1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
|
/******************************************************
The database server main program
NOTE: SQL Server 7 uses something which the documentation
calls user mode scheduled threads (UMS threads). One such
thread is usually allocated per processor. Win32
documentation does not know any UMS threads, which suggests
that the concept is internal to SQL Server 7. It may mean that
SQL Server 7 does all the scheduling of threads itself, even
in i/o waits. We should maybe modify InnoDB to use the same
technique, because thread switches within NT may be too slow.
SQL Server 7 also mentions fibers, which are cooperatively
scheduled threads. They can boost performance by 5 %,
according to the Delaney and Soukup's book.
Windows 2000 will have something called thread pooling
(see msdn website), which we could possibly use.
Another possibility could be to use some very fast user space
thread library. This might confuse NT though.
(c) 1995 Innobase Oy
Created 10/8/1995 Heikki Tuuri
*******************************************************/
/* Dummy comment */
#include "srv0srv.h"
#include "ut0mem.h"
#include "os0proc.h"
#include "mem0mem.h"
#include "mem0pool.h"
#include "sync0sync.h"
#include "thr0loc.h"
#include "que0que.h"
#include "srv0que.h"
#include "log0recv.h"
#include "pars0pars.h"
#include "usr0sess.h"
#include "lock0lock.h"
#include "trx0purge.h"
#include "ibuf0ibuf.h"
#include "buf0flu.h"
#include "btr0sea.h"
#include "dict0load.h"
#include "dict0boot.h"
#include "srv0start.h"
#include "row0mysql.h"
/* This is set to TRUE if the MySQL user has set it in MySQL; currently
affects only FOREIGN KEY definition parsing */
ibool srv_lower_case_table_names = FALSE;
/* The following counter is incremented whenever there is some user activity
in the server */
ulint srv_activity_count = 0;
/* The following is the maximum allowed duration of a lock wait. */
ulint srv_fatal_semaphore_wait_threshold = 600;
/* How much data manipulation language (DML) statements need to be delayed,
in microseconds, in order to reduce the lagging of the purge thread. */
ulint srv_dml_needed_delay = 0;
ibool srv_lock_timeout_and_monitor_active = FALSE;
ibool srv_error_monitor_active = FALSE;
const char* srv_main_thread_op_info = "";
/* Server parameters which are read from the initfile */
/* The following three are dir paths which are catenated before file
names, where the file name itself may also contain a path */
char* srv_data_home = NULL;
#ifdef UNIV_LOG_ARCHIVE
char* srv_arch_dir = NULL;
#endif /* UNIV_LOG_ARCHIVE */
ibool srv_file_per_table = FALSE; /* store to its own file each table
created by an user; data dictionary
tables are in the system tablespace
0 */
ibool srv_locks_unsafe_for_binlog = FALSE; /* Place locks to records only
i.e. do not use next-key locking
except on duplicate key checking and
foreign key checking */
ulint srv_n_data_files = 0;
char** srv_data_file_names = NULL;
ulint* srv_data_file_sizes = NULL; /* size in database pages */
ibool srv_auto_extend_last_data_file = FALSE; /* if TRUE, then we
auto-extend the last data
file */
ulint srv_last_file_size_max = 0; /* if != 0, this tells
the max size auto-extending
may increase the last data
file size */
ulong srv_auto_extend_increment = 8; /* If the last data file is
auto-extended, we add this
many pages to it at a time */
ulint* srv_data_file_is_raw_partition = NULL;
/* If the following is TRUE we do not allow inserts etc. This protects
the user from forgetting the 'newraw' keyword to my.cnf */
ibool srv_created_new_raw = FALSE;
char** srv_log_group_home_dirs = NULL;
ulint srv_n_log_groups = ULINT_MAX;
ulint srv_n_log_files = ULINT_MAX;
ulint srv_log_file_size = ULINT_MAX; /* size in database pages */
ulint srv_log_buffer_size = ULINT_MAX; /* size in database pages */
ulong srv_flush_log_at_trx_commit = 1;
byte srv_latin1_ordering[256] /* The sort order table of the latin1
character set. The following table is
the MySQL order as of Feb 10th, 2002 */
= {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17
, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27
, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F
, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F
, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47
, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F
, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57
, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F
, 0x60, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47
, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F
, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57
, 0x58, 0x59, 0x5A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F
, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F
, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97
, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F
, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7
, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF
, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7
, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF
, 0x41, 0x41, 0x41, 0x41, 0x5C, 0x5B, 0x5C, 0x43
, 0x45, 0x45, 0x45, 0x45, 0x49, 0x49, 0x49, 0x49
, 0x44, 0x4E, 0x4F, 0x4F, 0x4F, 0x4F, 0x5D, 0xD7
, 0xD8, 0x55, 0x55, 0x55, 0x59, 0x59, 0xDE, 0xDF
, 0x41, 0x41, 0x41, 0x41, 0x5C, 0x5B, 0x5C, 0x43
, 0x45, 0x45, 0x45, 0x45, 0x49, 0x49, 0x49, 0x49
, 0x44, 0x4E, 0x4F, 0x4F, 0x4F, 0x4F, 0x5D, 0xF7
, 0xD8, 0x55, 0x55, 0x55, 0x59, 0x59, 0xDE, 0xFF
};
ulint srv_pool_size = ULINT_MAX; /* size in pages; MySQL inits
this to size in kilobytes but
we normalize this to pages in
srv_boot() */
ulint srv_awe_window_size = 0; /* size in pages; MySQL inits
this to bytes, but we
normalize it to pages in
srv_boot() */
ulint srv_mem_pool_size = ULINT_MAX; /* size in bytes */
ulint srv_lock_table_size = ULINT_MAX;
ulint srv_n_file_io_threads = ULINT_MAX;
#ifdef UNIV_LOG_ARCHIVE
ibool srv_log_archive_on = FALSE;
ibool srv_archive_recovery = 0;
dulint srv_archive_recovery_limit_lsn;
#endif /* UNIV_LOG_ARCHIVE */
ulint srv_lock_wait_timeout = 1024 * 1024 * 1024;
char* srv_file_flush_method_str = NULL;
ulint srv_unix_file_flush_method = SRV_UNIX_FDATASYNC;
ulint srv_win_file_flush_method = SRV_WIN_IO_UNBUFFERED;
ulint srv_max_n_open_files = 300;
/* The InnoDB main thread tries to keep the ratio of modified pages
in the buffer pool to all database pages in the buffer pool smaller than
the following number. But it is not guaranteed that the value stays below
that during a time of heavy update/insert activity. */
ulong srv_max_buf_pool_modified_pct = 90;
/* variable counts amount of data read in total (in bytes) */
ulint srv_data_read = 0;
/* here we count the amount of data written in total (in bytes) */
ulint srv_data_written = 0;
/* the number of the log write requests done */
ulint srv_log_write_requests = 0;
/* the number of physical writes to the log performed */
ulint srv_log_writes = 0;
/* amount of data written to the log files in bytes */
ulint srv_os_log_written = 0;
/* amount of writes being done to the log files */
ulint srv_os_log_pending_writes = 0;
/* we increase this counter, when there we don't have enough space in the
log buffer and have to flush it */
ulint srv_log_waits = 0;
/* this variable counts the amount of times, when the doublewrite buffer
was flushed */
ulint srv_dblwr_writes = 0;
/* here we store the number of pages that have been flushed to the
doublewrite buffer */
ulint srv_dblwr_pages_written = 0;
/* in this variable we store the number of write requests issued */
ulint srv_buf_pool_write_requests = 0;
/* here we store the number of times when we had to wait for a free page
in the buffer pool. It happens when the buffer pool is full and we need
to make a flush, in order to be able to read or create a page. */
ulint srv_buf_pool_wait_free = 0;
/* variable to count the number of pages that were written from buffer
pool to the disk */
ulint srv_buf_pool_flushed = 0;
/* variable to count the number of buffer pool reads that led to the
reading of a disk page */
ulint srv_buf_pool_reads = 0;
/* variable to count the number of sequential read-aheads */
ulint srv_read_ahead_seq = 0;
/* variable to count the number of random read-aheads */
ulint srv_read_ahead_rnd = 0;
/* structure to pass status variables to MySQL */
export_struc export_vars;
/* If the following is != 0 we do not allow inserts etc. This protects
the user from forgetting the innodb_force_recovery keyword to my.cnf */
ulint srv_force_recovery = 0;
/*-----------------------*/
/* We are prepared for a situation that we have this many threads waiting for
a semaphore inside InnoDB. innobase_start_or_create_for_mysql() sets the
value. */
ulint srv_max_n_threads = 0;
/* The following controls how many threads we let inside InnoDB concurrently:
threads waiting for locks are not counted into the number because otherwise
we could get a deadlock. MySQL creates a thread for each user session, and
semaphore contention and convoy problems can occur withput this restriction.
