninitialized_copy(first_tab, last_tab, sjtbl->tabs);
sjtbl->is_confluent = false;
sjtbl->rowid_len = jt_rowid_offset;
sjtbl->null_bits = jt_null_bits;
sjtbl->null_bytes = (jt_null_bits + 7) / 8;
sjtbl->tmp_table = create_duplicate_weedout_tmp_table(
thd, sjtbl->rowid_len + sjtbl->null_bytes, sjtbl);
if (sjtbl->tmp_table == nullptr) return nullptr;
if (sjtbl->tmp_table->hash_field)
sjtbl->tmp_table->file->ha_index_init(0, false);
join->sj_tmp_tables.push_back(sjtbl->tmp_table);
} else {
/*
This is confluent case where the entire subquery predicate does
not depend on anything at all, ie this is
WHERE const IN (uncorrelated select)
*/
if (!(sjtbl = new (thd->mem_root) SJ_TMP_TABLE))
return nullptr; /* purecov: inspected */
sjtbl->tmp_table = nullptr;
sjtbl->is_confluent = true;
sjtbl->have_confluent_row = false;
}
return sjtbl;
}
/**
Setup the strategies to eliminate semi-join duplicates.
@param join Join to process
@param no_jbuf_after Do not use join buffering after the table with this
number
@retval false OK
@retval true Out of memory error
Setup the strategies to eliminate semi-join duplicates.
At the moment there are 5 strategies:
-# DuplicateWeedout (use of temptable to remove duplicates based on rowids
of row combinations)
-# FirstMatch (pick only the 1st matching row combination of inner tables)
-# LooseScan (scanning the sj-inner table in a way that groups duplicates
together and picking the 1st one)
-# MaterializeLookup (Materialize inner tables, then setup a scan over
outer correlated tables, lookup in materialized table)
-# MaterializeScan (Materialize inner tables, then setup a scan over
materialized tables, perform lookup in outer tables)
The join order has "duplicate-generating ranges", and every range is
served by one strategy or a combination of FirstMatch with with some
other strategy.
"Duplicate-generating range" is defined as a range within the join order
that contains all of the inner tables of a semi-join. All ranges must be
disjoint, if tables of several semi-joins are interleaved, then the ranges
are joined together, which is equivalent to converting
`SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )`
to
`SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)`.
Applicability conditions are as follows:
@par DuplicateWeedout strategy
@code
(ot|nt)* [ it ((it|ot|nt)* (it|ot))] (nt)*
+------+ +=========================+ +---+
(1) (2) (3)
@endcode
-# Prefix of OuterTables (those that participate in IN-equality and/or are
correlated with subquery) and outer Non-correlated tables.
-# The handled range. The range starts with the first sj-inner table, and
covers all sj-inner and outer tables Within the range, Inner, Outer,
outer non-correlated tables may follow in any order.
-# The suffix of outer non-correlated tables.
@par FirstMatch strategy
@code
(ot|nt)* [ it (it)* ] (nt)*
+------+ +==========+ +---+
(1) (2) (3)
@endcode
-# Prefix of outer correlated and non-correlated tables
-# The handled range, which may contain only inner tables.
-# The suffix of outer non-correlated tables.
@par LooseScan strategy
@code
(ot|ct|nt) [ loosescan_tbl (ot|nt|it)* it ] (ot|nt)*
+--------+ +===========+ +=============+ +------+
(1) (2) (3) (4)
@endcode
-# Prefix that may contain any outer tables. The prefix must contain all
the non-trivially correlated outer tables. (non-trivially means that
the correlation is not just through the IN-equality).
-# Inner table for which the LooseScan scan is performed. Notice that
special requirements for existence of certain indexes apply to this
table, @see class Loose_scan_opt.
-# The remainder of the duplicate-generating range. It is served by
application of FirstMatch strategy. Outer IN-correlated tables must be
correlated to the LooseScan table but not to the inner tables in this
range. (Currently, there can be no outer tables in this range because
of implementation restrictions, @see
Optimize_table_order::advance_sj_state()).
-# The suffix of outer correlated and non-correlated tables.
@par MaterializeLookup strategy
@code
(ot|nt)* [ it (it)* ] (nt)*
+------+ +==========+ +---+
(1) (2) (3)
@endcode
-# Prefix of outer correlated and non-correlated tables.
-# The handled range, which may contain only inner tables.
The inner tables are materialized in a temporary table that is
later used as a lookup structure for the outer correlated tables.
-# The suffix of outer non-correlated tables.
@par MaterializeScan strategy
@code
(ot|nt)* [ it (it)* ] (ot|nt)*
+------+ +==========+ +-----+
(1) (2) (3)
@endcode
-# Prefix of outer correlated and non-correlated tables.
-# The handled range, which may contain only inner tables.
The inner tables are materialized in a temporary table which is
later used to setup a scan.
-# The suffix of outer correlated and non-correlated tables.
Note that MaterializeLookup and MaterializeScan has overlap in their
patterns. It may be possible to consolidate the materialization strategies
into one.
The choice between the strategies is made by the join optimizer (see
advance_sj_state() and fix_semijoin_strategies()). This function sets up
all fields/structures/etc needed for execution except for
setup/initialization of semi-join materialization which is done in
setup_materialized_table().
*/
static bool setup_semijoin_dups_elimination(JOIN *join, uint no_jbuf_after) {
uint tableno;
THD *thd = join->thd;
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
if (join->query_block->sj_nests.empty()) return false;
QEP_TAB *const qep_array = join->qep_tab;
for (tableno = join->const_tables; tableno < join->primary_tables;) {
#ifndef NDEBUG
const bool tab_in_sj_nest = join->best_ref[tableno]->emb_sj_nest != nullptr;
#endif
QEP_TAB *const tab = &qep_array[tableno];
POSITION *const pos = tab->position();
if (pos->sj_strategy == SJ_OPT_NONE) {
tableno++; // nothing to do
continue;
}
QEP_TAB *last_sj_tab = tab + pos->n_sj_tables - 1;
switch (pos->sj_strategy) {
case SJ_OPT_MATERIALIZE_LOOKUP:
case SJ_OPT_MATERIALIZE_SCAN:
assert(false); // Should not occur among "primary" tables
// Do nothing
tableno += pos->n_sj_tables;
break;
case SJ_OPT_LOOSE_SCAN: {
assert(tab_in_sj_nest); // First table must be inner
/* We jump from the last table to the first one */
tab->match_tab = last_sj_tab->idx();
/* For LooseScan, duplicate elimination is based on rows being sorted
on key. We need to make sure that range select keeps the sorted index
order. (When using MRR it may not.)
Note: need_sorted_output() implementations for range select classes
that do not support sorted output, will trigger an assert. This
should not happen since LooseScan strategy is only picked if sorted
output is supported.
*/
if (tab->range_scan()) {
assert(used_index(tab->range_scan()) == pos->loosescan_key);
set_need_sorted_output(tab->range_scan());
}
const uint keyno = pos->loosescan_key;
assert(tab->keys().is_set(keyno));
tab->set_index(keyno);
/* Calculate key length */
uint keylen = 0;
for (uint kp = 0; kp < pos->loosescan_parts; kp++)
keylen += tab->table()->key_info[keyno].key_part[kp].store_length;
tab->loosescan_key_len = keylen;
if (pos->n_sj_tables > 1) {
last_sj_tab->firstmatch_return = tab->idx();
last_sj_tab->match_tab = last_sj_tab->idx();
}
tableno += pos->n_sj_tables;
break;
}
case SJ_OPT_DUPS_WEEDOUT: {
assert(tab_in_sj_nest); // First table must be inner
/*
Consider a semijoin of one outer and one inner table, both
with two rows. The inner table is assumed to be confluent
(See sj_opt_materialize_lookup)
If normal nested loop execution is used, we do not need to
include semi-join outer table rowids in the duplicate
weedout temp table since NL guarantees that outer table rows
are encountered only consecutively and because all rows in
the temp table are deleted for every new outer table
combination (example is with a confluent inner table):
ot1.row1|it1.row1
'-> temp table's have_confluent_row == false
|-> output ot1.row1
'-> set have_confluent_row= true
ot1.row1|it1.row2
|-> temp table's have_confluent_row == true
| '-> do not output ot1.row1
'-> no more join matches - set have_confluent_row= false
ot1.row2|it1.row1
'-> temp table's have_confluent_row == false
|-> output ot1.row2
'-> set have_confluent_row= true
...
Note: not having outer table rowids in the temp table and
then emptying the temp table when a new outer table row
combinition is encountered is an optimization. Including
outer table rowids in the temp table is not harmful but
wastes memory.
Now consider the join buffering algorithms (BNL/BKA). These
algorithms join each inner row with outer rows in "reverse"
order compared to NL. Effectively, this means that outer
table rows may be encountered multiple times in a
non-consecutive manner:
NL: BNL/BKA:
ot1.row1|it1.row1 ot1.row1|it1.row1
ot1.row1|it1.row2 ot1.row2|it1.row1
ot1.row2|it1.row1 ot1.row1|it1.row2
ot1.row2|it1.row2 ot1.row2|it1.row2
It is clear from the above that there is no place we can
empty the temp table like we do in NL to avoid storing outer
table rowids.
Below we check if join buffering might be used. If so, set
first_table to the first non-constant table so that outer
table rowids are included in the temp table. Do not destroy
other duplicate elimination methods.
*/
uint first_table = tableno;
for (uint sj_tableno = tableno; sj_tableno < tableno + pos->n_sj_tables;
sj_tableno++) {
if (join->best_ref[sj_tableno]->use_join_cache() &&
sj_tableno <= no_jbuf_after) {
/* Join buffering will probably be used */
first_table = join->const_tables;
break;
}
}
QEP_TAB *const first_sj_tab = qep_array + first_table;
if (last_sj_tab->first_inner() != NO_PLAN_IDX &&
first_sj_tab->first_inner() != last_sj_tab->first_inner()) {
/*
The first duplicate weedout table is an outer table of an outer join
and the last duplicate weedout table is one of the inner tables of
the outer join.
In this case, we must assure that all the inner tables of the
outer join are part of the duplicate weedout operation.
This is to assure that NULL-extension for inner tables of an
outer join is performed before duplicate elimination is performed,
otherwise we will have extra NULL-extended rows being output, which
should have been eliminated as duplicates.
*/
QEP_TAB *tab2 = &qep_array[last_sj_tab->first_inner()];
/*
First, locate the table that is the first inner table of the
outer join operation that first_sj_tab is outer for.
*/
while (tab2->first_upper() != NO_PLAN_IDX &&
tab2->first_upper() != first_sj_tab->first_inner())
tab2 = qep_array + tab2->first_upper();
// Then, extend the range with all inner tables of the join nest:
if (qep_array[tab2->first_inner()].last_inner() > last_sj_tab->idx())
last_sj_tab =
&qep_array[qep_array[tab2->first_inner()].last_inner()];
}
SJ_TMP_TABLE_TAB sjtabs[MAX_TABLES];
SJ_TMP_TABLE_TAB *last_tab = sjtabs;
/*
Walk through the range and remember
- tables that need their rowids to be put into temptable
- the last outer table
*/
for (QEP_TAB *tab_in_range = qep_array + first_table;
tab_in_range <= last_sj_tab; tab_in_range++) {
if (sj_table_is_included(join, join->best_ref[tab_in_range->idx()])) {
last_tab->qep_tab = tab_in_range;
++last_tab;
}
}
SJ_TMP_TABLE *sjtbl = create_sj_tmp_table(thd, join, sjtabs, last_tab);
if (sjtbl == nullptr) {
return true;
}
qep_array[first_table].flush_weedout_table = sjtbl;
last_sj_tab->check_weed_out_table = sjtbl;
tableno += pos->n_sj_tables;
break;
}
case SJ_OPT_FIRST_MATCH: {
/*
Setup a "jump" from the last table in the range of inner tables
to the last outer table before the inner tables.
*/
plan_idx jump_to = tab->idx() - 1;
assert(tab_in_sj_nest); // First table must be inner
for (QEP_TAB *tab_in_range = tab; tab_in_range <= last_sj_tab;
tab_in_range++) {
if (!join->best_ref[tab_in_range->idx()]->emb_sj_nest) {
/*
Let last non-correlated table be jump target for
subsequent inner tables.
*/
assert(false); // no "split jump" should exist.
jump_to = tab_in_range->idx();
} else {
/*
Assign jump target for last table in a consecutive range of
inner tables.
*/
if (tab_in_range == last_sj_tab ||
!join->best_ref[tab_in_range->idx() + 1]->emb_sj_nest) {
tab_in_range->firstmatch_return = jump_to;
tab_in_range->match_tab = last_sj_tab->idx();
}
}
}
tableno += pos->n_sj_tables;
break;
}
}
}
return false;
}
/*
Destroy all temporary tables created by NL-semijoin runtime
*/
static void destroy_sj_tmp_tables(JOIN *join) {
List_iterator<TABLE> it(join->sj_tmp_tables);
TABLE *table;
while ((table = it++)) {
/*
SJ-Materialization tables are initialized for either sequential reading
or index lookup, DuplicateWeedout tables are not initialized for read
(we only write to them), so need to call ha_index_or_rnd_end.
*/
if (table->file != nullptr) {
table->file->ha_index_or_rnd_end();
}
close_tmp_table(table);
free_tmp_table(table);
}
join->sj_tmp_tables.clear();
}
/**
Remove all rows from all temp tables used by NL-semijoin runtime
All rows must be removed from all temporary tables before every join
re-execution.
*/
bool JOIN::clear_sj_tmp_tables() {
List_iterator<TABLE> it(sj_tmp_tables);
TABLE *table;
while ((table = it++)) {
if (table->empty_result_table()) return true; /* purecov: inspected */
}
return false;
}
/// Empties all correlated materialized derived tables
bool JOIN::clear_corr_derived_tmp_tables() {
for (uint i = const_tables; i < tables; i++) {
auto tl = qep_tab[i].table_ref;
if (tl && tl->is_derived() && !tl->common_table_expr() &&
(tl->derived_query_expression()->uncacheable & UNCACHEABLE_DEPENDENT) &&
tl->table) {
/*
Applied only to non-CTE derived tables, as CTEs are reset in
Query_expression::clear_correlated_query_blocks()
*/
if (tl->derived_query_expression()->query_result()->reset()) return true;
}
}
return false;
}
/**
Reset the state of this join object so that it is ready for a
new execution.
*/
void JOIN::reset() {
DBUG_TRACE;
if (!executed) return;
query_expression()->offset_limit_cnt =
(ha_rows)(query_block->offset_limit
? query_block->offset_limit->val_uint()
: 0ULL);
group_sent = false;
recursive_iteration_count = 0;
executed = false;
List_iterator<Window> li(query_block->m_windows);
Window *w;
while ((w = li++)) {
w->reset_round();
}
if (tmp_tables) {
for (uint tmp = primary_tables; tmp < primary_tables + tmp_tables; tmp++) {
(void)qep_tab[tmp].table()->empty_result_table();
}
}
clear_sj_tmp_tables();
set_ref_item_slice(REF_SLICE_SAVED_BASE);
if (qep_tab) {
if (query_block->derived_table_count) clear_corr_derived_tmp_tables();
/* need to reset ref access state (see EQRefIterator) */
for (uint i = 0; i < tables; i++) {
QEP_TAB *const tab = &qep_tab[i];
/*
If qep_tab==NULL, we may still have done ref access (to read a const
table); const tables will not be re-read in the next execution of this
subquery, so resetting key_err is not needed.
*/
tab->ref().key_err = true;
}
}
/* Reset of sum functions */
if (sum_funcs) {
Item_sum *func, **func_ptr = sum_funcs;
while ((func = *(func_ptr++))) func->clear();
}
if (query_block->has_ft_funcs()) {
/* TODO: move the code to JOIN::exec */
(void)init_ftfuncs(thd, query_block);
}
}
/**
Prepare join result.
@details Prepare join result prior to join execution or describing.
Instantiate derived tables and get schema tables result if necessary.
@return
true An error during derived or schema tables instantiation.
false Ok
*/
bool JOIN::prepare_result() {
DBUG_TRACE;
error = 0;
if (query_block->query_result()->start_execution(thd)) goto err;
return false;
err:
error = 1;
return true;
}
/**
Clean up and destroy join object.
*/
void JOIN::destroy() {
cond_equal = nullptr;
set_plan_state(NO_PLAN);
if (qep_tab) {
assert(!join_tab);
for (uint i = 0; i < tables; i++) {
TABLE *table = qep_tab[i].table();
if (table != nullptr) {
// These were owned by the root iterator, which we just destroyed.
// Keep filesort_free_buffers() from trying to call CleanupAfterQuery()
// on them.
table->sorting_iterator = nullptr;
table->duplicate_removal_iterator = nullptr;
}
qep_tab[i].cleanup();
}
} else if (thd->lex->using_hypergraph_optimizer()) {
// Same, for hypergraph queries.
for (Table_ref *tl = query_block->leaf_tables; tl; tl = tl->next_leaf) {
TABLE *table = tl->table;
if (table != nullptr) {
// For prepared statements, a derived table's temp table handler
// gets cleaned up at the end of prepare and it is setup again
// during optimization. However, if optimization for a derived
// table query block fails for some reason (E.g. Secondary engine
// rejects all the plans), handler is not setup for the rest of
// the derived tables. So we need to call set_keyread() only
// when handler is initialized.
// TODO(Chaithra): This should be moved to a more suitable place,
// perhaps TableRowIterator's destructor ?
if (table->file != nullptr) {
table->set_keyread(false);
}
table->sorting_iterator = nullptr;
table->duplicate_removal_iterator = nullptr;
}
}
for (JOIN::TemporaryTableToCleanup cleanup : temp_tables) {
if (cleanup.table != nullptr) {
cleanup.table->sorting_iterator = nullptr;
cleanup.table->duplicate_removal_iterator = nullptr;
}
close_tmp_table(cleanup.table);
free_tmp_table(cleanup.table);
::destroy(cleanup.temp_table_param);
}
for (Filesort *filesort : filesorts_to_cleanup) {
::destroy(filesort);
}
temp_tables.clear();
filesorts_to_cleanup.clear();
}
if (join_tab || best_ref) {
for (uint i = 0; i < tables; i++) {
JOIN_TAB *const tab = join_tab ? &join_tab[i] : best_ref[i];
tab->cleanup();
}
}
/*
We are not using tables anymore
Unlock all tables. We may be in an INSERT .... SELECT statement.
*/
// Run Cached_item DTORs!
group_fields.destroy_elements();
semijoin_deduplication_fields.destroy_elements();
tmp_table_param.cleanup();
/* Cleanup items referencing temporary table columns */
if (tmp_fields != nullptr) {
cleanup_item_list(tmp_fields[REF_SLICE_TMP1]);
cleanup_item_list(tmp_fields[REF_SLICE_TMP2]);
for (uint widx = 0; widx < m_windows.elements; widx++) {
cleanup_item_list(tmp_fields[REF_SLICE_WIN_1 + widx]);
}
}
destroy_sj_tmp_tables(this);
List_iterator<Semijoin_mat_exec> sjm_list_it(sjm_exec_list);
Semijoin_mat_exec *sjm;
while ((sjm = sjm_list_it++)) ::destroy(sjm);
sjm_exec_list.clear();
keyuse_array.clear();
// Free memory for rollup arrays
if (query_block->olap == ROLLUP_TYPE) {
rollup_group_items.clear();
rollup_group_items.shrink_to_fit();
rollup_sums.clear();
rollup_sums.shrink_to_fit();
}
}
void JOIN::cleanup_item_list(const mem_root_deque<Item *> &items) const {
for (Item *item : items) {
item->cleanup();
}
}
/**
Optimize a query block and all inner query expressions
@param thd thread handler
@param finalize_access_paths
if true, finalize access paths, cf. FinalizePlanForQueryBlock
@returns false if success, true if error
*/
bool Query_block::optimize(THD *thd, bool finalize_access_paths) {
DBUG_TRACE;
assert(join == nullptr);
JOIN *const join_local = new (thd->mem_root) JOIN(thd, this);
if (!join_local) return true; /* purecov: inspected */
/*
Updating Query_block::join requires acquiring THD::LOCK_query_plan
to avoid races when EXPLAIN FOR CONNECTION is used.
*/
thd->lock_query_plan();
join = join_local;
thd->unlock_query_plan();
if (join->optimize(finalize_access_paths)) return true;
if (join->zero_result_cause && !is_implicitly_grouped()) return false;
for (Query_expression *query_expression = first_inner_query_expression();
query_expression;
query_expression = query_expression->next_query_expression()) {
// Derived tables and const subqueries are already optimized
if (!query_expression->is_optimized() &&
query_expression->optimize(thd, /*materialize_destination=*/nullptr,
/*create_iterators=*/false,
/*finalize_access_paths=*/true))
return true;
}
return false;
}
/**
Check privileges for all columns referenced from this query block.
Also check privileges for referenced subqueries.
@param thd thread handler
@returns false if success, true if error (insufficient privileges)
@todo - skip this if we have table SELECT privileges for all tables
*/
bool Query_block::check_column_privileges(THD *thd) {
Column_privilege_tracker tracker(thd, SELECT_ACL);
for (Item *item : visible_fields()) {
if (item->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
}
if (m_current_table_nest &&
check_privileges_for_join(thd, m_current_table_nest))
return true;
if (where_cond() != nullptr &&
where_cond()->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
for (ORDER *group = group_list.first; group; group = group->next) {
if ((*group->item)
->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
}
if (having_cond() != nullptr &&
having_cond()->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
List_iterator<Window> wi(m_windows);
Window *w;
while ((w = wi++)) {
for (ORDER *wp = w->first_partition_by(); wp != nullptr; wp = wp->next)
if ((*wp->item)->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
for (ORDER *wo = w->first_order_by(); wo != nullptr; wo = wo->next)
if ((*wo->item)->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
}
for (ORDER *order = order_list.first; order; order = order->next) {
if ((*order->item)
->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
}
if (check_privileges_for_subqueries(thd)) return true;
return false;
}
/**
Check privileges for column references in a JOIN expression
@param thd thread handler
@param tables list of joined tables
@returns false if success, true if error (insufficient privileges)
*/
bool check_privileges_for_join(THD *thd, mem_root_deque<Table_ref *> *tables) {
thd->want_privilege = SELECT_ACL;
for (Table_ref *table_ref : *tables) {
if (table_ref->join_cond() != nullptr &&
table_ref->join_cond()->walk(&Item::check_column_privileges,
enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
if (table_ref->nested_join != nullptr &&
check_privileges_for_join(thd, &table_ref->nested_join->m_tables))
return true;
}
return false;
}
/**
Check privileges for column references in an item list
@param thd thread handler
@param items list of items
@param privileges the required privileges
@returns false if success, true if error (insufficient privileges)
*/
bool check_privileges_for_list(THD *thd, const mem_root_deque<Item *> &items,
Access_bitmask privileges) {
thd->want_privilege = privileges;
for (Item *item : items) {
if (item->walk(&Item::check_column_privileges, enum_walk::PREFIX,
pointer_cast<uchar *>(thd)))
return true;
}
return false;
}
/**
Check privileges for column references in subqueries of a query block
@param thd thread handler
@returns false if success, true if error (insufficient privileges)
*/
bool Query_block::check_privileges_for_subqueries(THD *thd) {
for (Query_expression *query_expression = first_inner_query_expression();
query_expression;
query_expression = query_expression->next_query_expression()) {
for (Query_block *sl = query_expression->first_query_block(); sl;
sl = sl->next_query_block()) {
if (sl->check_column_privileges(thd)) return true;
}
}
return false;
}
/*****************************************************************************
Go through all combinations of not marked tables and find the one
which uses least records
*****************************************************************************/
/**
Find how much space the previous read not const tables takes in cache.
*/
void calc_used_field_length(TABLE *table, bool needs_rowid,
uint *p_used_fieldlength) {
uint null_fields, blobs, fields, rec_length;
Field **f_ptr, *field;
uint uneven_bit_fields;
MY_BITMAP *read_set = table->read_set;
uneven_bit_fields = null_fields = blobs = fields = rec_length = 0;
for (f_ptr = table->field; (field = *f_ptr); f_ptr++) {
if (bitmap_is_set(read_set, field->field_index())) {
fields++;
rec_length += field->pack_length();
if (field->is_flag_set(BLOB_FLAG) || field->is_array()) blobs++;
if (!field->is_flag_set(NOT_NULL_FLAG)) null_fields++;
if (field->type() == MYSQL_TYPE_BIT && ((Field_bit *)field)->bit_len)
uneven_bit_fields++;
}
}
if (null_fields || uneven_bit_fields)
rec_length += (table->s->null_fields + 7) / 8;
if (table->is_nullable()) rec_length += sizeof(bool);
if (blobs) {
uint blob_length = (uint)(table->file->stats.mean_rec_length -
(table->s->reclength - rec_length));
rec_length += max<uint>(4U, blob_length);
}
if (needs_rowid) {
rec_length += table->file->ref_length;
fields++;
}
*p_used_fieldlength = rec_length;
}
bool JOIN::init_ref_access() {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
for (uint tableno = const_tables; tableno < tables; tableno++) {
JOIN_TAB *const tab = best_ref[tableno];
if (tab->type() == JT_REF) // Here JT_REF means all kinds of ref access
{
assert(tab->position() && tab->position()->key);
if (create_ref_for_key(this, tab, tab->position()->key,
tab->prefix_tables()))
return true;
}
}
return false;
}
/**
Set the first_sj_inner_tab and last_sj_inner_tab fields for all tables
inside the semijoin nests of the query.
*/
void JOIN::set_semijoin_info() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
if (query_block->sj_nests.empty()) return;
for (uint tableno = const_tables; tableno < tables;) {
JOIN_TAB *const tab = best_ref[tableno];
const POSITION *const pos = tab->position();
if (!pos) {
tableno++;
continue;
}
switch (pos->sj_strategy) {
case SJ_OPT_NONE:
tableno++;
break;
case SJ_OPT_MATERIALIZE_LOOKUP:
case SJ_OPT_MATERIALIZE_SCAN:
case SJ_OPT_LOOSE_SCAN:
case SJ_OPT_DUPS_WEEDOUT:
case SJ_OPT_FIRST_MATCH:
/*
Remember the first and last semijoin inner tables; this serves to tell
a JOIN_TAB's semijoin strategy (like in setup_join_buffering()).
*/
plan_idx last_sj_tab = tableno + pos->n_sj_tables - 1;
plan_idx last_sj_inner = (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT)
?
/* Range may end with non-inner table so
cannot set last_sj_inner_tab */
NO_PLAN_IDX
: last_sj_tab;
for (plan_idx tab_in_range = tableno; tab_in_range <= last_sj_tab;
tab_in_range++) {
best_ref[tab_in_range]->set_first_sj_inner(tableno);
best_ref[tab_in_range]->set_last_sj_inner(last_sj_inner);
}
tableno += pos->n_sj_tables;
break;
}
}
}
void calc_length_and_keyparts(Key_use *keyuse, JOIN_TAB *tab, const uint key,
table_map used_tables, Key_use **chosen_keyuses,
uint *length_out, uint *keyparts_out,
table_map *dep_map, bool *maybe_null) {
assert(!dep_map || maybe_null);
uint keyparts = 0, length = 0;
uint found_part_ref_or_null = 0;
KEY *const keyinfo = tab->table()->key_info + key;
do {
/*
This Key_use is chosen if:
- it involves a key part at the right place (if index is (a,b) we
can have a search criterion on 'b' only if we also have a criterion
on 'a'),
- it references only tables earlier in the plan.
Moreover, the execution layer is limited to maximum one ref_or_null
keypart, as Index_lookup::null_ref_key is only one byte.
*/
if (!(~used_tables & keyuse->used_tables) && keyparts == keyuse->keypart &&
!(found_part_ref_or_null & keyuse->optimize)) {
assert(keyparts <= MAX_REF_PARTS);
if (chosen_keyuses) chosen_keyuses[keyparts] = keyuse;
keyparts++;
length += keyinfo->key_part[keyuse->keypart].store_length;
found_part_ref_or_null |= keyuse->optimize;
if (dep_map) {
*dep_map |= keyuse->val->used_tables();
*maybe_null |= keyinfo->key_part[keyuse->keypart].null_bit &&
(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL);
}
}
keyuse++;
} while (keyuse->table_ref == tab->table_ref && keyuse->key == key);
if (keyparts <= 0) {
assert(false);
my_error(ER_INTERNAL_ERROR, MYF(0),
"Key not found"); // In debug build we assert, but in release we
// guard against a potential server exit with an
// error
return;
}
*length_out = length;
*keyparts_out = keyparts;
}
bool init_ref(THD *thd, unsigned keyparts, unsigned length, unsigned keyno,
Index_lookup *ref) {
ref->key_parts = keyparts;
ref->key_length = length;
ref->key = keyno;
if (!(ref->key_buff = thd->mem_root->ArrayAlloc<uchar>(ALIGN_SIZE(length))) ||
!(ref->key_buff2 =
thd->mem_root->ArrayAlloc<uchar>(ALIGN_SIZE(length))) ||
!(ref->key_copy = thd->mem_root->ArrayAlloc<store_key *>(keyparts)) ||
!(ref->items = thd->mem_root->ArrayAlloc<Item *>(keyparts)) ||
!(ref->cond_guards = thd->mem_root->ArrayAlloc<bool *>(keyparts))) {
return true;
}
ref->key_err = true;
ref->null_rejecting = 0;
ref->use_count = 0;
ref->disable_cache = false;
return false;
}
bool init_ref_part(THD *thd, unsigned part_no, Item *val, bool *cond_guard,
bool null_rejecting, table_map const_tables,
table_map used_tables, bool nullable,
const KEY_PART_INFO *key_part_info, uchar *key_buff,
Index_lookup *ref) {
ref->items[part_no] = val; // Save for cond removal
ref->cond_guards[part_no] = cond_guard;
// Set ref as "null rejecting" only if either side is really nullable:
if (null_rejecting && (nullable || val->is_nullable()))
ref->null_rejecting |= (key_part_map)1 << part_no;
store_key *s_key = get_store_key(thd, val, used_tables, const_tables,
key_part_info, key_buff, nullable);
if (unlikely(!s_key || thd->is_error())) return true;
if (used_tables & ~INNER_TABLE_BIT ||
(thd->lex->is_explain() && val->has_stored_program())) {
ref->key_copy[part_no] = s_key;
} else {
/*
The outer reference is to a const table, so we copy the value
straight from that table now (during optimization), instead of from
the temporary table created during execution.
TODO: Synchronize with the temporary table creation code, so that
there is no need to create a column for this value.
*/
bool dummy_value = false;
val->walk(&Item::repoint_const_outer_ref, enum_walk::PREFIX,
pointer_cast<uchar *>(&dummy_value));
/*
key is const, copy value now and possibly skip it while ::exec().
Note:
Result check of store_key::copy() is unnecessary,
it could be an error returned by store_key::copy() method
but stored value is not null and default value could be used
in this case. Methods which used for storing the value
should be responsible for proper null value setting
in case of an error. Thus it's enough to check s_key->null_key
value only.
*/
(void)s_key->copy();
/*
It should be reevaluated in ::exec() if
constant evaluated to NULL value which we might need to
handle as a special case during JOIN::exec()
(As in : 'Full scan on NULL key')
*/
if (s_key->null_key)
ref->key_copy[part_no] = s_key; // Reevaluate in JOIN::exec()
else
ref->key_copy[part_no] = nullptr;
}
return false;
}
/**
Setup a ref access for looking up rows via an index (a key).
@param join The join object being handled
@param j The join_tab which will have the ref access populated
@param org_keyuse First key part of (possibly multi-part) key
@param used_tables Bitmap of available tables
@return False if success, True if error
Given a Key_use structure that specifies the fields that can be used
for index access, this function creates and set up the structure
used for index look up via one of the access methods {JT_FT,
JT_CONST, JT_REF_OR_NULL, JT_REF, JT_EQ_REF} for the plan operator
'j'. Generally the function sets up the structure j->ref (of type
Index_lookup), and the access method j->type.
@note We cannot setup fields used for ref access before we have sorted
the items within multiple equalities according to the final order of
the tables involved in the join operation. Currently, this occurs in
@see substitute_for_best_equal_field().
The exception is ref access for const tables, which are fixed
before the greedy search planner is invoked.