Value 10 should be good if there are less than 4 processors + 4 disks in the
computer. Bigger computers need bigger values. Value 0 will disable the
concurrency check. */
ulong srv_thread_concurrency = 0;
ulong srv_commit_concurrency = 0;
os_fast_mutex_t srv_conc_mutex; /* this mutex protects srv_conc data
structures */
lint srv_conc_n_threads = 0; /* number of OS threads currently
inside InnoDB; it is not an error
if this drops temporarily below zero
because we do not demand that every
thread increments this, but a thread
waiting for a lock decrements this
temporarily */
ulint srv_conc_n_waiting_threads = 0; /* number of OS threads waiting in the
FIFO for a permission to enter InnoDB
*/
typedef struct srv_conc_slot_struct srv_conc_slot_t;
struct srv_conc_slot_struct{
os_event_t event; /* event to wait */
ibool reserved; /* TRUE if slot
reserved */
ibool wait_ended; /* TRUE when another
thread has already set
the event and the
thread in this slot is
free to proceed; but
reserved may still be
TRUE at that point */
UT_LIST_NODE_T(srv_conc_slot_t) srv_conc_queue; /* queue node */
};
UT_LIST_BASE_NODE_T(srv_conc_slot_t) srv_conc_queue; /* queue of threads
waiting to get in */
srv_conc_slot_t* srv_conc_slots; /* array of wait
slots */
/* Number of times a thread is allowed to enter InnoDB within the same
SQL query after it has once got the ticket at srv_conc_enter_innodb */
#define SRV_FREE_TICKETS_TO_ENTER srv_n_free_tickets_to_enter
#define SRV_THREAD_SLEEP_DELAY srv_thread_sleep_delay
/*-----------------------*/
/* If the following is set to 1 then we do not run purge and insert buffer
merge to completion before shutdown. If it is set to 2, do not even flush the
buffer pool to data files at the shutdown: we effectively 'crash'
InnoDB (but lose no committed transactions). */
ulint srv_fast_shutdown = 0;
/* Generate a innodb_status.<pid> file */
ibool srv_innodb_status = FALSE;
ibool srv_use_doublewrite_buf = TRUE;
ibool srv_use_checksums = TRUE;
ibool srv_set_thread_priorities = TRUE;
int srv_query_thread_priority = 0;
/* TRUE if the Address Windowing Extensions of Windows are used; then we must
disable adaptive hash indexes */
ibool srv_use_awe = FALSE;
ibool srv_use_adaptive_hash_indexes = TRUE;
/*-------------------------------------------*/
ulong srv_n_spin_wait_rounds = 20;
ulong srv_n_free_tickets_to_enter = 500;
ulong srv_thread_sleep_delay = 10000;
ulint srv_spin_wait_delay = 5;
ibool srv_priority_boost = TRUE;
ibool srv_print_thread_releases = FALSE;
ibool srv_print_lock_waits = FALSE;
ibool srv_print_buf_io = FALSE;
ibool srv_print_log_io = FALSE;
ibool srv_print_latch_waits = FALSE;
ulint srv_n_rows_inserted = 0;
ulint srv_n_rows_updated = 0;
ulint srv_n_rows_deleted = 0;
ulint srv_n_rows_read = 0;
static ulint srv_n_rows_inserted_old = 0;
static ulint srv_n_rows_updated_old = 0;
static ulint srv_n_rows_deleted_old = 0;
static ulint srv_n_rows_read_old = 0;
ulint srv_n_lock_wait_count = 0;
ulint srv_n_lock_wait_current_count = 0;
ib_longlong srv_n_lock_wait_time = 0;
ulint srv_n_lock_max_wait_time = 0;
/*
Set the following to 0 if you want InnoDB to write messages on
stderr on startup/shutdown
*/
ibool srv_print_verbose_log = TRUE;
ibool srv_print_innodb_monitor = FALSE;
ibool srv_print_innodb_lock_monitor = FALSE;
ibool srv_print_innodb_tablespace_monitor = FALSE;
ibool srv_print_innodb_table_monitor = FALSE;
/* The parameters below are obsolete: */
ibool srv_print_parsed_sql = FALSE;
ulint srv_sim_disk_wait_pct = ULINT_MAX;
ulint srv_sim_disk_wait_len = ULINT_MAX;
ibool srv_sim_disk_wait_by_yield = FALSE;
ibool srv_sim_disk_wait_by_wait = FALSE;
ibool srv_measure_contention = FALSE;
ibool srv_measure_by_spin = FALSE;
ibool srv_test_extra_mutexes = FALSE;
ibool srv_test_nocache = FALSE;
ibool srv_test_cache_evict = FALSE;
ibool srv_test_sync = FALSE;
ulint srv_test_n_threads = ULINT_MAX;
ulint srv_test_n_loops = ULINT_MAX;
ulint srv_test_n_free_rnds = ULINT_MAX;
ulint srv_test_n_reserved_rnds = ULINT_MAX;
ulint srv_test_array_size = ULINT_MAX;
ulint srv_test_n_mutexes = ULINT_MAX;
/* Array of English strings describing the current state of an
i/o handler thread */
const char* srv_io_thread_op_info[SRV_MAX_N_IO_THREADS];
const char* srv_io_thread_function[SRV_MAX_N_IO_THREADS];
time_t srv_last_monitor_time;
mutex_t srv_innodb_monitor_mutex;
/* Mutex for locking srv_monitor_file */
mutex_t srv_monitor_file_mutex;
/* Temporary file for innodb monitor output */
FILE* srv_monitor_file;
/* Mutex for locking srv_dict_tmpfile.
This mutex has a very high rank; threads reserving it should not
be holding any InnoDB latches. */
mutex_t srv_dict_tmpfile_mutex;
/* Temporary file for output from the data dictionary */
FILE* srv_dict_tmpfile;
/* Mutex for locking srv_misc_tmpfile.
This mutex has a very low rank; threads reserving it should not
acquire any further latches or sleep before releasing this one. */
mutex_t srv_misc_tmpfile_mutex;
/* Temporary file for miscellanous diagnostic output */
FILE* srv_misc_tmpfile;
ulint srv_main_thread_process_no = 0;
ulint srv_main_thread_id = 0;
/*
IMPLEMENTATION OF THE SERVER MAIN PROGRAM
=========================================
There is the following analogue between this database
server and an operating system kernel:
DB concept equivalent OS concept
---------- ---------------------
transaction -- process;
query thread -- thread;
lock -- semaphore;
transaction set to
the rollback state -- kill signal delivered to a process;
kernel -- kernel;
query thread execution:
(a) without kernel mutex
reserved -- process executing in user mode;
(b) with kernel mutex reserved
-- process executing in kernel mode;
The server is controlled by a master thread which runs at
a priority higher than normal, that is, higher than user threads.
It sleeps most of the time, and wakes up, say, every 300 milliseconds,
to check whether there is anything happening in the server which
requires intervention of the master thread. Such situations may be,
for example, when flushing of dirty blocks is needed in the buffer
pool or old version of database rows have to be cleaned away.
The threads which we call user threads serve the queries of
the clients and input from the console of the server.
They run at normal priority. The server may have several
communications endpoints. A dedicated set of user threads waits
at each of these endpoints ready to receive a client request.
Each request is taken by a single user thread, which then starts
processing and, when the result is ready, sends it to the client
and returns to wait at the same endpoint the thread started from.
So, we do not have dedicated communication threads listening at
the endpoints and dealing the jobs to dedicated worker threads.