*/
bool create_ref_for_key(JOIN *join, JOIN_TAB *j, Key_use *org_keyuse,
table_map used_tables) {
DBUG_TRACE;
const uint key = org_keyuse->key;
const bool ftkey = (org_keyuse->keypart == FT_KEYPART);
THD *const thd = join->thd;
uint keyparts, length;
TABLE *const table = j->table();
KEY *const keyinfo = table->key_info + key;
Key_use *chosen_keyuses[MAX_REF_PARTS];
assert(j->keys().is_set(org_keyuse->key));
/* Calculate the length of the used key. */
if (ftkey) {
Item_func_match *ifm = down_cast<Item_func_match *>(org_keyuse->val);
length = 0;
keyparts = 1;
ifm->get_master()->score_from_index_scan = true;
} else /* not ftkey */
calc_length_and_keyparts(org_keyuse, j, key, used_tables, chosen_keyuses,
&length, &keyparts, nullptr, nullptr);
if (thd->is_error()) {
return true;
}
/* set up fieldref */
if (init_ref(thd, keyparts, length, (int)key, &j->ref())) {
return true;
}
uchar *key_buff = j->ref().key_buff;
uchar *null_ref_key = nullptr;
bool keyuse_uses_no_tables = true;
bool null_rejecting_key = true;
if (ftkey) {
Key_use *keyuse = org_keyuse;
j->ref().items[0] = ((Item_func *)(keyuse->val))->key_item();
/* Predicates pushed down into subquery can't be used FT access */
j->ref().cond_guards[0] = nullptr;
// not supported yet. SerG
assert(!(keyuse->used_tables & ~PSEUDO_TABLE_BITS));
j->set_type(JT_FT);
j->set_ft_func(down_cast<Item_func_match *>(keyuse->val));
memset(j->ref().key_copy, 0, sizeof(j->ref().key_copy[0]) * keyparts);
return false;
}
// Set up Index_lookup based on chosen Key_use-s.
for (uint part_no = 0; part_no < keyparts; part_no++) {
Key_use *keyuse = chosen_keyuses[part_no];
bool nullable = keyinfo->key_part[part_no].null_bit;
if (keyuse->val->type() == Item::FIELD_ITEM) {
// Look up the most appropriate field to base the ref access on.
keyuse->val = get_best_field(down_cast<Item_field *>(keyuse->val),
join->cond_equal);
keyuse->used_tables = keyuse->val->used_tables();
}
if (init_ref_part(thd, part_no, keyuse->val, keyuse->cond_guard,
keyuse->null_rejecting, join->const_table_map,
keyuse->used_tables, nullable,
&keyinfo->key_part[part_no], key_buff, &j->ref())) {
return true;
}
keyuse_uses_no_tables = keyuse_uses_no_tables && !keyuse->used_tables;
/*
Remember if we are going to use REF_OR_NULL
But only if field _really_ can be null i.e. we force JT_REF
instead of JT_REF_OR_NULL in case if field can't be null
*/
if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && nullable) {
assert(null_ref_key == nullptr); // or we would overwrite it below
null_ref_key = key_buff;
}
/*
The selected key will reject matches on NULL values if:
- the key field is nullable, and
- predicate rejects NULL values (keyuse->null_rejecting is true), or
- JT_REF_OR_NULL is not effective.
*/
if ((keyinfo->key_part[part_no].field->is_nullable() ||
table->is_nullable()) &&
(!keyuse->null_rejecting || null_ref_key != nullptr)) {
null_rejecting_key = false;
}
key_buff += keyinfo->key_part[part_no].store_length;
}
assert(j->type() != JT_FT);
if (j->type() == JT_CONST)
j->table()->const_table = true;
else if (((actual_key_flags(keyinfo) & HA_NOSAME) == 0) ||
((actual_key_flags(keyinfo) & HA_NULL_PART_KEY) &&
!null_rejecting_key) ||
keyparts != actual_key_parts(keyinfo)) {
/* Must read with repeat */
j->set_type(null_ref_key ? JT_REF_OR_NULL : JT_REF);
j->ref().null_ref_key = null_ref_key;
} else if (keyuse_uses_no_tables &&
!(table->file->ha_table_flags() & HA_BLOCK_CONST_TABLE)) {
/*
This happen if we are using a constant expression in the ON part
of an LEFT JOIN.
SELECT * FROM a LEFT JOIN b ON b.key=30
Here we should not mark the table as a 'const' as a field may
have a 'normal' value or a NULL value.
*/
j->set_type(JT_CONST);
j->position()->rows_fetched = 1.0;
} else {
j->set_type(JT_EQ_REF);
j->position()->rows_fetched = 1.0;
}
return thd->is_error();
}
namespace {
class store_key_const_item final : public store_key {
int cached_result = -1;
public:
store_key_const_item(THD *thd, Field *to_field_arg, uchar *ptr,
uchar *null_ptr_arg, uint length, Item *item_arg)
: store_key(thd, to_field_arg, ptr, null_ptr_arg, length, item_arg) {}
const char *name() const override { return STORE_KEY_CONST_NAME; }
protected:
enum store_key_result copy_inner() override {
if (cached_result == -1) {
cached_result = store_key::copy_inner();
}
return static_cast<store_key_result>(cached_result);
}
};
/*
Class used for indexes over JSON expressions. The value to lookup is
obtained from val_json() method and then converted according to field's
result type and saved. This allows proper handling of temporal values.
*/
class store_key_json_item final : public store_key {
/// Whether the key is constant.
const bool m_const_key{false};
/// Whether the key was already copied.
bool m_inited{false};
public:
store_key_json_item(THD *thd, Field *to_field_arg, uchar *ptr,
uchar *null_ptr_arg, uint length, Item *item_arg,
bool const_key_arg)
: store_key(thd, to_field_arg, ptr, null_ptr_arg, length, item_arg),
m_const_key(const_key_arg) {}
const char *name() const override {
return m_const_key ? STORE_KEY_CONST_NAME : "func";
}
protected:
enum store_key_result copy_inner() override;
};
} // namespace
static store_key *get_store_key(THD *thd, Item *val, table_map used_tables,
table_map const_tables,
const KEY_PART_INFO *key_part, uchar *key_buff,
uint maybe_null) {
if (key_part->field->is_array()) {
return new (thd->mem_root)
store_key_json_item(thd, key_part->field, key_buff + maybe_null,
maybe_null ? key_buff : nullptr, key_part->length,
val, (!((~const_tables) & used_tables)));
}
if (!((~const_tables) & used_tables)) // if const item
{
return new (thd->mem_root) store_key_const_item(
thd, key_part->field, key_buff + maybe_null,
maybe_null ? key_buff : nullptr, key_part->length, val);
}
return new (thd->mem_root)
store_key(thd, key_part->field, key_buff + maybe_null,
maybe_null ? key_buff : nullptr, key_part->length, val);
}
store_key::store_key(THD *thd, Field *field_arg, uchar *ptr, uchar *null,
uint length, Item *item_arg)
: item(item_arg) {
if (field_arg->type() == MYSQL_TYPE_BLOB ||
field_arg->type() == MYSQL_TYPE_GEOMETRY) {
/*
Key segments are always packed with a 2 byte length prefix.
See mi_rkey for details.
*/
to_field = new (thd->mem_root) Field_varstring(
ptr, length, 2, null, 1, Field::NONE, field_arg->field_name,
field_arg->table->s, field_arg->charset());
to_field->init(field_arg->table);
} else
to_field =
field_arg->new_key_field(thd->mem_root, field_arg->table, ptr, null, 1);
// If the item is nullable, but we cannot store null, make
// to_field temporary nullable so that we can check in copy_inner()
// if we end up with an illegal null value.
if (!to_field->is_nullable() && item->is_nullable())
to_field->set_tmp_nullable();
}
store_key::store_key_result store_key::copy() {
enum store_key_result result;
THD *thd = current_thd;
enum_check_fields saved_check_for_truncated_fields =
thd->check_for_truncated_fields;
sql_mode_t sql_mode = thd->variables.sql_mode;
thd->variables.sql_mode &= ~(MODE_NO_ZERO_IN_DATE | MODE_NO_ZERO_DATE);
thd->check_for_truncated_fields = CHECK_FIELD_IGNORE;
result = copy_inner();
thd->check_for_truncated_fields = saved_check_for_truncated_fields;
thd->variables.sql_mode = sql_mode;
return result;
}
enum store_key::store_key_result store_key_hash_item::copy_inner() {
enum store_key_result res = store_key::copy_inner();
if (res != STORE_KEY_FATAL) {
// Convert to and from little endian, since that is what gets
// stored in the hash field we are lookup up against.
ulonglong h = uint8korr(pointer_cast<char *>(hash));
h = unique_hash(to_field, &h);
int8store(pointer_cast<char *>(hash), h);
}
return res;
}
namespace {
enum store_key::store_key_result store_key_json_item::copy_inner() {
THD *thd = current_thd;
TABLE *table = to_field->table;
// Temporarily mark all table's fields writable to avoid assert.
my_bitmap_map *old_map = dbug_tmp_use_all_columns(table, table->write_set);
if (!m_inited) {
Json_wrapper wr;
String str_val, buf;
Functional_index_error_handler functional_index_error_handler(to_field,
thd);
// Get JSON value and store its value as the key. MEMBER OF is the only
// function that can use this function
if (get_json_atom_wrapper(&item, 0, "MEMBER OF", &str_val, &buf, &wr,
nullptr, true) ||
save_json_to_field(thd, to_field, &wr, false))
return STORE_KEY_FATAL;
// Copy constant key only once
if (m_const_key) m_inited = true;
}
dbug_tmp_restore_column_map(table->write_set, old_map);
null_key = to_field->is_null() || item->null_value;
assert(!thd->is_error());
return STORE_KEY_OK;
}
} // namespace
static store_key::store_key_result type_conversion_status_to_store_key(
THD *thd, type_conversion_status ts) {
switch (ts) {
case TYPE_OK:
return store_key::STORE_KEY_OK;
case TYPE_NOTE_TRUNCATED:
case TYPE_WARN_TRUNCATED:
case TYPE_NOTE_TIME_TRUNCATED:
if (thd->check_for_truncated_fields)
return store_key::STORE_KEY_CONV;
else
return store_key::STORE_KEY_OK;
case TYPE_WARN_OUT_OF_RANGE:
case TYPE_WARN_INVALID_STRING:
case TYPE_ERR_NULL_CONSTRAINT_VIOLATION:
case TYPE_ERR_BAD_VALUE:
case TYPE_ERR_OOM:
return store_key::STORE_KEY_FATAL;
}
assert(false); // not possible
return store_key::STORE_KEY_FATAL;
}
enum store_key::store_key_result store_key::copy_inner() {
THD *thd = current_thd;
TABLE *table = to_field->table;
my_bitmap_map *old_map = dbug_tmp_use_all_columns(table, table->write_set);
type_conversion_status save_res = item->save_in_field(to_field, true);
store_key_result res;
/*
Item::save_in_field() may call Item::val_xxx(). And if this is a subquery
we need to check for errors executing it and react accordingly.
*/
if (save_res != TYPE_OK && thd->is_error())
res = STORE_KEY_FATAL;
else
res = type_conversion_status_to_store_key(thd, save_res);
dbug_tmp_restore_column_map(table->write_set, old_map);
null_key = to_field->is_null() || item->null_value;
return to_field->is_tmp_null() ? STORE_KEY_FATAL : res;
}
/**
Extend e1 by AND'ing e2 to the condition e1 points to. The resulting
condition is fixed. Requirement: the input Items must already have
been fixed. This is a variant of and_items(); it is intended for use in
the optimizer phase.
@param[in,out] e1 Pointer to condition that will be extended with e2
@param e2 Condition that will extend e1
@retval true if there was a memory allocation error, in which case
e1 remains unchanged
@retval false otherwise
*/
bool and_conditions(Item **e1, Item *e2) {
assert(!(*e1) || (*e1)->fixed);
assert(!e2 || e2->fixed);
if (*e1) {
if (!e2) return false;
Item *res = new Item_cond_and(*e1, e2);
if (unlikely(!res)) return true;
*e1 = res;
res->quick_fix_field();
res->update_used_tables();
} else
*e1 = e2;
return false;
}
/*
Get a part of the condition that can be checked using only index fields
SYNOPSIS
make_cond_for_index()
cond The source condition
table The table that is partially available
keyno The index in the above table. Only fields covered by the
index are available other_tbls_ok true <=> Fields of other non-const tables
are allowed
DESCRIPTION
Get a part of the condition that can be checked when for the given table
we have values only of fields covered by some index. The condition may
refer to other tables, it is assumed that we have values of all of their
fields.
Example:
make_cond_for_index(
"cond(t1.field) AND cond(t2.key1) AND cond(t2.non_key) AND
cond(t2.key2)", t2, keyno(t2.key1)) will return "cond(t1.field) AND
cond(t2.key2)"
RETURN
Index condition, or NULL if no condition could be inferred.
*/
static Item *make_cond_for_index(Item *cond, TABLE *table, uint keyno,
bool other_tbls_ok) {
assert(cond != nullptr);
if (cond->type() == Item::COND_ITEM) {
uint n_marked = 0;
if (((Item_cond *)cond)->functype() == Item_func::COND_AND_FUNC) {
table_map used_tables = 0;
Item_cond_and *new_cond = new Item_cond_and;
if (!new_cond) return nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_for_index(item, table, keyno, other_tbls_ok);
if (fix) {
new_cond->argument_list()->push_back(fix);
used_tables |= fix->used_tables();
}
n_marked += (item->marker == Item::MARKER_ICP_COND_USES_INDEX_ONLY);
}
if (n_marked == ((Item_cond *)cond)->argument_list()->elements)
cond->marker = Item::MARKER_ICP_COND_USES_INDEX_ONLY;
switch (new_cond->argument_list()->elements) {
case 0:
return nullptr;
case 1:
new_cond->set_used_tables(used_tables);
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
new_cond->set_used_tables(used_tables);
return new_cond;
}
} else /* It's OR */
{
Item_cond_or *new_cond = new Item_cond_or;
if (!new_cond) return nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_for_index(item, table, keyno, other_tbls_ok);
if (!fix) return nullptr;
new_cond->argument_list()->push_back(fix);
n_marked += (item->marker == Item::MARKER_ICP_COND_USES_INDEX_ONLY);
}
if (n_marked == ((Item_cond *)cond)->argument_list()->elements)
cond->marker = Item::MARKER_ICP_COND_USES_INDEX_ONLY;
new_cond->quick_fix_field();
new_cond->set_used_tables(cond->used_tables());
new_cond->apply_is_true();
return new_cond;
}
}
if (!uses_index_fields_only(cond, table, keyno, other_tbls_ok)) {
/*
Reset marker since it might have the value
MARKER_ICP_COND_USES_INDEX_ONLY if this condition is part of the select
condition for multiple tables.
*/
cond->marker = Item::MARKER_NONE;
return nullptr;
}
cond->marker = Item::MARKER_ICP_COND_USES_INDEX_ONLY;
return cond;
}
static Item *make_cond_remainder(Item *cond, bool exclude_index) {
if (exclude_index && cond->marker == Item::MARKER_ICP_COND_USES_INDEX_ONLY)
return nullptr; /* Already checked */
if (cond->type() == Item::COND_ITEM) {
table_map tbl_map = 0;
if (((Item_cond *)cond)->functype() == Item_func::COND_AND_FUNC) {
/* Create new top level AND item */
Item_cond_and *new_cond = new Item_cond_and;
if (!new_cond) return (Item *)nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_remainder(item, exclude_index);
if (fix) {
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
}
switch (new_cond->argument_list()->elements) {
case 0:
return (Item *)nullptr;
case 1:
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
new_cond->set_used_tables(tbl_map);
return new_cond;
}
} else /* It's OR */
{
Item_cond_or *new_cond = new Item_cond_or;
if (!new_cond) return (Item *)nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_remainder(item, false);
if (!fix) return (Item *)nullptr;
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
new_cond->quick_fix_field();
new_cond->set_used_tables(tbl_map);
new_cond->apply_is_true();
return new_cond;
}
}
return cond;
}
/**
Try to extract and push the index condition down to table handler
@param join_tab join_tab for table
@param keyno Index for which extract and push the condition
@param trace_obj trace object where information is to be added
*/
void QEP_TAB::push_index_cond(const JOIN_TAB *join_tab, uint keyno,
Opt_trace_object *trace_obj) {
JOIN *const join_ = join();
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join_);
assert(join_tab == join_->best_ref[idx()]);
if (join_tab->reversed_access) // @todo: historical limitation, lift it!
return;
TABLE *const tbl = table();
// Disable ICP for Innodb intrinsic temp table because of performance
if (tbl->s->db_type() == innodb_hton && tbl->s->tmp_table != NO_TMP_TABLE &&
tbl->s->tmp_table != TRANSACTIONAL_TMP_TABLE)
return;
// TODO: Currently, index on virtual generated column doesn't support ICP
if (tbl->vfield && tbl->index_contains_some_virtual_gcol(keyno)) return;
/*
Fields of other non-const tables aren't allowed in following cases:
type is:
(JT_ALL | JT_INDEX_SCAN | JT_RANGE | JT_INDEX_MERGE)
and BNL is used.
and allowed otherwise.
*/
const bool other_tbls_ok =
!((type() == JT_ALL || type() == JT_INDEX_SCAN || type() == JT_RANGE ||
type() == JT_INDEX_MERGE) &&
join_tab->use_join_cache() == JOIN_CACHE::ALG_BNL);
/*
We will only attempt to push down an index condition when the
following criteria are true:
0. The table has a select condition
1. The storage engine supports ICP.
2. The index_condition_pushdown switch is on and
the use of ICP is not disabled by the NO_ICP hint.