Our architecture saves one thread swithch per request, compared
to the solution with dedicated communication threads
which amounts to 15 microseconds on 100 MHz Pentium
running NT. If the client
is communicating over a network, this saving is negligible, but
if the client resides in the same machine, maybe in an SMP machine
on a different processor from the server thread, the saving
can be important as the threads can communicate over shared
memory with an overhead of a few microseconds.
We may later implement a dedicated communication thread solution
for those endpoints which communicate over a network.
Our solution with user threads has two problems: for each endpoint
there has to be a number of listening threads. If there are many
communication endpoints, it may be difficult to set the right number
of concurrent threads in the system, as many of the threads
may always be waiting at less busy endpoints. Another problem
is queuing of the messages, as the server internally does not
offer any queue for jobs.
Another group of user threads is intended for splitting the
queries and processing them in parallel. Let us call these
parallel communication threads. These threads are waiting for
parallelized tasks, suspended on event semaphores.
A single user thread waits for input from the console,
like a command to shut the database.
Utility threads are a different group of threads which takes
care of the buffer pool flushing and other, mainly background
operations, in the server.
Some of these utility threads always run at a lower than normal
priority, so that they are always in background. Some of them
may dynamically boost their priority by the pri_adjust function,
even to higher than normal priority, if their task becomes urgent.
The running of utilities is controlled by high- and low-water marks
of urgency. The urgency may be measured by the number of dirty blocks
in the buffer pool, in the case of the flush thread, for example.
When the high-water mark is exceeded, an utility starts running, until
the urgency drops under the low-water mark. Then the utility thread
suspend itself to wait for an event. The master thread is
responsible of signaling this event when the utility thread is
again needed.
For each individual type of utility, some threads always remain
at lower than normal priority. This is because pri_adjust is implemented
so that the threads at normal or higher priority control their
share of running time by calling sleep. Thus, if the load of the
system sudenly drops, these threads cannot necessarily utilize
the system fully. The background priority threads make up for this,
starting to run when the load drops.
When there is no activity in the system, also the master thread
suspends itself to wait for an event making
the server totally silent. The responsibility to signal this
event is on the user thread which again receives a message
from a client.
There is still one complication in our server design. If a
background utility thread obtains a resource (e.g., mutex) needed by a user
thread, and there is also some other user activity in the system,
the user thread may have to wait indefinitely long for the
resource, as the OS does not schedule a background thread if
there is some other runnable user thread. This problem is called
priority inversion in real-time programming.
One solution to the priority inversion problem would be to
keep record of which thread owns which resource and
in the above case boost the priority of the background thread
so that it will be scheduled and it can release the resource.
This solution is called priority inheritance in real-time programming.
A drawback of this solution is that the overhead of acquiring a mutex
increases slightly, maybe 0.2 microseconds on a 100 MHz Pentium, because
the thread has to call os_thread_get_curr_id.
This may be compared to 0.5 microsecond overhead for a mutex lock-unlock
pair. Note that the thread
cannot store the information in the resource, say mutex, itself,
because competing threads could wipe out the information if it is
stored before acquiring the mutex, and if it stored afterwards,
the information is outdated for the time of one machine instruction,
at least. (To be precise, the information could be stored to
lock_word in mutex if the machine supports atomic swap.)
The above solution with priority inheritance may become actual in the
future, but at the moment we plan to implement a more coarse solution,
which could be called a global priority inheritance. If a thread
has to wait for a long time, say 300 milliseconds, for a resource,
we just guess that it may be waiting for a resource owned by a background
thread, and boost the the priority of all runnable background threads
to the normal level. The background threads then themselves adjust
their fixed priority back to background after releasing all resources
they had (or, at some fixed points in their program code).
What is the performance of the global priority inheritance solution?
We may weigh the length of the wait time 300 milliseconds, during
which the system processes some other thread
to the cost of boosting the priority of each runnable background
thread, rescheduling it, and lowering the priority again.
On 100 MHz Pentium + NT this overhead may be of the order 100
microseconds per thread. So, if the number of runnable background
threads is not very big, say < 100, the cost is tolerable.
Utility threads probably will access resources used by
user threads not very often, so collisions of user threads
to preempted utility threads should not happen very often.
The thread table contains
information of the current status of each thread existing in the system,
and also the event semaphores used in suspending the master thread
and utility and parallel communication threads when they have nothing to do.
The thread table can be seen as an analogue to the process table
in a traditional Unix implementation.
The thread table is also used in the global priority inheritance
scheme. This brings in one additional complication: threads accessing
the thread table must have at least normal fixed priority,
because the priority inheritance solution does not work if a background
thread is preempted while possessing the mutex protecting the thread table.
So, if a thread accesses the thread table, its priority has to be
boosted at least to normal. This priority requirement can be seen similar to
the privileged mode used when processing the kernel calls in traditional
Unix.*/
/* Thread slot in the thread table */
struct srv_slot_struct{
os_thread_id_t id; /* thread id */
os_thread_t handle; /* thread handle */
ulint type; /* thread type: user, utility etc. */
ibool in_use; /* TRUE if this slot is in use */
ibool suspended; /* TRUE if the thread is waiting
for the event of this slot */
ib_time_t suspend_time; /* time when the thread was
suspended */
os_event_t event; /* event used in suspending the
thread when it has nothing to do */
que_thr_t* thr; /* suspended query thread (only
used for MySQL threads) */
};
/* Table for MySQL threads where they will be suspended to wait for locks */
srv_slot_t* srv_mysql_table = NULL;
os_event_t srv_lock_timeout_thread_event;
srv_sys_t* srv_sys = NULL;
byte srv_pad1[64]; /* padding to prevent other memory update
hotspots from residing on the same memory
cache line */
mutex_t* kernel_mutex_temp;/* mutex protecting the server, trx structs,
query threads, and lock table */
byte srv_pad2[64]; /* padding to prevent other memory update
hotspots from residing on the same memory
cache line */
/* The following three values measure the urgency of the jobs of
buffer, version, and insert threads. They may vary from 0 - 1000.
The server mutex protects all these variables. The low-water values
tell that the server can acquiesce the utility when the value
drops below this low-water mark. */
ulint srv_meter[SRV_MASTER + 1];
ulint srv_meter_low_water[SRV_MASTER + 1];
ulint srv_meter_high_water[SRV_MASTER + 1];
ulint srv_meter_high_water2[SRV_MASTER + 1];
ulint srv_meter_foreground[SRV_MASTER + 1];
/* The following values give info about the activity going on in
the database. They are protected by the server mutex. The arrays
are indexed by the type of the thread. */
ulint srv_n_threads_active[SRV_MASTER + 1];
ulint srv_n_threads[SRV_MASTER + 1];
/*************************************************************************
Sets the info describing an i/o thread current state. */
void
srv_set_io_thread_op_info(
/*======================*/
ulint i, /* in: the 'segment' of the i/o thread */
const char* str) /* in: constant char string describing the
state */
{
ut_a(i < SRV_MAX_N_IO_THREADS);
srv_io_thread_op_info[i] = str;
}
/*************************************************************************
Accessor function to get pointer to n'th slot in the server thread
table. */
static
srv_slot_t*
srv_table_get_nth_slot(
/*===================*/
/* out: pointer to the slot */
ulint index) /* in: index of the slot */
{
ut_a(index < OS_THREAD_MAX_N);
return(srv_sys->threads + index);
}
/*************************************************************************
Gets the number of threads in the system. */
ulint
srv_get_n_threads(void)
/*===================*/
{
ulint i;
ulint n_threads = 0;
mutex_enter(&kernel_mutex);
for (i = SRV_COM; i < SRV_MASTER + 1; i++) {
n_threads += srv_n_threads[i];
}
mutex_exit(&kernel_mutex);
return(n_threads);
}
/*************************************************************************
Reserves a slot in the thread table for the current thread. Also creates the
thread local storage struct for the current thread. NOTE! The server mutex
has to be reserved by the caller! */
static
ulint
srv_table_reserve_slot(
/*===================*/
/* out: reserved slot index */
ulint type) /* in: type of the thread: one of SRV_COM, ... */
{
srv_slot_t* slot;
ulint i;
ut_a(type > 0);
ut_a(type <= SRV_MASTER);
i = 0;
slot = srv_table_get_nth_slot(i);
while (slot->in_use) {
i++;
slot = srv_table_get_nth_slot(i);
}
ut_a(slot->in_use == FALSE);
slot->in_use = TRUE;
slot->suspended = FALSE;
slot->id = os_thread_get_curr_id();
slot->handle = os_thread_get_curr();
slot->type = type;
thr_local_create();
thr_local_set_slot_no(os_thread_get_curr_id(), i);
return(i);
}
/*************************************************************************
Suspends the calling thread to wait for the event in its thread slot.