3. The query is not a multi-table update or delete statement. The reason
for this requirement is that the same handler will be used
both for doing the select/join and the update. The pushed index
condition might then also be applied by the storage engine
when doing the update part and result in either not finding
the record to update or updating the wrong record.
4. The JOIN_TAB is not part of a subquery that has guarded conditions
that can be turned on or off during execution of a 'Full scan on NULL
key'.
@see Item_in_optimizer::val_int()
@see subselect_iterator_engine::exec()
@see Index_lookup::cond_guards
@see setup_join_buffering
5. The join type is not CONST or SYSTEM. The reason for excluding
these join types, is that these are optimized to only read the
record once from the storage engine and later re-use it. In a
join where a pushed index condition evaluates fields from
tables earlier in the join sequence, the pushed condition would
only be evaluated the first time the record value was needed.
6. The index is not a clustered index. The performance improvement
of pushing an index condition on a clustered key is much lower
than on a non-clustered key. This restriction should be
re-evaluated when WL#6061 is implemented.
7. The index on virtual generated columns is not supported for ICP.
*/
if (condition() &&
tbl->file->index_flags(keyno, 0, true) & HA_DO_INDEX_COND_PUSHDOWN &&
hint_key_state(join_->thd, table_ref, keyno, ICP_HINT_ENUM,
OPTIMIZER_SWITCH_INDEX_CONDITION_PUSHDOWN) &&
join_->thd->lex->sql_command != SQLCOM_UPDATE_MULTI &&
join_->thd->lex->sql_command != SQLCOM_DELETE_MULTI &&
!has_guarded_conds() && type() != JT_CONST && type() != JT_SYSTEM &&
!(keyno == tbl->s->primary_key &&
tbl->file->primary_key_is_clustered())) {
DBUG_EXECUTE("where", print_where(join_->thd, condition(), "full cond",
QT_ORDINARY););
Item *idx_cond =
make_cond_for_index(condition(), tbl, keyno, other_tbls_ok);
DBUG_EXECUTE("where",
print_where(join_->thd, idx_cond, "idx cond", QT_ORDINARY););
if (idx_cond) {
/*
Check that the condition to push actually contains fields from
the index. Without any fields from the index it is unlikely
that it will filter out any records since the conditions on
fields from other tables in most cases have already been
evaluated.
*/
idx_cond->update_used_tables();
if ((idx_cond->used_tables() & table_ref->map()) == 0) {
/*
The following assert is to check that we only skip pushing the
index condition for the following situations:
1. We actually are allowed to generate an index condition on another
table.
2. The index condition is a constant item.
3. The index condition contains an updatable user variable
(test this by checking that the RAND_TABLE_BIT is set).
*/
assert(other_tbls_ok || // 1
idx_cond->const_item() || // 2
idx_cond->is_non_deterministic()); // 3
return;
}
Item *idx_remainder_cond = nullptr;
/*
For BKA cache, we don't store the condition, because evaluation of the
condition would require additional operations before the evaluation.
*/
if (join_tab->use_join_cache() &&
/*
if cache is used then the value is true only
for BKA cache (see setup_join_buffering() func).
In this case other_tbls_ok is an equivalent of
cache->is_key_access().
*/
other_tbls_ok &&
(idx_cond->used_tables() &
~(table_ref->map() | join_->const_table_map))) {
idx_remainder_cond = idx_cond;
trace_obj->add("not_pushed_due_to_BKA", true);
} else {
idx_remainder_cond = tbl->file->idx_cond_push(keyno, idx_cond);
DBUG_EXECUTE("where",
print_where(join_->thd, tbl->file->pushed_idx_cond,
"icp cond", QT_ORDINARY););
}
/*
Disable eq_ref's "lookup cache" if we've pushed down an index
condition.
TODO: This check happens to work on current ICP implementations, but
there may exist a compliant implementation that will not work
correctly with it. Sort this out when we stabilize the condition
pushdown APIs.
*/
if (idx_remainder_cond != idx_cond) {
ref().disable_cache = true;
trace_obj->add("pushed_index_condition", idx_cond);
}
Item *row_cond = make_cond_remainder(condition(), true);
DBUG_EXECUTE("where", print_where(join_->thd, row_cond, "remainder cond",
QT_ORDINARY););
if (row_cond) {
and_conditions(&row_cond, idx_remainder_cond);
idx_remainder_cond = row_cond;
}
set_condition(idx_remainder_cond);
trace_obj->add("table_condition_attached", idx_remainder_cond);
}
}
}
/**
Setup the materialized table for a semi-join nest
@param tab join_tab for the materialized semi-join table
@param tableno table number of materialized table
@param inner_pos information about the first inner table of the subquery
@param sjm_pos information about the materialized semi-join table,
to be filled with data.
@details
Setup execution structures for one semi-join materialization nest:
- Create the materialization temporary table, including Table_ref
object.
- Create a list of Item_field objects per column in the temporary table.
- Create a keyuse array describing index lookups into the table
(for MaterializeLookup)
@return False if OK, True if error
*/
bool JOIN::setup_semijoin_materialized_table(JOIN_TAB *tab, uint tableno,
POSITION *inner_pos,
POSITION *sjm_pos) {
DBUG_TRACE;
Table_ref *const emb_sj_nest = inner_pos->table->emb_sj_nest;
Semijoin_mat_optimize *const sjm_opt = &emb_sj_nest->nested_join->sjm;
Semijoin_mat_exec *const sjm_exec = tab->sj_mat_exec();
const uint field_count = emb_sj_nest->nested_join->sj_inner_exprs.size();
assert(field_count > 0);
assert(inner_pos->sj_strategy == SJ_OPT_MATERIALIZE_LOOKUP ||
inner_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN);
/*
Set up the table to write to, do as
Query_result_union::create_result_table does
*/
sjm_exec->table_param = Temp_table_param();
count_field_types(query_block, &sjm_exec->table_param,
emb_sj_nest->nested_join->sj_inner_exprs, false, true);
sjm_exec->table_param.bit_fields_as_long = true;
char buffer[NAME_LEN];
const size_t len = snprintf(buffer, sizeof(buffer) - 1, "<subquery%u>",
emb_sj_nest->nested_join->query_block_id);
char *name = (char *)thd->mem_root->Alloc(len + 1);
if (name == nullptr) return true; /* purecov: inspected */
memcpy(name, buffer, len);
name[len] = '\0';
TABLE *table;
if (!(table =
create_tmp_table(thd, &sjm_exec->table_param,
emb_sj_nest->nested_join->sj_inner_exprs, nullptr,
true /* distinct */, true /* save_sum_fields */,
thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS,
HA_POS_ERROR /* rows_limit */, name)))
return true; /* purecov: inspected */
sjm_exec->table = table;
map2table[tableno] = tab;
table->file->ha_extra(HA_EXTRA_IGNORE_DUP_KEY);
sj_tmp_tables.push_back(table);
sjm_exec_list.push_back(sjm_exec);
/*
Hash_field is not applicable for MATERIALIZE_LOOKUP. If hash_field is
created for temporary table, semijoin_types_allow_materialization must
assure that MATERIALIZE_LOOKUP can't be chosen.
*/
assert((inner_pos->sj_strategy == SJ_OPT_MATERIALIZE_LOOKUP &&
!table->hash_field) ||
inner_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN);
auto tl = new (thd->mem_root) Table_ref("", name, TL_IGNORE);
if (tl == nullptr) return true; /* purecov: inspected */
tl->table = table;
/*
If the SJ nest is inside an outer join nest, this tmp table belongs to
it. It's important for attachment of the semi-join ON condition with the
proper guards, to this table. If it's an AJ nest it's an outer join
nest too.
*/
if (emb_sj_nest->is_aj_nest())
tl->embedding = emb_sj_nest;
else
tl->embedding = emb_sj_nest->outer_join_nest();
/*
Above, we do not set tl->emb_sj_nest, neither first_sj_inner nor
last_sj_inner; it's because there's no use to say that this table is part
of the SJ nest; but it's necessary to say that it's part of any outer join
nest. The antijoin nest is an outer join nest, but from the POV of the
sj-tmp table it's only an outer join nest, so there is no need to set
emb_sj_nest even in this case.
*/
// Table is "nullable" if inner table of an outer_join
if (tl->is_inner_table_of_outer_join()) table->set_nullable();
tl->set_tableno(tableno);
table->pos_in_table_list = tl;
table->pos_in_table_list->query_block = query_block;
if (!(sjm_opt->mat_fields = (Item_field **)thd->mem_root->Alloc(
field_count * sizeof(Item_field **))))
return true;
for (uint fieldno = 0; fieldno < field_count; fieldno++) {
if (!(sjm_opt->mat_fields[fieldno] =
new Item_field(table->visible_field_ptr()[fieldno])))
return true;
}
tab->table_ref = tl;
tab->set_table(table);
tab->set_position(sjm_pos);
tab->worst_seeks = 1.0;
tab->set_records((ha_rows)emb_sj_nest->nested_join->sjm.expected_rowcount);
tab->found_records = tab->records();
tab->read_time = emb_sj_nest->nested_join->sjm.scan_cost.total_cost();
tab->init_join_cond_ref(tl);
table->keys_in_use_for_query.set_all();
sjm_pos->table = tab;
sjm_pos->sj_strategy = SJ_OPT_NONE;
sjm_pos->use_join_buffer = false;
/*
No need to recalculate filter_effect since there are no post-read
conditions for materialized tables.
*/
sjm_pos->filter_effect = 1.0;
/*
Key_use objects are required so that create_ref_for_key() can set up
a proper ref access for this table.
*/
Key_use_array *keyuse =
create_keyuse_for_table(thd, field_count, sjm_opt->mat_fields,
emb_sj_nest->nested_join->sj_outer_exprs);
if (!keyuse) return true;
double fanout = ((uint)tab->idx() == const_tables)
? 1.0
: best_ref[tab->idx() - 1]->position()->prefix_rowcount;
if (!sjm_exec->is_scan) {
sjm_pos->key = keyuse->begin(); // MaterializeLookup will use the index
sjm_pos->read_cost =
emb_sj_nest->nested_join->sjm.lookup_cost.total_cost() * fanout;
tab->set_keyuse(keyuse->begin());
tab->keys().set_bit(0); // There is one index - use it always
tab->set_index(0);
sjm_pos->rows_fetched = 1.0;
tab->set_type(JT_REF);
} else {
sjm_pos->key = nullptr; // No index use for MaterializeScan
sjm_pos->read_cost = tab->read_time * fanout;
sjm_pos->rows_fetched = static_cast<double>(tab->records());
tab->set_type(JT_ALL);
}
sjm_pos->set_prefix_join_cost((tab - join_tab), cost_model());
return false;
}
/**
A helper function that sets the right op type for join cache (BNL/BKA).
*/
void QEP_TAB::init_join_cache(JOIN_TAB *join_tab) {
assert(idx() > 0);
ASSERT_BEST_REF_IN_JOIN_ORDER(join());
assert(join_tab == join()->best_ref[idx()]);
switch (join_tab->use_join_cache()) {
case JOIN_CACHE::ALG_BNL:
op_type = QEP_TAB::OT_BNL;
break;
case JOIN_CACHE::ALG_BKA:
op_type = QEP_TAB::OT_BKA;
break;
default:
assert(0);
}
}
/**
Plan refinement stage: do various setup things for the executor
@param join Join being processed
@param no_jbuf_after Don't use join buffering after table with this number.
@return false if successful, true if error (Out of memory)
@details
Plan refinement stage: do various set ups for the executioner
- setup join buffering use
- push index conditions
- increment relevant counters
- etc
*/
bool make_join_readinfo(JOIN *join, uint no_jbuf_after) {
const bool statistics = !join->thd->lex->is_explain();
const bool prep_for_pos = join->need_tmp_before_win ||
join->select_distinct ||
!join->group_list.empty() || !join->order.empty() ||
join->m_windows.elements > 0;
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
Opt_trace_context *const trace = &join->thd->opt_trace;
Opt_trace_object wrapper(trace);
Opt_trace_array trace_refine_plan(trace, "refine_plan");
if (setup_semijoin_dups_elimination(join, no_jbuf_after))
return true; /* purecov: inspected */
for (uint i = join->const_tables; i < join->tables; i++) {
QEP_TAB *const qep_tab = &join->qep_tab[i];
if (!qep_tab->position()) continue;
JOIN_TAB *const tab = join->best_ref[i];
TABLE *const table = qep_tab->table();
Table_ref *const table_ref = qep_tab->table_ref;
/*
Need to tell handlers that to play it safe, it should fetch all
columns of the primary key of the tables: this is because MySQL may
build row pointers for the rows, and for all columns of the primary key
the read set has not necessarily been set by the server code.
*/
if (prep_for_pos) table->prepare_for_position();
Opt_trace_object trace_refine_table(trace);
trace_refine_table.add_utf8_table(table_ref);
if (tab->use_join_cache() != JOIN_CACHE::ALG_NONE)
qep_tab->init_join_cache(tab);
switch (qep_tab->type()) {
case JT_EQ_REF:
case JT_REF_OR_NULL:
case JT_REF:
case JT_SYSTEM:
case JT_CONST:
if (table->covering_keys.is_set(qep_tab->ref().key) &&
!table->no_keyread)
table->set_keyread(true);
else
qep_tab->push_index_cond(tab, qep_tab->ref().key,
&trace_refine_table);
break;
case JT_ALL:
join->thd->set_status_no_index_used();
qep_tab->using_dynamic_range = (tab->use_quick == QS_DYNAMIC_RANGE);
[[fallthrough]];
case JT_INDEX_SCAN:
if (tab->position()->filter_effect != COND_FILTER_STALE_NO_CONST &&
!tab->sj_mat_exec()) {
/*
rows_w_const_cond is # of rows which will be read by the access
method, minus those which will not pass the constant condition;
that's how calculate_scan_cost() works. Such number is useful inside
the planner, but obscure to the reader of EXPLAIN; so we put the
real count of read rows into rows_fetched, and move the constant
condition's filter to filter_effect.
*/
double rows_w_const_cond = qep_tab->position()->rows_fetched;
table_ref->fetch_number_of_rows();
tab->position()->rows_fetched =
static_cast<double>(table->file->stats.records);
if (tab->position()->filter_effect != COND_FILTER_STALE) {
// Constant condition moves to filter_effect:
if (tab->position()->rows_fetched == 0) // avoid division by zero
tab->position()->filter_effect = 0.0f;
else
tab->position()->filter_effect *= static_cast<float>(
rows_w_const_cond / tab->position()->rows_fetched);
}
}
if (qep_tab->using_dynamic_range) {
join->thd->set_status_no_good_index_used();
if (statistics) join->thd->inc_status_select_range_check();
} else {
if (statistics) {
if (i == join->const_tables)
join->thd->inc_status_select_scan();
else
join->thd->inc_status_select_full_join();
}
}
break;
case JT_RANGE:
case JT_INDEX_MERGE:
qep_tab->using_dynamic_range = (tab->use_quick == QS_DYNAMIC_RANGE);
if (statistics) {
if (i == join->const_tables)
join->thd->inc_status_select_range();
else
join->thd->inc_status_select_full_range_join();
}
if (!table->no_keyread && qep_tab->type() == JT_RANGE) {
if (table->covering_keys.is_set(used_index(qep_tab->range_scan()))) {
assert(used_index(qep_tab->range_scan()) != MAX_KEY);
table->set_keyread(true);
}
if (!table->key_read)
qep_tab->push_index_cond(tab, used_index(qep_tab->range_scan()),
&trace_refine_table);
}
if (tab->position()->filter_effect != COND_FILTER_STALE_NO_CONST) {
double rows_w_const_cond = qep_tab->position()->rows_fetched;
qep_tab->position()->rows_fetched =
tab->range_scan()->num_output_rows();
if (tab->position()->filter_effect != COND_FILTER_STALE) {
// Constant condition moves to filter_effect:
if (tab->position()->rows_fetched == 0) // avoid division by zero
tab->position()->filter_effect = 0.0f;
else
tab->position()->filter_effect *= static_cast<float>(
rows_w_const_cond / tab->position()->rows_fetched);
}
}
break;
case JT_FT:
if (tab->join()->fts_index_access(tab)) {
table->set_keyread(true);
table->covering_keys.set_bit(tab->ft_func()->key);
}
break;
default:
DBUG_PRINT("error", ("Table type %d found",
qep_tab->type())); /* purecov: deadcode */
assert(0);
break; /* purecov: deadcode */
}
if (tab->position()->filter_effect <= COND_FILTER_STALE) {
/*
Cost and rows produced needs to be updated to match the logic
in test_if_skip_sort_order().
*/
bool need_cost_update =
join->primary_tables == 1 &&
tab->position()->filter_effect == COND_FILTER_STALE_NO_CONST &&
table->s->has_secondary_engine();
/*
Give a proper value for EXPLAIN.
For performance reasons, we do not recalculate the filter for
non-EXPLAIN queries; thus, EXPLAIN CONNECTION may show 100%
for a query.
Also calculate the proper value if max_join_size is in effect and there
is a limit, since it's needed in order to calculate how many rows to
read from the base table if rows are filtered before the limit is
applied.
*/
tab->position()->filter_effect =
(join->thd->lex->is_explain() || need_cost_update ||
(join->m_select_limit != HA_POS_ERROR &&
!Overlaps(join->thd->variables.option_bits, OPTION_BIG_SELECTS)))
? calculate_condition_filter(
tab,
(tab->ref().key != -1) ? tab->position()->key : nullptr,
tab->prefix_tables() & ~table_ref->map(),
tab->position()->rows_fetched, false, false,
trace_refine_table)
: COND_FILTER_ALLPASS;
/*
Update the cost/rows data accordingly for single table queries. Updating
Multi-table queries here can lead to inconsistencies.
*/
if (need_cost_update)
tab->position()->set_prefix_join_cost(tab->idx(), join->cost_model());
}
assert(!table_ref->is_recursive_reference() || qep_tab->type() == JT_ALL);
qep_tab->set_reversed_access(tab->reversed_access);
// Materialize derived tables prior to accessing them.
if (table_ref->is_table_function()) {
qep_tab->materialize_table = QEP_TAB::MATERIALIZE_TABLE_FUNCTION;
if (tab->dependent) qep_tab->rematerialize = true;
} else if (table_ref->uses_materialization()) {
qep_tab->materialize_table = QEP_TAB::MATERIALIZE_DERIVED;
}
if (qep_tab->sj_mat_exec())
qep_tab->materialize_table = QEP_TAB::MATERIALIZE_SEMIJOIN;
if (table_ref->is_derived() &&
table_ref->derived_query_expression()->m_lateral_deps) {
auto deps = table_ref->derived_query_expression()->m_lateral_deps;
plan_idx last = NO_PLAN_IDX;
for (JOIN_TAB **tab2 = join->map2table; deps; tab2++, deps >>= 1) {
if (deps & 1) last = std::max(last, (*tab2)->idx());
}
/*
We identified the last dependency of table_ref in the plan, and it's
the table whose reading must trigger rematerialization of table_ref.
*/
if (last != NO_PLAN_IDX) {
QEP_TAB &t = join->qep_tab[last];
t.lateral_derived_tables_depend_on_me |= TableBitmap(i);
trace_refine_table.add_utf8("rematerialized_for_each_row_of",
t.table()->alias);
}
}
}
return false;
}
void JOIN_TAB::set_table(TABLE *t) {
if (t != nullptr) t->reginfo.join_tab = this;
m_qs->set_table(t);
}
void JOIN_TAB::init_join_cond_ref(Table_ref *tl) {
m_join_cond_ref = tl->join_cond_optim_ref();
}
/**
Cleanup table of join operation.
*/
void JOIN_TAB::cleanup() {
// Delete parts specific of JOIN_TAB:
if (table()) table()->reginfo.join_tab = nullptr;
// Delete shared parts:
if (join()->qep_tab) {
// deletion will be done by QEP_TAB
} else
qs_cleanup();
}
void QEP_TAB::cleanup() {
// Delete parts specific of QEP_TAB:
destroy(filesort);
filesort = nullptr;
TABLE *const t = table();
if (t != nullptr) {
t->reginfo.qep_tab = nullptr;
t->const_table = false; // Note: Also done in TABLE::init()
}
// Delete shared parts:
qs_cleanup();
// Order of qs_cleanup() and this, matters:
if (op_type == QEP_TAB::OT_MATERIALIZE ||
op_type == QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE ||
op_type == QEP_TAB::OT_AGGREGATE_INTO_TMP_TABLE ||
op_type == QEP_TAB::OT_WINDOWING_FUNCTION) {
if (t != nullptr) // Check tmp table is not yet freed.
{
close_tmp_table(t);
free_tmp_table(t);
}
destroy(tmp_table_param);
tmp_table_param = nullptr;
}
if (table_ref != nullptr && table_ref->uses_materialization()) {
assert(t == table_ref->table);
t->merge_keys.clear_all();
t->quick_keys.clear_all();
t->covering_keys.clear_all();
t->possible_quick_keys.clear_all();
close_tmp_table(t);
}
}
void QEP_shared_owner::qs_cleanup() {
/* Skip non-existing derived tables/views result tables */
if (table() &&
(table()->s->tmp_table != INTERNAL_TMP_TABLE || table()->is_created())) {
table()->set_keyread(false);
table()->file->ha_index_or_rnd_end();
free_io_cache(table());
filesort_free_buffers(table(), true);
Table_ref *const table_ref = table()->pos_in_table_list;
if (table_ref) {
table_ref->derived_keys_ready = false;
table_ref->derived_key_list.clear();
}
}
destroy(range_scan());
}
uint QEP_TAB::sjm_query_block_id() const {
assert(sj_is_materialize_strategy(get_sj_strategy()));
for (uint i = 0; i < join()->primary_tables; ++i) {
// Find the sj-mat tmp table whose sj nest contains us:
Semijoin_mat_exec *const sjm = join()->qep_tab[i].sj_mat_exec();
if (sjm && (uint)idx() >= sjm->inner_table_index &&
(uint)idx() < sjm->inner_table_index + sjm->table_count)
return sjm->sj_nest->nested_join->query_block_id;
}
assert(false);
return 0;
}
/**
Extend join_tab->cond by AND'ing add_cond to it
@param add_cond The condition to AND with the existing cond
for this JOIN_TAB
@retval true if there was a memory allocation error
@retval false otherwise
*/
bool QEP_shared_owner::and_with_condition(Item *add_cond) {
Item *tmp = condition();
if (and_conditions(&tmp, add_cond)) return true;
set_condition(tmp);
return false;
}
/**
Partially cleanup JOIN after it has executed: close index or rnd read
(table cursors), free quick selects.
This function is called in the end of execution of a JOIN, before the used
tables are unlocked and closed.
For a join that is resolved using a temporary table, the first sweep is
performed against actual tables and an intermediate result is inserted
into the temporary table.
The last sweep is performed against the temporary table. Therefore,
the base tables and associated buffers used to fill the temporary table
are no longer needed, and this function is called to free them.
For a join that is performed without a temporary table, this function
is called after all rows are sent, but before EOF packet is sent.
For a simple SELECT with no subqueries this function performs a full
cleanup of the JOIN and calls mysql_unlock_read_tables to free used base
tables.
If a JOIN is executed for a subquery or if it has a subquery, we can't
do the full cleanup and need to do a partial cleanup only.
- If a JOIN is not the top level join, we must not unlock the tables
because the outer select may not have been evaluated yet, and we
can't unlock only selected tables of a query.
- Additionally, if this JOIN corresponds to a correlated subquery, we
should not free quick selects and join buffers because they will be
needed for the next execution of the correlated subquery.
- However, if this is a JOIN for a [sub]select, which is not
a correlated subquery itself, but has subqueries, we can free it
fully and also free JOINs of all its subqueries. The exception
is a subquery in SELECT list, e.g:
@code
SELECT a, (select max(b) from t1) group by c
@endcode
This subquery will not be evaluated at first sweep and its value will
not be inserted into the temporary table. Instead, it's evaluated
when selecting from the temporary table. Therefore, it can't be freed
here even though it's not correlated.
@todo
Unlock tables even if the join isn't top level select in the tree
*/
void JOIN::join_free() {
Query_expression *tmp_query_expression;
Query_block *sl;
/*
Optimization: if not EXPLAIN and we are done with the JOIN,
free all tables.
*/
bool full = (!query_block->uncacheable && !thd->lex->is_explain());
bool can_unlock = full;
DBUG_TRACE;
cleanup();
for (tmp_query_expression = query_block->first_inner_query_expression();
tmp_query_expression;
tmp_query_expression = tmp_query_expression->next_query_expression())
for (sl = tmp_query_expression->first_query_block(); sl;
sl = sl->next_query_block()) {
Item_subselect *subselect = sl->master_query_expression()->item;
bool full_local = full && (!subselect || subselect->is_evaluated());
/*
If this join is evaluated, we can partially clean it up and clean up
all its underlying joins even if they are correlated, only query plan
is left in case a user will run EXPLAIN FOR CONNECTION.
If this join is not yet evaluated, we still must clean it up to
close its table cursors -- it may never get evaluated, as in case of
... HAVING FALSE OR a IN (SELECT ...))
but all table cursors must be closed before the unlock.
*/
sl->cleanup_all_joins();
/* Can't unlock if at least one JOIN is still needed */
can_unlock = can_unlock && full_local;
}
/*
We are not using tables anymore
Unlock all tables. We may be in an INSERT .... SELECT statement.
*/
if (can_unlock && lock && thd->lock && !thd->locked_tables_mode &&
!(query_block->active_options() & SELECT_NO_UNLOCK) &&
!query_block->subquery_in_having &&
(query_block == thd->lex->unit->query_term()->query_block())) {
/*
TODO: unlock tables even if the join isn't top level select in the
tree.
*/
mysql_unlock_read_tables(thd, lock); // Don't free join->lock
DEBUG_SYNC(thd, "after_join_free_unlock");
lock = nullptr;
}
}
static void cleanup_table(TABLE *table) {
if (table->is_created()) {
table->file->ha_index_or_rnd_end();
}
free_io_cache(table);
filesort_free_buffers(table, false);
}
/**
Free resources of given join.
@note
With subquery this function definitely will be called several times,
but even for simple query it can be called several times.
*/
void JOIN::cleanup() {
DBUG_TRACE;
assert(const_tables <= primary_tables && primary_tables <= tables);
if (qep_tab || join_tab || best_ref) {
for (uint i = 0; i < tables; i++) {
QEP_TAB *qtab;
TABLE *table;
if (qep_tab) {
assert(!join_tab);
qtab = &qep_tab[i];
table = qtab->table();
} else {
qtab = nullptr;
table = (join_tab ? &join_tab[i] : best_ref[i])->table();
}
if (!table) continue;
cleanup_table(table);
}
} else if (thd->lex->using_hypergraph_optimizer()) {
for (Table_ref *tl = query_block->leaf_tables; tl; tl = tl->next_leaf) {
cleanup_table(tl->table);
}
for (JOIN::TemporaryTableToCleanup cleanup : temp_tables) {
cleanup_table(cleanup.table);
}
}
}
/**
Filter out ORDER BY items that are equal to constants in WHERE condition
This function is a limited version of remove_const() for use
with non-JOIN statements (i.e. single-table UPDATE and DELETE).
@param order Linked list of ORDER BY arguments.
@param where Where condition.
@return pointer to new filtered ORDER list or NULL if whole list eliminated
@note
This function overwrites input order list.
*/
ORDER *simple_remove_const(ORDER *order, Item *where) {
if (order == nullptr || where == nullptr) return order;
ORDER *first = nullptr, *prev = nullptr;
for (; order; order = order->next) {
assert(!order->item[0]->has_aggregation()); // should never happen
if (!check_field_is_const(where, order->item[0])) {
if (first == nullptr) first = order;
if (prev != nullptr) prev->next = order;
prev = order;
}
}
if (prev != nullptr) prev->next = nullptr;
return first;
}
bool equality_determines_uniqueness(const Item_func_comparison *func,
const Item *v, const Item *c) {
/*
- The "c" argument must be a constant.
- The result type of both arguments must be the same.
However, since a temporal type is also classified as a string type,
we do not allow a temporal constant to be considered equal to a
variable character string.
- If both arguments are strings, the comparison operator must have the same
collation as the ordering operation applied to the variable expression.
*/
return c->const_for_execution() && v->result_type() == c->result_type() &&
(v->result_type() != STRING_RESULT ||
(!(is_string_type(v->data_type()) &&
is_temporal_type(c->data_type())) &&
func->compare_collation() == v->collation.collation));
}
bool equality_has_no_implicit_casts(const Item_func_comparison *func,
const Item *item1, const Item *item2) {
// See equality_determines_uniqueness() for the logic around strings
// and dates.
if (item1->result_type() != item2->result_type()) {
return false;
}
if (item1->result_type() == STRING_RESULT) {
if (is_temporal_type(item1->data_type()) !=
is_temporal_type(item2->data_type())) {
return false;
}
if (is_string_type(item1->data_type()) !=
is_string_type(item2->data_type())) {
return false;
}
if (is_string_type(item1->data_type())) {
if (func->compare_collation() != item1->collation.collation ||
func->compare_collation() != item2->collation.collation) {
return false;
}
}
}
return true;
}
/*
Return true if i1 and i2 (if any) are equal items,
or if i1 is a wrapper item around the f2 field.
*/
static bool equal(const Item *i1, const Item *i2, const Field *f2) {
assert((i2 == nullptr) ^ (f2 == nullptr));
if (i2 != nullptr)
return i1->eq(i2, true);
else if (i1->type() == Item::FIELD_ITEM)
return f2->eq(down_cast<const Item_field *>(i1)->field);
else
return false;
}
/**
Check if a field is equal to a constant value in a condition
@param cond condition to search within
@param order_item Item to find in condition (if order_field is NULL)
@param order_field Field to find in condition (if order_item is NULL)
@param[out] const_item Used in calculation with conjunctive predicates,
must be NULL in outer-most call.
@returns true if the field is a constant value in condition, false otherwise
*/
bool check_field_is_const(Item *cond, const Item *order_item,
const Field *order_field, Item **const_item) {
assert((order_item == nullptr) ^ (order_field == nullptr));
Item *intermediate = nullptr;
if (const_item == nullptr) const_item = &intermediate;
if (cond->type() == Item::COND_ITEM) {
Item_cond *const c = down_cast<Item_cond *>(cond);
bool and_level = c->functype() == Item_func::COND_AND_FUNC;
List_iterator_fast<Item> li(*c->argument_list());
Item *item;
while ((item = li++)) {
if (check_field_is_const(item, order_item, order_field, const_item)) {
if (and_level) return true;
} else if (!and_level)
return false;
}
return !and_level;
}
if (cond->type() != Item::FUNC_ITEM) return false;
Item_func *const func = down_cast<Item_func *>(cond);
if (func->functype() != Item_func::EQUAL_FUNC &&
func->functype() != Item_func::EQ_FUNC)
return false;
Item_func_comparison *comp = down_cast<Item_func_comparison *>(func);
Item *left = comp->arguments()[0];
Item *right = comp->arguments()[1];
if (equal(left, order_item, order_field)) {
if (equality_determines_uniqueness(comp, left, right)) {
if (*const_item != nullptr) return right->eq(*const_item, true);
*const_item = right;
return true;
}
} else if (equal(right, order_item, order_field)) {
if (equality_determines_uniqueness(comp, right, left)) {
if (*const_item != nullptr) return left->eq(*const_item, true);
*const_item = left;
return true;
}
}
return false;
}
/**
Update TMP_TABLE_PARAM with count of the different type of fields.
This function counts the number of fields, functions and sum
functions (items with type SUM_FUNC_ITEM) for use by
create_tmp_table() and stores it in the Temp_table_param object. It
also updates the allow_group_via_temp_table property if needed.
@param query_block Query_block of query
@param param Description of temp table
@param fields List of fields to count
@param reset_with_sum_func Whether to reset with_sum_func of func items
@param save_sum_fields Count in the way create_tmp_table() expects when
given the same parameter.
*/
void count_field_types(const Query_block *query_block, Temp_table_param *param,
const mem_root_deque<Item *> &fields,
bool reset_with_sum_func, bool save_sum_fields) {
DBUG_TRACE;
param->sum_func_count = 0;
param->func_count = fields.size();
param->hidden_field_count = 0;
param->outer_sum_func_count = 0;
/*
Loose index scan guarantees that all grouping is done and MIN/MAX
functions are computed, so create_tmp_table() treats this as if
save_sum_fields is set.
*/
save_sum_fields |= param->precomputed_group_by;
for (Item *field : fields) {
Item *real = field->real_item();
Item::Type real_type = real->type();
if (real_type == Item::SUM_FUNC_ITEM && !real->m_is_window_function) {
if (!field->const_item()) {
Item_sum *sum_item = down_cast<Item_sum *>(field->real_item());
if (sum_item->aggr_query_block == query_block) {
if (!sum_item->allow_group_via_temp_table)
param->allow_group_via_temp_table = false; // UDF SUM function
param->sum_func_count++;
// Add one column per argument.
param->func_count += sum_item->argument_count();
}
} else if (save_sum_fields) {
/*
Count the way create_tmp_table() does if asked to preserve
Item_sum_* functions in fields list.
Item field is an Item_sum_* or a reference to such an
item. We need to distinguish between these two cases since
they are treated differently by create_tmp_table().