NOTE! The server mutex has to be reserved by the caller! */
static
os_event_t
srv_suspend_thread(void)
/*====================*/
/* out: event for the calling thread to wait */
{
srv_slot_t* slot;
os_event_t event;
ulint slot_no;
ulint type;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
slot_no = thr_local_get_slot_no(os_thread_get_curr_id());
if (srv_print_thread_releases) {
fprintf(stderr,
"Suspending thread %lu to slot %lu meter %lu\n",
(ulong) os_thread_get_curr_id(), (ulong) slot_no,
(ulong) srv_meter[SRV_RECOVERY]);
}
slot = srv_table_get_nth_slot(slot_no);
type = slot->type;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
event = slot->event;
slot->suspended = TRUE;
ut_ad(srv_n_threads_active[type] > 0);
srv_n_threads_active[type]--;
os_event_reset(event);
return(event);
}
/*************************************************************************
Releases threads of the type given from suspension in the thread table.
NOTE! The server mutex has to be reserved by the caller! */
ulint
srv_release_threads(
/*================*/
/* out: number of threads released: this may be
< n if not enough threads were suspended at the
moment */
ulint type, /* in: thread type */
ulint n) /* in: number of threads to release */
{
srv_slot_t* slot;
ulint i;
ulint count = 0;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
ut_ad(n > 0);
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_table_get_nth_slot(i);
if (slot->in_use && slot->type == type && slot->suspended) {
slot->suspended = FALSE;
srv_n_threads_active[type]++;
os_event_set(slot->event);
if (srv_print_thread_releases) {
fprintf(stderr,
"Releasing thread %lu type %lu from slot %lu meter %lu\n",
(ulong) slot->id, (ulong) type, (ulong) i,
(ulong) srv_meter[SRV_RECOVERY]);
}
count++;
if (count == n) {
break;
}
}
}
return(count);
}
/*************************************************************************
Returns the calling thread type. */
ulint
srv_get_thread_type(void)
/*=====================*/
/* out: SRV_COM, ... */
{
ulint slot_no;
srv_slot_t* slot;
ulint type;
mutex_enter(&kernel_mutex);
slot_no = thr_local_get_slot_no(os_thread_get_curr_id());
slot = srv_table_get_nth_slot(slot_no);
type = slot->type;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
mutex_exit(&kernel_mutex);
return(type);
}
/*************************************************************************
Initializes the server. */
void
srv_init(void)
/*==========*/
{
srv_conc_slot_t* conc_slot;
srv_slot_t* slot;
dict_table_t* table;
ulint i;
srv_sys = mem_alloc(sizeof(srv_sys_t));
kernel_mutex_temp = mem_alloc(sizeof(mutex_t));
mutex_create(&kernel_mutex);
mutex_set_level(&kernel_mutex, SYNC_KERNEL);
mutex_create(&srv_innodb_monitor_mutex);
mutex_set_level(&srv_innodb_monitor_mutex, SYNC_NO_ORDER_CHECK);
srv_sys->threads = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_table_get_nth_slot(i);
slot->in_use = FALSE;
slot->type=0; /* Avoid purify errors */
slot->event = os_event_create(NULL);
ut_a(slot->event);
}
srv_mysql_table = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
slot->in_use = FALSE;
slot->type = 0;
slot->event = os_event_create(NULL);
ut_a(slot->event);
}
srv_lock_timeout_thread_event = os_event_create(NULL);
for (i = 0; i < SRV_MASTER + 1; i++) {
srv_n_threads_active[i] = 0;
srv_n_threads[i] = 0;
srv_meter[i] = 30;
srv_meter_low_water[i] = 50;
srv_meter_high_water[i] = 100;
srv_meter_high_water2[i] = 200;
srv_meter_foreground[i] = 250;
}
srv_sys->operational = os_event_create(NULL);
ut_a(srv_sys->operational);
UT_LIST_INIT(srv_sys->tasks);
/* create dummy table and index for old-style infimum and supremum */
table = dict_mem_table_create("SYS_DUMMY1",
DICT_HDR_SPACE, 1, FALSE);
dict_mem_table_add_col(table, "DUMMY", DATA_CHAR,
DATA_ENGLISH | DATA_NOT_NULL, 8, 0);
srv_sys->dummy_ind1 = dict_mem_index_create("SYS_DUMMY1",
"SYS_DUMMY1", DICT_HDR_SPACE, 0, 1);
dict_index_add_col(srv_sys->dummy_ind1,
dict_table_get_nth_col(table, 0), 0, 0);
srv_sys->dummy_ind1->table = table;
/* create dummy table and index for new-style infimum and supremum */
table = dict_mem_table_create("SYS_DUMMY2",
DICT_HDR_SPACE, 1, TRUE);
dict_mem_table_add_col(table, "DUMMY", DATA_CHAR,
DATA_ENGLISH | DATA_NOT_NULL, 8, 0);
srv_sys->dummy_ind2 = dict_mem_index_create("SYS_DUMMY2",
"SYS_DUMMY2", DICT_HDR_SPACE, 0, 1);
dict_index_add_col(srv_sys->dummy_ind2,
dict_table_get_nth_col(table, 0), 0, 0);
srv_sys->dummy_ind2->table = table;
/* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */
srv_sys->dummy_ind1->cached = srv_sys->dummy_ind2->cached = TRUE;
/* Init the server concurrency restriction data structures */
os_fast_mutex_init(&srv_conc_mutex);
UT_LIST_INIT(srv_conc_queue);
srv_conc_slots = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_conc_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
conc_slot = srv_conc_slots + i;
conc_slot->reserved = FALSE;
conc_slot->event = os_event_create(NULL);
ut_a(conc_slot->event);
}
}
/*************************************************************************
Frees the OS fast mutex created in srv_init(). */
void
srv_free(void)
/*==========*/
{
os_fast_mutex_free(&srv_conc_mutex);
}
/*************************************************************************
Initializes the synchronization primitives, memory system, and the thread
local storage. */
void
srv_general_init(void)
/*==================*/
{
os_sync_init();
sync_init();
mem_init(srv_mem_pool_size);
thr_local_init();
}
/*======================= InnoDB Server FIFO queue =======================*/
/* Maximum allowable purge history length. <=0 means 'infinite'. */
ulong srv_max_purge_lag = 0;
/*************************************************************************
Puts an OS thread to wait if there are too many concurrent threads
(>= srv_thread_concurrency) inside InnoDB. The threads wait in a FIFO queue. */
void
srv_conc_enter_innodb(
/*==================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
ibool has_slept = FALSE;
srv_conc_slot_t* slot = NULL;
ulint i;
/* If trx has 'free tickets' to enter the engine left, then use one
such ticket */
if (trx->n_tickets_to_enter_innodb > 0) {
trx->n_tickets_to_enter_innodb--;
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
retry:
if (trx->declared_to_be_inside_innodb) {
ut_print_timestamp(stderr);
fputs(
" InnoDB: Error: trying to declare trx to enter InnoDB, but\n"
"InnoDB: it already is declared.\n", stderr);
trx_print(stderr, trx, 0);
putc('\n', stderr);
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
if (srv_conc_n_threads < (lint)srv_thread_concurrency) {
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
/* If the transaction is not holding resources,
let it sleep for SRV_THREAD_SLEEP_DELAY microseconds, and try again then */
if (!has_slept && !trx->has_search_latch
&& NULL == UT_LIST_GET_FIRST(trx->trx_locks)) {
has_slept = TRUE; /* We let is sleep only once to avoid
starvation */
srv_conc_n_waiting_threads++;
os_fast_mutex_unlock(&srv_conc_mutex);
trx->op_info = "sleeping before joining InnoDB queue";
/* Peter Zaitsev suggested that we take the sleep away
altogether. But the sleep may be good in pathological
situations of lots of thread switches. Simply put some
threads aside for a while to reduce the number of thread
switches. */
if (SRV_THREAD_SLEEP_DELAY > 0)
{
os_thread_sleep(SRV_THREAD_SLEEP_DELAY);
}
trx->op_info = "";
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_waiting_threads--;
goto retry;
}
/* Too many threads inside: put the current thread to a queue */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_conc_slots + i;
if (!slot->reserved) {
break;
}
}
if (i == OS_THREAD_MAX_N) {
/* Could not find a free wait slot, we must let the
thread enter */
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = 0;
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
/* Release possible search system latch this thread has */
if (trx->has_search_latch) {
trx_search_latch_release_if_reserved(trx);
}
/* Add to the queue */
slot->reserved = TRUE;
slot->wait_ended = FALSE;
UT_LIST_ADD_LAST(srv_conc_queue, srv_conc_queue, slot);
os_event_reset(slot->event);
srv_conc_n_waiting_threads++;
os_fast_mutex_unlock(&srv_conc_mutex);
/* Go to wait for the event; when a thread leaves InnoDB it will
release this thread */
trx->op_info = "waiting in InnoDB queue";
os_event_wait(slot->event);
trx->op_info = "";
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_waiting_threads--;
/* NOTE that the thread which released this thread already
incremented the thread counter on behalf of this thread */
slot->reserved = FALSE;
UT_LIST_REMOVE(srv_conc_queue, srv_conc_queue, slot);
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;
os_fast_mutex_unlock(&srv_conc_mutex);
}
/*************************************************************************
This lets a thread enter InnoDB regardless of the number of threads inside
InnoDB. This must be called when a thread ends a lock wait. */
void
srv_conc_force_enter_innodb(
/*========================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
if (UNIV_LIKELY(!srv_thread_concurrency)) {
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = 0;
os_fast_mutex_unlock(&srv_conc_mutex);
}
/*************************************************************************
This must be called when a thread exits InnoDB in a lock wait or at the
end of an SQL statement. */
void
srv_conc_force_exit_innodb(
/*=======================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
srv_conc_slot_t* slot = NULL;
if (UNIV_LIKELY(!srv_thread_concurrency)) {
return;
}
if (trx->declared_to_be_inside_innodb == FALSE) {
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_threads--;
trx->declared_to_be_inside_innodb = FALSE;
trx->n_tickets_to_enter_innodb = 0;
if (srv_conc_n_threads < (lint)srv_thread_concurrency) {
/* Look for a slot where a thread is waiting and no other
thread has yet released the thread */
slot = UT_LIST_GET_FIRST(srv_conc_queue);
while (slot && slot->wait_ended == TRUE) {
slot = UT_LIST_GET_NEXT(srv_conc_queue, slot);
}
if (slot != NULL) {
slot->wait_ended = TRUE;
/* We increment the count on behalf of the released
thread */
srv_conc_n_threads++;
}
}
os_fast_mutex_unlock(&srv_conc_mutex);
if (slot != NULL) {
os_event_set(slot->event);
}
}
/*************************************************************************
This must be called when a thread exits InnoDB. */
void
srv_conc_exit_innodb(
/*=================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
if (trx->n_tickets_to_enter_innodb > 0) {
/* We will pretend the thread is still inside InnoDB though it
now leaves the InnoDB engine. In this way we save
a lot of semaphore operations. srv_conc_force_exit_innodb is
used to declare the thread definitely outside InnoDB. It
should be called when there is a lock wait or an SQL statement
ends. */
return;
}
srv_conc_force_exit_innodb(trx);
}
/*========================================================================*/
/*************************************************************************
Normalizes init parameter values to use units we use inside InnoDB. */
static
ulint
srv_normalize_init_values(void)
/*===========================*/
/* out: DB_SUCCESS or error code */
{
ulint n;
ulint i;
n = srv_n_data_files;
for (i = 0; i < n; i++) {
srv_data_file_sizes[i] = srv_data_file_sizes[i]
* ((1024 * 1024) / UNIV_PAGE_SIZE);
}
srv_last_file_size_max = srv_last_file_size_max
* ((1024 * 1024) / UNIV_PAGE_SIZE);
srv_log_file_size = srv_log_file_size / UNIV_PAGE_SIZE;
srv_log_buffer_size = srv_log_buffer_size / UNIV_PAGE_SIZE;
srv_pool_size = srv_pool_size / (UNIV_PAGE_SIZE / 1024);
srv_awe_window_size = srv_awe_window_size / UNIV_PAGE_SIZE;
if (srv_use_awe) {
/* If we are using AWE we must save memory in the 32-bit
address space of the process, and cannot bind the lock
table size to the real buffer pool size. */
srv_lock_table_size = 20 * srv_awe_window_size;
} else {
srv_lock_table_size = 5 * srv_pool_size;
}
return(DB_SUCCESS);
}
/*************************************************************************
Boots the InnoDB server. */
ulint
srv_boot(void)
/*==========*/
/* out: DB_SUCCESS or error code */
{
ulint err;
/* Transform the init parameter values given by MySQL to
use units we use inside InnoDB: */
err = srv_normalize_init_values();
if (err != DB_SUCCESS) {
return(err);
}
/* Initialize synchronization primitives, memory management, and thread
local storage */
srv_general_init();
/* Initialize this module */
srv_init();
return(DB_SUCCESS);
}
#ifndef UNIV_HOTBACKUP
/*************************************************************************
Reserves a slot in the thread table for the current MySQL OS thread.
NOTE! The kernel mutex has to be reserved by the caller! */
static
srv_slot_t*
srv_table_reserve_slot_for_mysql(void)
/*==================================*/
/* out: reserved slot */
{
srv_slot_t* slot;
ulint i;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
i = 0;
slot = srv_mysql_table + i;
while (slot->in_use) {
i++;
if (i >= OS_THREAD_MAX_N) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: There appear to be %lu MySQL threads currently waiting\n"
"InnoDB: inside InnoDB, which is the upper limit. Cannot continue operation.\n"
"InnoDB: We intentionally generate a seg fault to print a stack trace\n"