*/
if (field->type() != Item::SUM_FUNC_ITEM) {
// A reference to an Item_sum_*
param->func_count++; // TODO: Is this really needed?
param->sum_func_count++;
}
}
} else if (real_type == Item::SUM_FUNC_ITEM) {
assert(real->m_is_window_function);
Item_sum *window_item = down_cast<Item_sum *>(real);
param->func_count += window_item->argument_count();
} else {
if (reset_with_sum_func) field->reset_aggregation();
if (field->has_aggregation()) param->outer_sum_func_count++;
}
}
}
/**
Return 1 if second is a subpart of first argument.
If first parts has different direction, change it to second part
(group is sorted like order)
*/
bool test_if_subpart(ORDER *a, ORDER *b) {
ORDER *first = a;
ORDER *second = b;
for (; first && second; first = first->next, second = second->next) {
if ((*first->item)->eq(*second->item, true))
continue;
else
return false;
}
// If the second argument is not subpart of the first return false
if (second) return false;
// Else assign the direction of the second argument to the first
for (; a && b; a = a->next, b = b->next) a->direction = b->direction;
return true;
}
/**
calc how big buffer we need for comparing group entries.
*/
void calc_group_buffer(JOIN *join, ORDER *group) {
DBUG_TRACE;
uint key_length = 0, parts = 0, null_parts = 0;
if (group) join->grouped = true;
for (; group; group = group->next) {
Item *group_item = *group->item;
Field *field = group_item->get_tmp_table_field();
if (field) {
enum_field_types type;
if ((type = field->type()) == MYSQL_TYPE_BLOB)
key_length += MAX_BLOB_WIDTH; // Can't be used as a key
else if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_VAR_STRING)
key_length += field->field_length + HA_KEY_BLOB_LENGTH;
else if (type == MYSQL_TYPE_BIT) {
/* Bit is usually stored as a longlong key for group fields */
key_length += 8; // Big enough
} else
key_length += field->pack_length();
} else {
switch (group_item->result_type()) {
case REAL_RESULT:
key_length += sizeof(double);
break;
case INT_RESULT:
key_length += sizeof(longlong);
break;
case DECIMAL_RESULT:
key_length += my_decimal_get_binary_size(
group_item->max_length - (group_item->decimals ? 1 : 0),
group_item->decimals);
break;
case STRING_RESULT: {
/*
As items represented as DATE/TIME fields in the group buffer
have STRING_RESULT result type, we increase the length
by 8 as maximum pack length of such fields.
*/
if (group_item->is_temporal()) {
key_length += 8;
} else if (group_item->data_type() == MYSQL_TYPE_BLOB)
key_length += MAX_BLOB_WIDTH; // Can't be used as a key
else {
/*
Group strings are taken as varstrings and require an length field.
A field is not yet created by create_tmp_field()
and the sizes should match up.
*/
key_length += group_item->max_length + HA_KEY_BLOB_LENGTH;
}
break;
}
default:
/* This case should never be chosen */
assert(0);
my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
}
}
parts++;
if (group_item->is_nullable()) null_parts++;
}
join->tmp_table_param.group_length = key_length + null_parts;
join->tmp_table_param.group_parts = parts;
join->tmp_table_param.group_null_parts = null_parts;
}
/**
Make an array of pointers to sum_functions to speed up
sum_func calculation.
@retval
0 ok
@retval
1 Error
*/
bool JOIN::alloc_func_list() {
uint func_count, group_parts;
DBUG_TRACE;
func_count = tmp_table_param.sum_func_count;
/*
If we are using rollup, we need a copy of the summary functions for
each level
*/
if (rollup_state != RollupState::NONE) func_count *= (send_group_parts + 1);
group_parts = send_group_parts;
/*
If distinct, reserve memory for possible
disctinct->group_by optimization
*/
if (select_distinct) {
group_parts += CountVisibleFields(*fields);
/*
If the ORDER clause is specified then it's possible that
it also will be optimized, so reserve space for it too
*/
if (!order.empty()) {
ORDER *ord;
for (ord = order.order; ord; ord = ord->next) group_parts++;
}
}
/* This must use calloc() as rollup_make_fields depends on this */
sum_funcs =
(Item_sum **)thd->mem_calloc(sizeof(Item_sum **) * (func_count + 1) +
sizeof(Item_sum ***) * (group_parts + 1));
return sum_funcs == nullptr;
}
/**
Initialize 'sum_funcs' array with all Item_sum objects.
@param fields All items
@param before_group_by Set to 1 if this is called before GROUP BY handling
@param recompute Set to true if sum_funcs must be recomputed
@retval
0 ok
@retval
1 error
*/
bool JOIN::make_sum_func_list(const mem_root_deque<Item *> &fields,
bool before_group_by, bool recompute) {
DBUG_TRACE;
if (*sum_funcs && !recompute)
return false; /* We have already initialized sum_funcs. */
Item_sum **func = sum_funcs;
for (Item *item : fields) {
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
down_cast<Item_sum *>(item)->aggr_query_block == query_block) {
assert(!item->m_is_window_function);
*func++ = down_cast<Item_sum *>(item);
}
}
if (before_group_by && rollup_state == RollupState::INITED) {
rollup_state = RollupState::READY;
} else if (rollup_state == RollupState::READY)
return false; // Don't put end marker
*func = nullptr; // End marker
return false;
}
/**
Free joins of subselect of this select.
@param select pointer to Query_block which subselects joins we will free
@todo when the final use of this function (from SET statements) is removed,
this function can be deleted.
*/
void free_underlaid_joins(Query_block *select) {
for (Query_expression *query_expression =
select->first_inner_query_expression();
query_expression;
query_expression = query_expression->next_query_expression())
query_expression->cleanup(false);
}
/**
Change the Query_result object of the query block.
If old_result is not used, forward the call to the current
Query_result in case it is a wrapper around old_result.
Call prepare() on the new Query_result if we decide to use it.
@param thd Thread handle
@param new_result New Query_result object
@param old_result Old Query_result object (NULL to force change)
@retval false Success
@retval true Error
*/
bool Query_block::change_query_result(THD *thd,
Query_result_interceptor *new_result,
Query_result_interceptor *old_result) {
DBUG_TRACE;
if (old_result == nullptr || query_result() == old_result) {
set_query_result(new_result);
if (query_result()->prepare(thd, fields, master_query_expression()))
return true; /* purecov: inspected */
return false;
} else {
const bool ret = query_result()->change_query_result(thd, new_result);
return ret;
}
}
/**
Add having condition as a filter condition, which is applied when reading
from the temp table.
@param curr_tmp_table Table number to which having conds are added.
@returns false if success, true if error.
*/
bool JOIN::add_having_as_tmp_table_cond(uint curr_tmp_table) {
having_cond->update_used_tables();
QEP_TAB *const curr_table = &qep_tab[curr_tmp_table];
table_map used_tables;
Opt_trace_context *const trace = &thd->opt_trace;
DBUG_TRACE;
if (curr_table->table_ref)
used_tables = curr_table->table_ref->map();
else {
/*
Pushing parts of HAVING to an internal temporary table.
Fields in HAVING condition may have been replaced with fields in an
internal temporary table. This table has map=1.
*/
assert(having_cond->has_subquery() ||
!(having_cond->used_tables() & ~(1 | PSEUDO_TABLE_BITS)));
used_tables = 1;
}
// Condition may contain outer references, const and non-deterministic exprs:
used_tables |= PSEUDO_TABLE_BITS;
/*
All conditions which can be applied after reading from used_tables are
added as filter conditions of curr_tmp_table. If condition's used_tables is
not read yet for example subquery in having, then it will be kept as it is
in original having_cond of join.
If ROLLUP, having condition needs to be tested after writing rollup data.
So do not move the having condition.
*/
Item *sort_table_cond =
(rollup_state == RollupState::NONE)
? make_cond_for_table(thd, having_cond, used_tables, table_map{0},
false)
: nullptr;
if (sort_table_cond) {
if (!curr_table->condition())
curr_table->set_condition(sort_table_cond);
else {
curr_table->set_condition(
new Item_cond_and(curr_table->condition(), sort_table_cond));
if (curr_table->condition()->fix_fields(thd, nullptr)) return true;
}
curr_table->condition()->apply_is_true();
DBUG_EXECUTE("where", print_where(thd, curr_table->condition(),
"select and having", QT_ORDINARY););
having_cond = make_cond_for_table(thd, having_cond, ~table_map{0},
~used_tables, false);
DBUG_EXECUTE("where", print_where(thd, having_cond, "having after sort",
QT_ORDINARY););
Opt_trace_object trace_wrapper(trace);
Opt_trace_object(trace, "sort_using_internal_table")
.add("condition_for_sort", sort_table_cond)
.add("having_after_sort", having_cond);
}
return false;
}
bool CreateFramebufferTable(
THD *thd, const Temp_table_param &tmp_table_param,
const Query_block &query_block, const mem_root_deque<Item *> &source_fields,
const mem_root_deque<Item *> &window_output_fields,
Func_ptr_array *mapping_from_source_to_window_output, Window *window) {
/*
Create the window frame buffer tmp table. We create a
temporary table with same contents as the output tmp table
in the windowing pipeline (columns defined by
curr_all_fields), but used for intermediate storage, saving
the window's frame buffer now that we know the window needs
buffering.
*/
Temp_table_param *par =
new (thd->mem_root) Temp_table_param(thd->mem_root, tmp_table_param);
par->m_window_frame_buffer = true;
// Don't include temporary fields that originally came from
// a window function (or an expression containing a window function).
// Window functions are not relevant to store in the framebuffer,
// and in fact, trying to restore them would often overwrite
// good data we shouldn't.
//
// Not that the regular filtering in create_tmp_table() cannot do this
// for us, as it only sees the Item_field, not where it came from.
mem_root_deque<Item *> fb_fields(window_output_fields);
for (size_t i = 0; i < fb_fields.size(); ++i) {
Item *orig_item = source_fields[i];
if (orig_item->has_wf()) {
fb_fields[i] = nullptr;
}
}
fb_fields.erase(std::remove(fb_fields.begin(), fb_fields.end(), nullptr),
fb_fields.end());
count_field_types(&query_block, par, fb_fields, false, false);
TABLE *table =
create_tmp_table(thd, par, fb_fields, nullptr, false, false,
query_block.active_options(), HA_POS_ERROR, "");
if (table == nullptr) return true;
window->set_frame_buffer_param(par);
window->set_frame_buffer(table);
// For window function expressions we are to evaluate after
// framebuffering, we need to replace their arguments to point to the
// output table instead of the input table (we could probably also have
// used the framebuffer if we wanted). E.g., if our input is t1 and our
// output is <temporary>, we need to rewrite 1 + SUM(t1.x) OVER w into
// 1 + SUM(<temporary>.x) OVER w.
for (Func_ptr &ptr : *mapping_from_source_to_window_output) {
if (ptr.func()->has_wf()) {
ReplaceMaterializedItems(thd, ptr.func(),
*mapping_from_source_to_window_output,
/*need_exact_match=*/false);
}
}
return false;
}
/**
Init tmp tables usage info.
@details
This function finalizes execution plan by taking following actions:
.) tmp tables are created, but not instantiated (this is done during
execution). QEP_TABs dedicated to tmp tables are filled appropriately.
see JOIN::create_intermediate_table.
.) prepare fields lists (fields, all_fields, ref_item_array slices) for
each required stage of execution. These fields lists are set for
tmp tables' tabs and for the tab of last table in the join.
.) fill info for sorting/grouping/dups removal is prepared and saved to
appropriate tabs. Here is an example:
SELECT * from t1,t2 WHERE ... GROUP BY t1.f1 ORDER BY t2.f2, t1.f2
and lets assume that the table order in the plan is t1,t2.
In this case optimizer will sort for group only the first table as the
second one isn't mentioned in GROUP BY. The result will be materialized
in tmp table. As filesort can't sort join optimizer will sort tmp table
also. The first sorting (for group) is called simple as is doesn't
require tmp table. The Filesort object for it is created here - in
JOIN::create_intermediate_table. Filesort for the second case is
created here, in JOIN::make_tmp_tables_info.
@note
This function may change tmp_table_param.precomputed_group_by. This
affects how create_tmp_table() treats aggregation functions, so
count_field_types() must be called again to make sure this is taken
into consideration.
@returns
false - Ok
true - Error
*/
bool JOIN::make_tmp_tables_info() {
assert(!join_tab);
mem_root_deque<Item *> *curr_fields = fields;
bool materialize_join = false;
uint curr_tmp_table = const_tables;
TABLE *exec_tmp_table = nullptr;
auto cleanup_tmp_tables_on_error =
create_scope_guard([this, &curr_tmp_table] {
if (qep_tab == nullptr) {
return;
}
for (unsigned table_idx = primary_tables; table_idx <= curr_tmp_table;
++table_idx) {
TABLE *table = qep_tab[table_idx].table();
if (table != nullptr) {
close_tmp_table(table);
free_tmp_table(table);
qep_tab[table_idx].set_table(nullptr);
}
}
});
/*
If the plan is constant, we will not do window tmp table processing
cf. special code path for handling const plans.
*/
m_windowing_steps = m_windows.elements > 0 && !plan_is_const() &&
!implicit_grouping && !group_optimized_away;
const bool may_trace = // just to avoid an empty trace block
need_tmp_before_win || implicit_grouping || m_windowing_steps ||
!group_list.empty() || !order.empty();
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_disable_I_S trace_disabled(trace, !may_trace);
Opt_trace_object wrapper(trace);
Opt_trace_array trace_tmp(trace, "considering_tmp_tables");
DBUG_TRACE;
/*
In this function, we may change having_cond into a condition on a
temporary sort/group table, so we have to assign having_for_explain now:
*/
having_for_explain = having_cond;
const bool has_group_by = this->grouped;
/*
The loose index scan access method guarantees that all grouping or
duplicate row elimination (for distinct) is already performed
during data retrieval, and that all MIN/MAX functions are already
computed for each group. Thus all MIN/MAX functions should be
treated as regular functions, and there is no need to perform
grouping in the main execution loop.
Currently loose index scan is only applicable for single table queries. The
only exception is when a single table query becomes a multi-table query
because of a semijoin transformation. We check the first join_tab element
of the plan for its access method here, which holds good even for the
multi-table query, but only when optimizer has picked nested loop joins.
Skip scan is enabled only for the original table in the query which is the
first table in the join order for a nested loop join. However, for hash
joins it does not hold good. So, we see an additional de-duplication step
when hash join is picked as it is not aware that de-duplication is taken
care by the access method picked.
TODO: Make optimize_distinct_group_order() understand that de-duplication
is taken care by the chosen access method, so that we avoid the additional
de-duplication step.
*/
if (qep_tab && qep_tab[0].range_scan() &&
is_loose_index_scan(qep_tab[0].range_scan()))
tmp_table_param.precomputed_group_by =
!is_agg_loose_index_scan(qep_tab[0].range_scan());
/*
Create the first temporary table if distinct elimination is requested or
if the sort is too complicated to be evaluated as a filesort.
*/
if (need_tmp_before_win) {
curr_tmp_table = primary_tables;
Opt_trace_object trace_this_outer(trace);
trace_this_outer.add("adding_tmp_table_in_plan_at_position",
curr_tmp_table);
tmp_tables++;
/*
Make a copy of the base slice in the save slice.
This is needed because later steps will overwrite the base slice with
another slice (1-3).
After this slice has been used, overwrite the base slice again with
the copy in the save slice.
*/
if (alloc_ref_item_slice(thd, REF_SLICE_SAVED_BASE)) return true;
copy_ref_item_slice(REF_SLICE_SAVED_BASE, REF_SLICE_ACTIVE);
current_ref_item_slice = REF_SLICE_SAVED_BASE;
/*
Create temporary table for use in a single execution.
(Will be reused if this is a subquery that is executed several times
for one execution of the statement)
Don't use tmp table grouping for json aggregate funcs as it's
very ineffective.
*/
ORDER_with_src tmp_group;
if (!simple_group && !(test_flags & TEST_NO_KEY_GROUP) && !with_json_agg)
tmp_group = group_list;
tmp_table_param.hidden_field_count = CountHiddenFields(*fields);
if (create_intermediate_table(&qep_tab[curr_tmp_table], *fields, tmp_group,
!group_list.empty() && simple_group))
return true;
exec_tmp_table = qep_tab[curr_tmp_table].table();
if (exec_tmp_table->s->is_distinct) optimize_distinct();
/*
If there is no sorting or grouping, 'use_order'
index result should not have been requested.
Exception: LooseScan strategy for semijoin requires
sorted access even if final result is not to be sorted.
*/
assert(
!(m_ordered_index_usage == ORDERED_INDEX_VOID && !plan_is_const() &&
qep_tab[const_tables].position()->sj_strategy != SJ_OPT_LOOSE_SCAN &&
qep_tab[const_tables].use_order()));
/*
Allocate a slice of ref items that describe the items to be copied
from the first temporary table.