"InnoDB: on Linux. But first we print a list of waiting threads.\n", (ulong) i);
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
fprintf(stderr,
"Slot %lu: thread id %lu, type %lu, in use %lu, susp %lu, time %lu\n",
(ulong) i, (ulong) os_thread_pf(slot->id),
(ulong) slot->type, (ulong) slot->in_use,
(ulong) slot->suspended,
(ulong) difftime(ut_time(), slot->suspend_time));
}
ut_error;
}
slot = srv_mysql_table + i;
}
ut_a(slot->in_use == FALSE);
slot->in_use = TRUE;
slot->id = os_thread_get_curr_id();
slot->handle = os_thread_get_curr();
return(slot);
}
#endif /* !UNIV_HOTBACKUP */
/*******************************************************************
Puts a MySQL OS thread to wait for a lock to be released. If an error
occurs during the wait trx->error_state associated with thr is
!= DB_SUCCESS when we return. DB_LOCK_WAIT_TIMEOUT and DB_DEADLOCK
are possible errors. DB_DEADLOCK is returned if selective deadlock
resolution chose this transaction as a victim. */
void
srv_suspend_mysql_thread(
/*=====================*/
que_thr_t* thr) /* in: query thread associated with the MySQL
OS thread */
{
#ifndef UNIV_HOTBACKUP
srv_slot_t* slot;
os_event_t event;
double wait_time;
trx_t* trx;
ibool had_dict_lock = FALSE;
ibool was_declared_inside_innodb = FALSE;
ib_longlong start_time = 0;
ib_longlong finish_time;
ulint diff_time;
ulint sec;
ulint ms;
#ifdef UNIV_SYNC_DEBUG
ut_ad(!mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
trx = thr_get_trx(thr);
os_event_set(srv_lock_timeout_thread_event);
mutex_enter(&kernel_mutex);
trx->error_state = DB_SUCCESS;
if (thr->state == QUE_THR_RUNNING) {
ut_ad(thr->is_active == TRUE);
/* The lock has already been released or this transaction
was chosen as a deadlock victim: no need to suspend */
if (trx->was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->was_chosen_as_deadlock_victim = FALSE;
}
mutex_exit(&kernel_mutex);
return;
}
ut_ad(thr->is_active == FALSE);
slot = srv_table_reserve_slot_for_mysql();
event = slot->event;
slot->thr = thr;
os_event_reset(event);
slot->suspend_time = ut_time();
if (thr->lock_state == QUE_THR_LOCK_ROW) {
srv_n_lock_wait_count++;
srv_n_lock_wait_current_count++;
ut_usectime(&sec, &ms);
start_time = (ib_longlong)sec * 1000000 + ms;
}
/* Wake the lock timeout monitor thread, if it is suspended */
os_event_set(srv_lock_timeout_thread_event);
mutex_exit(&kernel_mutex);
if (trx->declared_to_be_inside_innodb) {
was_declared_inside_innodb = TRUE;
/* We must declare this OS thread to exit InnoDB, since a
possible other thread holding a lock which this thread waits
for must be allowed to enter, sooner or later */
srv_conc_force_exit_innodb(trx);
}
/* Release possible foreign key check latch */
if (trx->dict_operation_lock_mode == RW_S_LATCH) {
had_dict_lock = TRUE;
row_mysql_unfreeze_data_dictionary(trx);
}
ut_a(trx->dict_operation_lock_mode == 0);
/* Wait for the release */
os_event_wait(event);
if (had_dict_lock) {
row_mysql_freeze_data_dictionary(trx);
}
if (was_declared_inside_innodb) {
/* Return back inside InnoDB */
srv_conc_force_enter_innodb(trx);
}
mutex_enter(&kernel_mutex);
/* Release the slot for others to use */
slot->in_use = FALSE;
wait_time = ut_difftime(ut_time(), slot->suspend_time);
if (thr->lock_state == QUE_THR_LOCK_ROW) {
ut_usectime(&sec, &ms);
finish_time = (ib_longlong)sec * 1000000 + ms;
diff_time = (ulint) (finish_time - start_time);
srv_n_lock_wait_current_count--;
srv_n_lock_wait_time = srv_n_lock_wait_time + diff_time;
if (diff_time > srv_n_lock_max_wait_time) {
srv_n_lock_max_wait_time = diff_time;
}
}
if (trx->was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->was_chosen_as_deadlock_victim = FALSE;
}
mutex_exit(&kernel_mutex);
if (srv_lock_wait_timeout < 100000000 &&
wait_time > (double)srv_lock_wait_timeout) {
trx->error_state = DB_LOCK_WAIT_TIMEOUT;
}
#else /* UNIV_HOTBACKUP */
/* This function depends on MySQL code that is not included in
InnoDB Hot Backup builds. Besides, this function should never
be called in InnoDB Hot Backup. */
ut_error;
#endif /* UNIV_HOTBACKUP */
}
/************************************************************************
Releases a MySQL OS thread waiting for a lock to be released, if the
thread is already suspended. */
void
srv_release_mysql_thread_if_suspended(
/*==================================*/
que_thr_t* thr) /* in: query thread associated with the
MySQL OS thread */
{
#ifndef UNIV_HOTBACKUP
srv_slot_t* slot;
ulint i;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
if (slot->in_use && slot->thr == thr) {
/* Found */
os_event_set(slot->event);
return;
}
}
/* not found */
#else /* UNIV_HOTBACKUP */
/* This function depends on MySQL code that is not included in
InnoDB Hot Backup builds. Besides, this function should never
be called in InnoDB Hot Backup. */
ut_error;
#endif /* UNIV_HOTBACKUP */
}
#ifndef UNIV_HOTBACKUP
/**********************************************************************
Refreshes the values used to calculate per-second averages. */
static
void
srv_refresh_innodb_monitor_stats(void)
/*==================================*/
{
mutex_enter(&srv_innodb_monitor_mutex);
srv_last_monitor_time = time(NULL);
os_aio_refresh_stats();
btr_cur_n_sea_old = btr_cur_n_sea;
btr_cur_n_non_sea_old = btr_cur_n_non_sea;
log_refresh_stats();
buf_refresh_io_stats();
srv_n_rows_inserted_old = srv_n_rows_inserted;
srv_n_rows_updated_old = srv_n_rows_updated;
srv_n_rows_deleted_old = srv_n_rows_deleted;
srv_n_rows_read_old = srv_n_rows_read;
mutex_exit(&srv_innodb_monitor_mutex);
}
/**********************************************************************
Outputs to a file the output of the InnoDB Monitor. */
void
srv_printf_innodb_monitor(
/*======================*/
FILE* file, /* in: output stream */
ulint* trx_start, /* out: file position of the start of
the list of active transactions */
ulint* trx_end) /* out: file position of the end of
the list of active transactions */
{
double time_elapsed;
time_t current_time;
ulint n_reserved;
mutex_enter(&srv_innodb_monitor_mutex);
current_time = time(NULL);
/* We add 0.001 seconds to time_elapsed to prevent division
by zero if two users happen to call SHOW INNODB STATUS at the same
time */
time_elapsed = difftime(current_time, srv_last_monitor_time)
+ 0.001;
srv_last_monitor_time = time(NULL);
fputs("\n=====================================\n", file);
ut_print_timestamp(file);
fprintf(file,
" INNODB MONITOR OUTPUT\n"
"=====================================\n"
"Per second averages calculated from the last %lu seconds\n",
(ulong)time_elapsed);
fputs("----------\n"
"SEMAPHORES\n"
"----------\n", file);
sync_print(file);
/* Conceptually, srv_innodb_monitor_mutex has a very high latching
order level in sync0sync.h, while dict_foreign_err_mutex has a very
low level 135. Therefore we can reserve the latter mutex here without
a danger of a deadlock of threads. */
mutex_enter(&dict_foreign_err_mutex);
if (ftell(dict_foreign_err_file) != 0L) {
fputs("------------------------\n"
"LATEST FOREIGN KEY ERROR\n"
"------------------------\n", file);
ut_copy_file(file, dict_foreign_err_file);
}
mutex_exit(&dict_foreign_err_mutex);
lock_print_info_summary(file);
if (trx_start) {
long t = ftell(file);
if (t < 0) {
*trx_start = ULINT_UNDEFINED;
} else {
*trx_start = (ulint) t;
}
}
lock_print_info_all_transactions(file);
if (trx_end) {
long t = ftell(file);
if (t < 0) {
*trx_end = ULINT_UNDEFINED;
} else {
*trx_end = (ulint) t;
}
}
fputs("--------\n"
"FILE I/O\n"
"--------\n", file);
os_aio_print(file);
fputs("-------------------------------------\n"
"INSERT BUFFER AND ADAPTIVE HASH INDEX\n"
"-------------------------------------\n", file);
ibuf_print(file);
ha_print_info(file, btr_search_sys->hash_index);
fprintf(file,
"%.2f hash searches/s, %.2f non-hash searches/s\n",
(btr_cur_n_sea - btr_cur_n_sea_old)
/ time_elapsed,
(btr_cur_n_non_sea - btr_cur_n_non_sea_old)
/ time_elapsed);
btr_cur_n_sea_old = btr_cur_n_sea;
btr_cur_n_non_sea_old = btr_cur_n_non_sea;
fputs("---\n"
"LOG\n"
"---\n", file);
log_print(file);
fputs("----------------------\n"
"BUFFER POOL AND MEMORY\n"
"----------------------\n", file);
fprintf(file,
"Total memory allocated " ULINTPF
"; in additional pool allocated " ULINTPF "\n",
ut_total_allocated_memory,
mem_pool_get_reserved(mem_comm_pool));
if (srv_use_awe) {
fprintf(file,
"In addition to that %lu MB of AWE memory allocated\n",
(ulong) (srv_pool_size / ((1024 * 1024) / UNIV_PAGE_SIZE)));
}
buf_print_io(file);
fputs("--------------\n"
"ROW OPERATIONS\n"
"--------------\n", file);
fprintf(file, "%ld queries inside InnoDB, %lu queries in queue\n",
(long) srv_conc_n_threads,
(ulong) srv_conc_n_waiting_threads);
fprintf(file, "%lu read views open inside InnoDB\n",
UT_LIST_GET_LEN(trx_sys->view_list));
n_reserved = fil_space_get_n_reserved_extents(0);
if (n_reserved > 0) {
fprintf(file,
"%lu tablespace extents now reserved for B-tree split operations\n",
(ulong) n_reserved);
}
#ifdef UNIV_LINUX
fprintf(file, "Main thread process no. %lu, id %lu, state: %s\n",
(ulong) srv_main_thread_process_no,
(ulong) srv_main_thread_id,
srv_main_thread_op_info);
#else
fprintf(file, "Main thread id %lu, state: %s\n",
(ulong) srv_main_thread_id,
srv_main_thread_op_info);
#endif
fprintf(file,
"Number of rows inserted " ULINTPF
", updated " ULINTPF ", deleted " ULINTPF ", read " ULINTPF "\n",
srv_n_rows_inserted,
srv_n_rows_updated,
srv_n_rows_deleted,
srv_n_rows_read);
fprintf(file,
"%.2f inserts/s, %.2f updates/s, %.2f deletes/s, %.2f reads/s\n",
(srv_n_rows_inserted - srv_n_rows_inserted_old)
/ time_elapsed,
(srv_n_rows_updated - srv_n_rows_updated_old)
/ time_elapsed,
(srv_n_rows_deleted - srv_n_rows_deleted_old)
/ time_elapsed,
(srv_n_rows_read - srv_n_rows_read_old)
/ time_elapsed);
srv_n_rows_inserted_old = srv_n_rows_inserted;
srv_n_rows_updated_old = srv_n_rows_updated;
srv_n_rows_deleted_old = srv_n_rows_deleted;
srv_n_rows_read_old = srv_n_rows_read;
fputs("----------------------------\n"
"END OF INNODB MONITOR OUTPUT\n"
"============================\n", file);
mutex_exit(&srv_innodb_monitor_mutex);
fflush(file);
}
/**********************************************************************
Function to pass InnoDB status variables to MySQL */
void
srv_export_innodb_status(void)
{
mutex_enter(&srv_innodb_monitor_mutex);
export_vars.innodb_data_pending_reads= os_n_pending_reads;
export_vars.innodb_data_pending_writes= os_n_pending_writes;
export_vars.innodb_data_pending_fsyncs=
fil_n_pending_log_flushes + fil_n_pending_tablespace_flushes;
export_vars.innodb_data_fsyncs= os_n_fsyncs;
export_vars.innodb_data_read= srv_data_read;
export_vars.innodb_data_reads= os_n_file_reads;
export_vars.innodb_data_writes= os_n_file_writes;
export_vars.innodb_data_written= srv_data_written;
export_vars.innodb_buffer_pool_read_requests= buf_pool->n_page_gets;
export_vars.innodb_buffer_pool_write_requests= srv_buf_pool_write_requests;
export_vars.innodb_buffer_pool_wait_free= srv_buf_pool_wait_free;
export_vars.innodb_buffer_pool_pages_flushed= srv_buf_pool_flushed;
export_vars.innodb_buffer_pool_reads= srv_buf_pool_reads;
export_vars.innodb_buffer_pool_read_ahead_rnd= srv_read_ahead_rnd;
export_vars.innodb_buffer_pool_read_ahead_seq= srv_read_ahead_seq;
export_vars.innodb_buffer_pool_pages_data= UT_LIST_GET_LEN(buf_pool->LRU);
export_vars.innodb_buffer_pool_pages_dirty= UT_LIST_GET_LEN(buf_pool->flush_list);
export_vars.innodb_buffer_pool_pages_free= UT_LIST_GET_LEN(buf_pool->free);
export_vars.innodb_buffer_pool_pages_latched= buf_get_latched_pages_number();
export_vars.innodb_buffer_pool_pages_total= buf_pool->curr_size;
export_vars.innodb_buffer_pool_pages_misc= buf_pool->max_size -
UT_LIST_GET_LEN(buf_pool->LRU) - UT_LIST_GET_LEN(buf_pool->free);
export_vars.innodb_page_size= UNIV_PAGE_SIZE;
export_vars.innodb_log_waits= srv_log_waits;
export_vars.innodb_os_log_written= srv_os_log_written;
export_vars.innodb_os_log_fsyncs= fil_n_log_flushes;
export_vars.innodb_os_log_pending_fsyncs= fil_n_pending_log_flushes;
export_vars.innodb_os_log_pending_writes= srv_os_log_pending_writes;
export_vars.innodb_log_write_requests= srv_log_write_requests;
export_vars.innodb_log_writes= srv_log_writes;
export_vars.innodb_dblwr_pages_written= srv_dblwr_pages_written;
export_vars.innodb_dblwr_writes= srv_dblwr_writes;
export_vars.innodb_pages_created= buf_pool->n_pages_created;
export_vars.innodb_pages_read= buf_pool->n_pages_read;
export_vars.innodb_pages_written= buf_pool->n_pages_written;
export_vars.innodb_row_lock_waits= srv_n_lock_wait_count;
export_vars.innodb_row_lock_current_waits= srv_n_lock_wait_current_count;
export_vars.innodb_row_lock_time= srv_n_lock_wait_time / 10000;
if (srv_n_lock_wait_count > 0) {
export_vars.innodb_row_lock_time_avg = (ulint)
(srv_n_lock_wait_time / 10000 / srv_n_lock_wait_count);
} else {
export_vars.innodb_row_lock_time_avg = 0;
}
export_vars.innodb_row_lock_time_max= srv_n_lock_max_wait_time / 10000;
export_vars.innodb_rows_read= srv_n_rows_read;
export_vars.innodb_rows_inserted= srv_n_rows_inserted;
export_vars.innodb_rows_updated= srv_n_rows_updated;
export_vars.innodb_rows_deleted= srv_n_rows_deleted;
mutex_exit(&srv_innodb_monitor_mutex);
}
/*************************************************************************
A thread which wakes up threads whose lock wait may have lasted too long.