*/
if (alloc_ref_item_slice(thd, REF_SLICE_TMP1)) return true;
// Change sum_fields reference to calculated fields in tmp_table
if (streaming_aggregation || qep_tab[curr_tmp_table].table()->group ||
tmp_table_param.precomputed_group_by) {
if (change_to_use_tmp_fields(fields, thd, ref_items[REF_SLICE_TMP1],
&tmp_fields[REF_SLICE_TMP1],
query_block->m_added_non_hidden_fields))
return true;
} else {
if (change_to_use_tmp_fields_except_sums(
fields, thd, query_block, ref_items[REF_SLICE_TMP1],
&tmp_fields[REF_SLICE_TMP1],
query_block->m_added_non_hidden_fields))
return true;
}
curr_fields = &tmp_fields[REF_SLICE_TMP1];
// Need to set them now for correct group_fields setup, reset at the end.
set_ref_item_slice(REF_SLICE_TMP1);
qep_tab[curr_tmp_table].ref_item_slice = REF_SLICE_TMP1;
setup_tmptable_write_func(&qep_tab[curr_tmp_table], &trace_this_outer);
/*
If having is not handled here, it will be checked before the row is sent
to the client.
*/
if (having_cond &&
(streaming_aggregation ||
(exec_tmp_table->s->is_distinct && group_list.empty()))) {
/*
If there is no select distinct or rollup, then move the having to table
conds of tmp table.
NOTE : We cannot apply having after distinct. If columns of having are
not part of select distinct, then distinct may remove rows
which can satisfy having.
As this condition will read the tmp table, it is appropriate that
REF_SLICE_TMP1 is in effect when we create it below.
*/
if ((!select_distinct && rollup_state == RollupState::NONE) &&
add_having_as_tmp_table_cond(curr_tmp_table))
return true;
/*
Having condition which we are not able to add as tmp table conds are
kept as before. And, this will be applied before storing the rows in
tmp table.
*/
qep_tab[curr_tmp_table].having = having_cond;
having_cond = nullptr; // Already done
}
tmp_table_param.func_count = 0;
if (streaming_aggregation || qep_tab[curr_tmp_table].table()->group) {
tmp_table_param.func_count += tmp_table_param.sum_func_count;
tmp_table_param.sum_func_count = 0;
}
if (exec_tmp_table->group) { // Already grouped
/*
Check if group by has to respect ordering. If true, move group by to
order by.
*/
if (order.empty() && !skip_sort_order) {
for (ORDER *group = group_list.order; group; group = group->next) {
if (group->direction != ORDER_NOT_RELEVANT) {
order = group_list; /* order by group */
break;
}
}
}
group_list.clean();
}
/*
If we have different sort & group then we must sort the data by group
and copy it to a second temporary table.
This code is also used if we are using distinct something
we haven't been able to store in the temporary table yet
like SEC_TO_TIME(SUM(...)) or when distinct is used with rollup.
*/
if ((!group_list.empty() &&
(!test_if_subpart(group_list.order, order.order) || select_distinct ||
m_windowing_steps || rollup_state != RollupState::NONE)) ||
(select_distinct && (tmp_table_param.using_outer_summary_function ||
rollup_state != RollupState::NONE))) {
DBUG_PRINT("info", ("Creating group table"));
calc_group_buffer(this, group_list.order);
count_field_types(query_block, &tmp_table_param,
tmp_fields[REF_SLICE_TMP1],
select_distinct && group_list.empty(), false);
tmp_table_param.hidden_field_count =
CountHiddenFields(tmp_fields[REF_SLICE_TMP1]);
streaming_aggregation = false;
if (!exec_tmp_table->group && !exec_tmp_table->s->is_distinct) {
// 1st tmp table were materializing join result
materialize_join = true;
explain_flags.set(ESC_BUFFER_RESULT, ESP_USING_TMPTABLE);
}
curr_tmp_table++;
tmp_tables++;
Opt_trace_object trace_this_tbl(trace);
trace_this_tbl.add("adding_tmp_table_in_plan_at_position", curr_tmp_table)
.add_alnum("cause", "sorting_to_make_groups");
/* group data to new table */
/*
If the access method is loose index scan then all MIN/MAX
functions are precomputed, and should be treated as regular
functions. See extended comment above.
*/
if (qep_tab[0].range_scan() &&
is_loose_index_scan(qep_tab[0].range_scan()))
tmp_table_param.precomputed_group_by = true;
ORDER_with_src dummy; // TODO can use table->group here also
if (create_intermediate_table(&qep_tab[curr_tmp_table], *curr_fields,
dummy, true))
return true;
if (!group_list.empty()) {
explain_flags.set(group_list.src, ESP_USING_TMPTABLE);
if (!plan_is_const()) // No need to sort a single row
{
if (add_sorting_to_table(curr_tmp_table - 1, &group_list,
/*sort_before_group=*/true))
return true;
}
if (make_group_fields(this, this)) return true;
}
// Setup sum funcs only when necessary, otherwise we might break info
// for the first table
if (!group_list.empty() || tmp_table_param.sum_func_count) {
if (make_sum_func_list(*curr_fields, true, true)) return true;
const bool need_distinct =
!(qep_tab[0].range_scan() &&
is_agg_loose_index_scan(qep_tab[0].range_scan()));
if (prepare_sum_aggregators(sum_funcs, need_distinct)) return true;
group_list.clean();
if (setup_sum_funcs(thd, sum_funcs)) return true;
}
/*
Allocate a slice of ref items that describe the items to be copied
from the second temporary table.
*/
if (alloc_ref_item_slice(thd, REF_SLICE_TMP2)) return true;
// No sum funcs anymore
if (change_to_use_tmp_fields(&tmp_fields[REF_SLICE_TMP1], thd,
ref_items[REF_SLICE_TMP2],
&tmp_fields[REF_SLICE_TMP2],
query_block->m_added_non_hidden_fields))
return true;
curr_fields = &tmp_fields[REF_SLICE_TMP2];
set_ref_item_slice(REF_SLICE_TMP2);
qep_tab[curr_tmp_table].ref_item_slice = REF_SLICE_TMP2;
setup_tmptable_write_func(&qep_tab[curr_tmp_table], &trace_this_tbl);
}
if (qep_tab[curr_tmp_table].table()->s->is_distinct)
select_distinct = false; /* Each row is unique */
if (select_distinct && group_list.empty() && !m_windowing_steps) {
if (having_cond) {
qep_tab[curr_tmp_table].having = having_cond;
having_cond->update_used_tables();
having_cond = nullptr;
}
qep_tab[curr_tmp_table].needs_duplicate_removal = true;
trace_this_outer.add("reading_from_table_eliminates_duplicates", true);
explain_flags.set(ESC_DISTINCT, ESP_DUPS_REMOVAL);
select_distinct = false;
}
/* Clean tmp_table_param for the next tmp table. */
tmp_table_param.sum_func_count = tmp_table_param.func_count = 0;
tmp_table_param.cleanup();
streaming_aggregation = false;
if (!group_optimized_away) {
grouped = false;
} else {
/*
If grouping has been optimized away, a temporary table is
normally not needed unless we're explicitly requested to create
one (e.g. due to a SQL_BUFFER_RESULT hint or INSERT ... SELECT or
there is a windowing function that needs sorting).
In this case (grouping was optimized away), temp_table was
created without a grouping expression and JOIN::exec() will not
perform the necessary grouping (by the use of end_send_group()
or end_write_group()) if JOIN::group is set to false.
*/
/*
The temporary table was explicitly requested or there is a window
function which needs sorting (check need_tmp_before_win in
JOIN::optimize).
*/
assert(query_block->active_options() & OPTION_BUFFER_RESULT ||
m_windowing_steps);
// the temporary table does not have a grouping expression
assert(!qep_tab[curr_tmp_table].table()->group);
}
calc_group_buffer(this, group_list.order);
count_field_types(query_block, &tmp_table_param, *curr_fields, false,
false);
}
/*
Set up structures for a temporary table but do not actually create
the temporary table if one of these conditions are true:
- The query is implicitly grouped.
- The query is explicitly grouped and
+ implemented as a simple grouping, or
+ LIMIT 1 is specified, or
+ ROLLUP is specified, or
+ <some unknown condition>.
*/
if ((grouped || implicit_grouping) && !m_windowing_steps) {
if (make_group_fields(this, this)) return true;
if (make_sum_func_list(*curr_fields, true, true)) return true;
const bool need_distinct =
!(qep_tab && qep_tab[0].range_scan() &&
is_agg_loose_index_scan(qep_tab[0].range_scan()));
if (prepare_sum_aggregators(sum_funcs, need_distinct)) return true;
if (setup_sum_funcs(thd, sum_funcs) || thd->is_fatal_error()) return true;
}
if (qep_tab && (!group_list.empty() ||
(!order.empty() && !m_windowing_steps /* [1] */))) {
/*
[1] above: too early to do query ORDER BY if we have windowing; must
wait till after window processing.
*/
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
DBUG_PRINT("info", ("Sorting for send_result_set_metadata"));
/*
If we have already done the group, add HAVING to sorted table except
when rollup is present
*/
if (having_cond && group_list.empty() && !streaming_aggregation &&
rollup_state == RollupState::NONE) {
if (add_having_as_tmp_table_cond(curr_tmp_table)) return true;
}
if (grouped)
m_select_limit = HA_POS_ERROR;
else if (!need_tmp_before_win) {
/*
We can abort sorting after thd->select_limit rows if there are no
filter conditions for any tables after the sorted one.
Filter conditions come in several forms:
1. as a condition item attached to the join_tab, or
2. as a keyuse attached to the join_tab (ref access).
*/
for (uint i = const_tables + 1; i < primary_tables; i++) {
QEP_TAB *const tab = qep_tab + i;
if (tab->condition() || // 1
(best_ref[tab->idx()]->keyuse() &&
tab->first_inner() == NO_PLAN_IDX)) // 2
{
/* We have to sort all rows */
m_select_limit = HA_POS_ERROR;
break;
}
}
}
/*
Here we add sorting stage for ORDER BY/GROUP BY clause, if the
optimiser chose FILESORT to be faster than INDEX SCAN or there is
no suitable index present.
OPTION_FOUND_ROWS supersedes LIMIT and is taken into account.
*/
DBUG_PRINT("info", ("Sorting for order by/group by"));
ORDER_with_src order_arg = group_list.empty() ? order : group_list;
if (qep_tab &&
m_ordered_index_usage != (group_list.empty()
? ORDERED_INDEX_ORDER_BY
: ORDERED_INDEX_GROUP_BY) &&
// Windowing will change order, so it's too early to sort here
!m_windowing_steps) {
// Sort either first non-const table or the last tmp table
QEP_TAB *const sort_tab = &qep_tab[curr_tmp_table];
if (need_tmp_before_win && !materialize_join && !exec_tmp_table->group)
explain_flags.set(order_arg.src, ESP_USING_TMPTABLE);
if (add_sorting_to_table(curr_tmp_table, &order_arg,
/*sort_before_group=*/false))
return true;
/*
filesort_limit: Return only this many rows from filesort().
We can use select_limit_cnt only if we have no group_by and 1 table.
This allows us to use Bounded_queue for queries like:
"select * from t1 order by b desc limit 1;"
m_select_limit == HA_POS_ERROR (we need a full table scan)
query_expression->select_limit_cnt == 1 (we only need one row in the
result set)
*/
if (sort_tab->filesort)
sort_tab->filesort->limit =
(has_group_by || (primary_tables > curr_tmp_table + 1) ||
calc_found_rows)
? m_select_limit
: query_expression()->select_limit_cnt;
}
}
if (qep_tab && m_windowing_steps) {
for (uint wno = 0; wno < m_windows.elements; wno++) {
tmp_table_param.m_window = m_windows[wno];
if (!tmp_tables) {
curr_tmp_table = primary_tables;
tmp_tables++;
if (ref_items[REF_SLICE_SAVED_BASE].is_null()) {
/*
Make a copy of the base slice in the save slice.
This is needed because later steps will overwrite the base slice with
another slice (1-3 or window slice).
After this slice has been used, overwrite the base slice again with
the copy in the save slice.
*/
if (alloc_ref_item_slice(thd, REF_SLICE_SAVED_BASE)) return true;
copy_ref_item_slice(REF_SLICE_SAVED_BASE, REF_SLICE_ACTIVE);
current_ref_item_slice = REF_SLICE_SAVED_BASE;
}
} else {
curr_tmp_table++;
tmp_tables++;
}
ORDER_with_src dummy;
tmp_table_param.hidden_field_count = CountHiddenFields(*curr_fields);
/*
Allocate a slice of ref items that describe the items to be copied
from the next temporary table.
*/
const uint widx = REF_SLICE_WIN_1 + wno;
QEP_TAB *tab = &qep_tab[curr_tmp_table];
mem_root_deque<Item *> *orig_fields = curr_fields;
{
Opt_trace_object trace_this_tbl(trace);
trace_this_tbl
.add("adding_tmp_table_in_plan_at_position", curr_tmp_table)
.add_alnum("cause", "output_for_window_functions")
.add("with_buffer", m_windows[wno]->needs_buffering());
if (create_intermediate_table(tab, *curr_fields, dummy, false))
return true;
if (alloc_ref_item_slice(thd, widx)) return true;
if (change_to_use_tmp_fields(curr_fields, thd, ref_items[widx],
&tmp_fields[widx],
query_block->m_added_non_hidden_fields))
return true;
curr_fields = &tmp_fields[widx];
set_ref_item_slice(widx);
tab->ref_item_slice = widx;
setup_tmptable_write_func(tab, &trace_this_tbl);
}
if (m_windows[wno]->needs_buffering()) {
if (CreateFramebufferTable(
thd, tmp_table_param, *query_block, *orig_fields, *curr_fields,
tab->tmp_table_param->items_to_copy, m_windows[wno])) {
return true;
}
}
if (m_windows[wno]->make_special_rows_cache(thd, tab->table()))
return true;
ORDER_with_src w_partition(m_windows[wno]->sorting_order(),
ESC_WINDOWING);
if (w_partition.order != nullptr) {
Opt_trace_object trace_pre_sort(trace, "adding_sort_to_previous_table");
if (add_sorting_to_table(curr_tmp_table - 1, &w_partition,
/*sort_before_group=*/false))
return true;
}
if (m_windows[wno]->is_last()) {
if (!order.empty() && m_ordered_index_usage != ORDERED_INDEX_ORDER_BY) {
if (add_sorting_to_table(curr_tmp_table, &order,
/*sort_before_group=*/false))
return true;
}
if (!tab->filesort && !tab->table()->s->keys &&
(!(query_block->active_options() & OPTION_BUFFER_RESULT) ||
need_tmp_before_win || wno >= 1)) {
/*
Last tmp table of execution; no sort, no duplicate elimination, no
buffering imposed by user (or it has already been implemented by
a previous tmp table): hence any row needn't be written to
tmp table's storage; send it out to query's result instead:
*/
m_windows[wno]->set_short_circuit(true);
}
}
if (having_cond != nullptr) {
tab->having = having_cond;
having_cond = nullptr;
}
}
}
// In the case of rollup (only): After the base slice list was made, we may
// have modified the field list to add rollup group items and sum switchers.
// Since there may be HAVING filters with refs that refer to the base slice,
// we need to refresh that slice (and its copy, REF_SLICE_SAVED_BASE) so
// that it includes the updated items.
//
// Note that we do this after we've made the TMP1 and TMP2 slices, since
// there's a lot of logic that looks through the GROUP BY list, which refers
// to the base slice and expects _not_ to find rollup items there.
refresh_base_slice();
fields = curr_fields;
// Reset before execution
set_ref_item_slice(REF_SLICE_SAVED_BASE);
if (qep_tab) {
qep_tab[primary_tables + tmp_tables].op_type = get_end_select_func();
}
grouped = has_group_by;
unplug_join_tabs();
/*
Tmp tables are a layer between the nested loop and the derived table's
result, WITH RECURSIVE cannot work with them. This should not happen, as a
recursive query cannot have clauses which use a tmp table (GROUP BY,
etc).
*/
assert(!query_block->is_recursive() || !tmp_tables);
cleanup_tmp_tables_on_error.release();
return false;
}
void JOIN::refresh_base_slice() {
unsigned num_hidden_fields = CountHiddenFields(*fields);
const size_t num_select_elements = fields->size() - num_hidden_fields;
const size_t orig_num_select_elements =
num_select_elements - query_block->m_added_non_hidden_fields;
for (unsigned i = 0; i < fields->size(); ++i) {
Item *item = (*fields)[i];
size_t pos;
// See change_to_use_tmp_fields_except_sums for an explanation of how
// the visible fields, hidden fields and additional fields added by
// transformations are organized in fields and ref_item_array.
if (i < num_hidden_fields) {
pos = fields->size() - i - 1 - query_block->m_added_non_hidden_fields;
} else {
pos = i - num_hidden_fields;
if (pos >= orig_num_select_elements) pos += num_hidden_fields;
}
query_block->base_ref_items[pos] = item;
if (!ref_items[REF_SLICE_SAVED_BASE].is_null()) {
ref_items[REF_SLICE_SAVED_BASE][pos] = item;
}
}
}
void JOIN::unplug_join_tabs() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
map2table = nullptr;
for (uint i = 0; i < tables; ++i) best_ref[i]->cleanup();
best_ref = nullptr;
}
/**
@brief Add Filesort object to the given table to sort if with filesort
@param idx JOIN_TAB's position in the qep_tab array. The
created Filesort object gets attached to this.
@param sort_order List of expressions to sort the table by
@param sort_before_group
If true, this sort happens before grouping is done
(potentially as a step of grouping itself),
so any wrapped rollup group items should be
unwrapped.
@note This function moves tab->select, if any, to filesort->select
@return false on success, true on OOM
*/
bool JOIN::add_sorting_to_table(uint idx, ORDER_with_src *sort_order,
bool sort_before_group) {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
assert(!query_block->is_recursive());
const enum join_type jt = qep_tab[idx].type();
if (jt == JT_CONST || jt == JT_EQ_REF)
return false; // 1 single row: is already sorted
// Weedout needs an underlying table to store refs from (it deduplicates
// by row ID), so if this table is part of a weedout operation, we need
// to force sorting by row IDs -- sorting rows with addon fields returns
// rows that have no reference to the underlying table object.
bool force_sort_rowids = false;
for (plan_idx i = 0; i <= static_cast<plan_idx>(idx); ++i) {
if (!qep_tab[i].starts_weedout()) {
continue;
}
plan_idx weedout_end = NO_PLAN_IDX; // Exclusive.
for (uint j = i; j < primary_tables; ++j) {
if (qep_tab[j].check_weed_out_table == qep_tab[i].flush_weedout_table) {
weedout_end = j + 1;
break;
}
}
if (weedout_end != NO_PLAN_IDX &&
weedout_end > static_cast<plan_idx>(idx)) {
force_sort_rowids = true;
break;
}
}
explain_flags.set(sort_order->src, ESP_USING_FILESORT);
QEP_TAB *const tab = &qep_tab[idx];
bool keep_buffers =
qep_tab->join() != nullptr &&
qep_tab->join()->query_block->master_query_expression()->item !=
nullptr &&
qep_tab->join()
->query_block->master_query_expression()
->item->is_uncacheable();
{
// Switch to the right slice if applicable, so that we fetch out the correct
// items from order_arg.
Switch_ref_item_slice slice_switch(this, tab->ref_item_slice);
tab->filesort = new (thd->mem_root)
Filesort(thd, {tab->table()}, keep_buffers, sort_order->order,
HA_POS_ERROR, /*remove_duplicates=*/false, force_sort_rowids,
/*unwrap_rollup=*/sort_before_group);
tab->filesort_pushed_order = sort_order->order;
}
if (!tab->filesort) return true;
Opt_trace_object trace_tmp(&thd->opt_trace, "filesort");
trace_tmp.add_alnum("adding_sort_to_table",
tab->table() ? tab->table()->alias : "");
return false;
}
/**
Find a cheaper access key than a given key.
@param tab NULL or JOIN_TAB of the accessed table
@param order Linked list of ORDER BY arguments
@param table Table if tab == NULL or tab->table()
@param usable_keys Key map to find a cheaper key in
@param ref_key
* 0 <= key < MAX_KEY - key number (hint) to start the search
* -1 - no key number provided
@param select_limit LIMIT value, or HA_POS_ERROR if no limit
@param [out] new_key Key number if success, otherwise undefined
@param [out] new_key_direction Return -1 (reverse) or +1 if success,
otherwise undefined
@param [out] new_select_limit Return adjusted LIMIT
@param [out] new_used_key_parts NULL by default, otherwise return number
of new_key prefix columns if success
or undefined if the function fails
@param [out] saved_best_key_parts NULL by default, otherwise preserve the
value for further use in
ReverseIndexRangeScanIterator
@param [out] new_read_time NULL by default, otherwise return the
cost of access using new_key if success
or undefined if the function fails
@note
This function takes into account table->quick_condition_rows statistic
(that is calculated by JOIN::make_join_plan()).
However, single table procedures such as mysql_update() and mysql_delete()
never call JOIN::make_join_plan(), so they have to update it manually
(@see get_index_for_order()).
This function resets bits in TABLE::quick_keys for indexes with mixed
ASC/DESC keyparts as range scan doesn't support range reordering
required for them.
*/
bool test_if_cheaper_ordering(const JOIN_TAB *tab, ORDER_with_src *order,
TABLE *table, Key_map usable_keys, int ref_key,
ha_rows select_limit, int *new_key,
int *new_key_direction, ha_rows *new_select_limit,
uint *new_used_key_parts,
uint *saved_best_key_parts,
double *new_read_time) {
DBUG_TRACE;
/*
Check whether there is an index compatible with the given order
usage of which is cheaper than usage of the ref_key index (ref_key>=0)
or a table scan.
It may be the case if ORDER/GROUP BY is used with LIMIT.
*/
ha_rows best_select_limit = HA_POS_ERROR;
JOIN *join = tab ? tab->join() : nullptr;
if (join) ASSERT_BEST_REF_IN_JOIN_ORDER(join);
uint nr;
uint best_key_parts = 0;
int best_key_direction = 0;
ha_rows best_records = 0;
double best_read_time = 0;
double read_time;
int best_key = -1;
bool is_best_covering = false;
double fanout = 1;
ha_rows table_records = table->file->stats.records;
bool group = join && join->grouped && order == &join->group_list;
double refkey_rows_estimate =
static_cast<double>(table->quick_condition_rows);
const bool has_limit = (select_limit != HA_POS_ERROR);
const join_type cur_access_method = tab ? tab->type() : JT_ALL;
if (join) {
read_time = tab->position()->read_cost;
for (uint jt = tab->idx() + 1; jt < join->primary_tables; jt++) {
POSITION *pos = join->best_ref[jt]->position();
fanout *= pos->rows_fetched * pos->filter_effect;
if (fanout < 0) break; // fanout became 'unknown'
}
} else
read_time = table->file->table_scan_cost().total_cost();
/*
Calculate the selectivity of the ref_key for REF_ACCESS. For
RANGE_ACCESS we use table->quick_condition_rows.
*/
if (ref_key >= 0 && cur_access_method == JT_REF) {
if (table->quick_keys.is_set(ref_key))
refkey_rows_estimate = static_cast<double>(table->quick_rows[ref_key]);
else {
const KEY *ref_keyinfo = table->key_info + ref_key;
if (ref_keyinfo->has_records_per_key(tab->ref().key_parts - 1))
refkey_rows_estimate =
ref_keyinfo->records_per_key(tab->ref().key_parts - 1);
else
refkey_rows_estimate = 1.0; // No index statistics
}
assert(refkey_rows_estimate >= 1.0);
}
for (nr = 0; nr < table->s->keys; nr++) {
int direction = 0;
uint used_key_parts;
bool skip_quick;
if (usable_keys.is_set(nr) &&
(direction = test_if_order_by_key(order, table, nr, &used_key_parts,
&skip_quick))) {
bool is_covering = table->covering_keys.is_set(nr) ||
(nr == table->s->primary_key &&
table->file->primary_key_is_clustered());
// Don't allow backward scans on indexes with mixed ASC/DESC key parts
if (skip_quick) table->quick_keys.clear_bit(nr);
/*
Don't use an index scan with ORDER BY without limit.
For GROUP BY without limit always use index scan
if there is a suitable index.
Why we hold to this asymmetry hardly can be explained
rationally. It's easy to demonstrate that using
temporary table + filesort could be cheaper for grouping
queries too.
*/
if (is_covering || select_limit != HA_POS_ERROR ||
(ref_key < 0 && (group || table->force_index_order))) {
rec_per_key_t rec_per_key;
KEY *keyinfo = table->key_info + nr;
if (select_limit == HA_POS_ERROR) select_limit = table_records;
if (group) {
/*
Used_key_parts can be larger than keyinfo->key_parts
when using a secondary index clustered with a primary
key (e.g. as in Innodb).
See Bug #28591 for details.
*/
rec_per_key =
used_key_parts && used_key_parts <= actual_key_parts(keyinfo)
? keyinfo->records_per_key(used_key_parts - 1)
: 1.0f;
rec_per_key = std::max(rec_per_key, 1.0f);
/*
With a grouping query each group containing on average
rec_per_key records produces only one row that will
be included into the result set.
*/
if (select_limit > table_records / rec_per_key)
select_limit = table_records;
else
select_limit = (ha_rows)(select_limit * rec_per_key);
}
/*
If tab=tk is not the last joined table tn then to get first
L records from the result set we can expect to retrieve
only L/fanout(tk,tn) where fanout(tk,tn) says how many
rows in the record set on average will match each row tk.
Usually our estimates for fanouts are too pessimistic.
So the estimate for L/fanout(tk,tn) will be too optimistic
and as result we'll choose an index scan when using ref/range
access + filesort will be cheaper.
*/
if (fanout == 0) { // Would have been a division-by-zero
select_limit = HA_POS_ERROR; // -> 'infinite'
} else if (fanout >= 0) { // 'fanout' not unknown
const double new_limit = max(select_limit / fanout, 1.0);
if (new_limit >= static_cast<double>(HA_POS_ERROR)) {
select_limit = HA_POS_ERROR;
} else {
select_limit = new_limit;
}
}
/*
We assume that each of the tested indexes is not correlated
with ref_key. Thus, to select first N records we have to scan
N/selectivity(ref_key) index entries.
selectivity(ref_key) = #scanned_records/#table_records =
refkey_rows_estimate/table_records.
In any case we can't select more than #table_records.
N/(refkey_rows_estimate/table_records) > table_records
<=> N > refkey_rows_estimate.
Neither should it be possible to select more than #table_records
rows from refkey_rows_estimate.
*/
if (select_limit > refkey_rows_estimate)
select_limit = table_records;
else if (table_records >= refkey_rows_estimate)
select_limit = (ha_rows)(select_limit * (double)table_records /
refkey_rows_estimate);
rec_per_key =
keyinfo->records_per_key(keyinfo->user_defined_key_parts - 1);
rec_per_key = std::max(rec_per_key, 1.0f);
/*
Here we take into account the fact that rows are
accessed in sequences rec_per_key records in each.
Rows in such a sequence are supposed to be ordered
by rowid/primary key. When reading the data
in a sequence we'll touch not more pages than the
table file contains.
TODO. Use the formula for a disk sweep sequential access
to calculate the cost of accessing data rows for one
index entry.
*/
const Cost_estimate table_scan_time = table->file->table_scan_cost();
const double index_scan_time =
select_limit / rec_per_key *
min<double>(table->file->page_read_cost(nr, rec_per_key),
table_scan_time.total_cost());
/*
Switch to index that gives order if its scan time is smaller than
read_time of current chosen access method. In addition, if the
current chosen access method is index scan or table scan, always
switch to the index that gives order when it is covering or when
force index order or group by is present.
*/
if (((cur_access_method == JT_ALL ||
cur_access_method == JT_INDEX_SCAN) &&
(is_covering || group || table->force_index_order)) ||
index_scan_time < read_time) {
ha_rows quick_records = table_records;
const ha_rows refkey_select_limit =
(ref_key >= 0 && table->covering_keys.is_set(ref_key))
? static_cast<ha_rows>(refkey_rows_estimate)
: HA_POS_ERROR;
if ((is_best_covering && !is_covering) ||
(is_covering && refkey_select_limit < select_limit))
continue;
if (table->quick_keys.is_set(nr))
quick_records = table->quick_rows[nr];
if (best_key < 0 ||
(select_limit <= min(quick_records, best_records)
? keyinfo->user_defined_key_parts < best_key_parts
: quick_records < best_records) ||
// We assume forward scan is faster than backward even if the
// key is longer. This should be taken into account in cost
// calculation.
direction > best_key_direction) {
best_key = nr;
best_key_parts = keyinfo->user_defined_key_parts;
if (saved_best_key_parts) *saved_best_key_parts = used_key_parts;
best_read_time = index_scan_time;
best_records = quick_records;
is_best_covering = is_covering;
best_key_direction = direction;
best_select_limit = select_limit;
}
}
}
}
}
if (best_key < 0 || best_key == ref_key) return false;
*new_key = best_key;
*new_key_direction = best_key_direction;
*new_select_limit = has_limit ? best_select_limit : table_records;
if (new_used_key_parts != nullptr) *new_used_key_parts = best_key_parts;
if (new_read_time) *new_read_time = best_read_time;
return true;
}
/**
Find a key to apply single table UPDATE/DELETE by a given ORDER
@param order Linked list of ORDER BY arguments
@param table Table to find a key
@param limit LIMIT clause parameter
@param range_scan Range scan used for this table, if any
@param [out] need_sort true if filesort needed
@param [out] reverse
true if the key is reversed again given ORDER (undefined if key == MAX_KEY)
@return
- MAX_KEY if no key found (need_sort == true)
- MAX_KEY if quick select result order is OK (need_sort == false)
- key number (either index scan or quick select) (need_sort == false)
@note
Side effects:
- may deallocate or deallocate and replace select->quick;
- may set table->quick_condition_rows and table->quick_rows[...]
to table->file->stats.records.
*/
uint get_index_for_order(ORDER_with_src *order, TABLE *table, ha_rows limit,
AccessPath *range_scan, bool *need_sort,
bool *reverse) {
if (range_scan &&
unique_key_range(range_scan)) { // Single row select (always
// "ordered"): Ok to use with
// key field UPDATE
*need_sort = false;
/*
Returning of MAX_KEY here prevents updating of used_key_is_modified
in mysql_update(). Use AccessPath "as is".
*/
return MAX_KEY;
}
if (order->empty()) {
*need_sort = false;
if (range_scan)
return used_index(range_scan); // index or MAX_KEY, use AccessPath as is
else
return table->file
->key_used_on_scan; // MAX_KEY or index for some engines
}
if (!is_simple_order(order->order)) // just to cut further expensive checks
{
*need_sort = true;
return MAX_KEY;
}
if (range_scan) {
if (used_index(range_scan) == MAX_KEY) {
*need_sort = true;
return MAX_KEY;
}
uint used_key_parts;
bool skip_path;
switch (test_if_order_by_key(order, table, used_index(range_scan),
&used_key_parts, &skip_path)) {
case 1: // desired order
*need_sort = false;
return used_index(range_scan);
case 0: // unacceptable order
*need_sort = true;
return MAX_KEY;
case -1: // desired order, but opposite direction
{
if (!skip_path && !make_reverse(used_key_parts, range_scan)) {
*need_sort = false;
return used_index(range_scan);
} else {
*need_sort = true;
return MAX_KEY;
}
}
}
assert(0);
} else if (limit != HA_POS_ERROR) { // check if some index scan & LIMIT is
// more efficient than filesort
/*
Update quick_condition_rows since single table UPDATE/DELETE procedures
don't call JOIN::make_join_plan() and leave this variable uninitialized.
*/
table->quick_condition_rows = table->file->stats.records;
int key, direction;
if (test_if_cheaper_ordering(nullptr, order, table,
table->keys_in_use_for_order_by, -1, limit,
&key, &direction, &limit)) {
*need_sort = false;
*reverse = (direction < 0);
return key;
}
}
*need_sort = true;
return MAX_KEY;
}
/**
Returns number of key parts depending on
OPTIMIZER_SWITCH_USE_INDEX_EXTENSIONS flag.
@param key_info pointer to KEY structure
@return number of key parts.
*/
uint actual_key_parts(const KEY *key_info) {
return current_thd->optimizer_switch_flag(
OPTIMIZER_SWITCH_USE_INDEX_EXTENSIONS)
? key_info->actual_key_parts
: key_info->user_defined_key_parts;
}
uint actual_key_flags(const KEY *key_info) {
return current_thd->optimizer_switch_flag(
OPTIMIZER_SWITCH_USE_INDEX_EXTENSIONS)
? key_info->actual_flags
: key_info->flags;
}
join_type calc_join_type(AccessPath *path) {
switch (path->type) {
case AccessPath::INDEX_RANGE_SCAN:
case AccessPath::INDEX_SKIP_SCAN:
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return JT_RANGE;
case AccessPath::INDEX_MERGE:
case AccessPath::ROWID_INTERSECTION:
case AccessPath::ROWID_UNION:
return JT_INDEX_MERGE;
default:
assert(false);
return JT_RANGE;
}
}
/**
@} (end of group Query_Optimizer)
*/
|