This also prints the info output by various InnoDB monitors. */
#ifndef __WIN__
void*
#else
ulint
#endif
srv_lock_timeout_and_monitor_thread(
/*================================*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
srv_slot_t* slot;
double time_elapsed;
time_t current_time;
time_t last_table_monitor_time;
time_t last_monitor_time;
ibool some_waits;
double wait_time;
ulint i;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Lock timeout thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
UT_NOT_USED(arg);
srv_last_monitor_time = time(NULL);
last_table_monitor_time = time(NULL);
last_monitor_time = time(NULL);
loop:
srv_lock_timeout_and_monitor_active = TRUE;
/* When someone is waiting for a lock, we wake up every second
and check if a timeout has passed for a lock wait */
os_thread_sleep(1000000);
/* In case mutex_exit is not a memory barrier, it is
theoretically possible some threads are left waiting though
the semaphore is already released. Wake up those threads: */
sync_arr_wake_threads_if_sema_free();
current_time = time(NULL);
time_elapsed = difftime(current_time, last_monitor_time);
if (time_elapsed > 15) {
last_monitor_time = time(NULL);
if (srv_print_innodb_monitor) {
srv_printf_innodb_monitor(stderr, NULL, NULL);
}
if (srv_innodb_status) {
mutex_enter(&srv_monitor_file_mutex);
rewind(srv_monitor_file);
srv_printf_innodb_monitor(srv_monitor_file, NULL, NULL);
os_file_set_eof(srv_monitor_file);
mutex_exit(&srv_monitor_file_mutex);
}
if (srv_print_innodb_tablespace_monitor
&& difftime(current_time, last_table_monitor_time) > 60) {
last_table_monitor_time = time(NULL);
fputs("================================================\n",
stderr);
ut_print_timestamp(stderr);
fputs(" INNODB TABLESPACE MONITOR OUTPUT\n"
"================================================\n",
stderr);
fsp_print(0);
fputs("Validating tablespace\n", stderr);
fsp_validate(0);
fputs("Validation ok\n"
"---------------------------------------\n"
"END OF INNODB TABLESPACE MONITOR OUTPUT\n"
"=======================================\n",
stderr);
}
if (srv_print_innodb_table_monitor
&& difftime(current_time, last_table_monitor_time) > 60) {
last_table_monitor_time = time(NULL);
fputs("===========================================\n", stderr);
ut_print_timestamp(stderr);
fputs(" INNODB TABLE MONITOR OUTPUT\n"
"===========================================\n",
stderr);
dict_print();
fputs("-----------------------------------\n"
"END OF INNODB TABLE MONITOR OUTPUT\n"
"==================================\n",
stderr);
}
}
mutex_enter(&kernel_mutex);
some_waits = FALSE;
/* Check of all slots if a thread is waiting there, and if it
has exceeded the time limit */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
if (slot->in_use) {
some_waits = TRUE;
wait_time = ut_difftime(ut_time(), slot->suspend_time);
if (srv_lock_wait_timeout < 100000000 &&
(wait_time > (double) srv_lock_wait_timeout
|| wait_time < 0)) {
/* Timeout exceeded or a wrap-around in system
time counter: cancel the lock request queued
by the transaction and release possible
other transactions waiting behind; it is
possible that the lock has already been
granted: in that case do nothing */
if (thr_get_trx(slot->thr)->wait_lock) {
lock_cancel_waiting_and_release(
thr_get_trx(slot->thr)->wait_lock);
}
}
}
}
os_event_reset(srv_lock_timeout_thread_event);
mutex_exit(&kernel_mutex);
if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) {
goto exit_func;
}
if (some_waits || srv_print_innodb_monitor
|| srv_print_innodb_lock_monitor
|| srv_print_innodb_tablespace_monitor
|| srv_print_innodb_table_monitor) {
goto loop;
}
/* No one was waiting for a lock and no monitor was active:
suspend this thread */
srv_lock_timeout_and_monitor_active = FALSE;
#if 0
/* The following synchronisation is disabled, since
the InnoDB monitor output is to be updated every 15 seconds. */
os_event_wait(srv_lock_timeout_thread_event);
#endif
goto loop;
exit_func:
srv_lock_timeout_and_monitor_active = FALSE;
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit(NULL);
#ifndef __WIN__
return(NULL);
#else
return(0);
#endif
}
/*************************************************************************
A thread which prints warnings about semaphore waits which have lasted
too long. These can be used to track bugs which cause hangs. */
#ifndef __WIN__
void*
#else
ulint
#endif
srv_error_monitor_thread(
/*=====================*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
/* number of successive fatal timeouts observed */
ulint fatal_cnt = 0;
dulint old_lsn;
dulint new_lsn;
old_lsn = srv_start_lsn;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Error monitor thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
loop:
srv_error_monitor_active = TRUE;
/* Try to track a strange bug reported by Harald Fuchs and others,
where the lsn seems to decrease at times */
new_lsn = log_get_lsn();
if (ut_dulint_cmp(new_lsn, old_lsn) < 0) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: old log sequence number %lu %lu was greater\n"
"InnoDB: than the new log sequence number %lu %lu!\n"
"InnoDB: Please send a bug report to mysql@lists.mysql.com\n",
(ulong) ut_dulint_get_high(old_lsn),
(ulong) ut_dulint_get_low(old_lsn),
(ulong) ut_dulint_get_high(new_lsn),
(ulong) ut_dulint_get_low(new_lsn));
}
old_lsn = new_lsn;
if (difftime(time(NULL), srv_last_monitor_time) > 60) {
/* We referesh InnoDB Monitor values so that averages are
printed from at most 60 last seconds */
srv_refresh_innodb_monitor_stats();
}
if (sync_array_print_long_waits()) {
fatal_cnt++;
if (fatal_cnt > 5) {
fprintf(stderr,
"InnoDB: Error: semaphore wait has lasted > %lu seconds\n"
"InnoDB: We intentionally crash the server, because it appears to be hung.\n",
srv_fatal_semaphore_wait_threshold);
ut_error;
}
} else {
fatal_cnt = 0;
}
/* Flush stderr so that a database user gets the output
to possible MySQL error file */
fflush(stderr);
os_thread_sleep(2000000);
if (srv_shutdown_state < SRV_SHUTDOWN_LAST_PHASE) {
goto loop;
}
srv_error_monitor_active = FALSE;
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit(NULL);
#ifndef __WIN__
return(NULL);
#else
return(0);
#endif
}
/***********************************************************************
Tells the InnoDB server that there has been activity in the database
and wakes up the master thread if it is suspended (not sleeping). Used
in the MySQL interface. Note that there is a small chance that the master
thread stays suspended (we do not protect our operation with the kernel
mutex, for performace reasons). */
void
srv_active_wake_master_thread(void)
/*===============================*/
{
srv_activity_count++;
if (srv_n_threads_active[SRV_MASTER] == 0) {
mutex_enter(&kernel_mutex);
srv_release_threads(SRV_MASTER, 1);
mutex_exit(&kernel_mutex);
}
}
/***********************************************************************
Wakes up the master thread if it is suspended or being suspended. */
void
srv_wake_master_thread(void)
/*========================*/
{
srv_activity_count++;
mutex_enter(&kernel_mutex);
srv_release_threads(SRV_MASTER, 1);
mutex_exit(&kernel_mutex);
}
/*************************************************************************
The master thread controlling the server. */
#ifndef __WIN__
void*
#else
ulint
#endif
srv_master_thread(
/*==============*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
os_event_t event;
time_t last_flush_time;
time_t current_time;
ulint old_activity_count;
ulint n_pages_purged;
ulint n_bytes_merged;
ulint n_pages_flushed;
ulint n_bytes_archived;
ulint n_tables_to_drop;
ulint n_ios;
ulint n_ios_old;
ulint n_ios_very_old;
ulint n_pend_ios;
ibool skip_sleep = FALSE;
ulint i;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Master thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
srv_main_thread_process_no = os_proc_get_number();
srv_main_thread_id = os_thread_pf(os_thread_get_curr_id());
srv_table_reserve_slot(SRV_MASTER);
mutex_enter(&kernel_mutex);
srv_n_threads_active[SRV_MASTER]++;
mutex_exit(&kernel_mutex);
os_event_set(srv_sys->operational);
loop:
/*****************************************************************/
/* ---- When there is database activity by users, we cycle in this
loop */
srv_main_thread_op_info = "reserving kernel mutex";
n_ios_very_old = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
mutex_enter(&kernel_mutex);
/* Store the user activity counter at the start of this loop */
old_activity_count = srv_activity_count;
mutex_exit(&kernel_mutex);
if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND) {
goto suspend_thread;
}
/* ---- We run the following loop approximately once per second
when there is database activity */
skip_sleep = FALSE;
for (i = 0; i < 10; i++) {
n_ios_old = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
srv_main_thread_op_info = "sleeping";
if (!skip_sleep) {
os_thread_sleep(1000000);
}
skip_sleep = FALSE;
/* ALTER TABLE in MySQL requires on Unix that the table handler
can drop tables lazily after there no longer are SELECT
queries to them. */
srv_main_thread_op_info = "doing background drop tables";
row_drop_tables_for_mysql_in_background();
srv_main_thread_op_info = "";
if (srv_fast_shutdown && srv_shutdown_state > 0) {
goto background_loop;
}
/* We flush the log once in a second even if no commit
is issued or the we have specified in my.cnf no flush
at transaction commit */
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
srv_main_thread_op_info = "making checkpoint";
log_free_check();
/* If there were less than 5 i/os during the
one second sleep, we assume that there is free
disk i/o capacity available, and it makes sense to
do an insert buffer merge. */
n_pend_ios = buf_get_n_pending_ios()
+ log_sys->n_pending_writes;
n_ios = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
if (n_pend_ios < 3 && (n_ios - n_ios_old < 5)) {
srv_main_thread_op_info = "doing insert buffer merge";
ibuf_contract_for_n_pages(TRUE, 5);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
}
if (buf_get_modified_ratio_pct() >
srv_max_buf_pool_modified_pct) {
/* Try to keep the number of modified pages in the
buffer pool under the limit wished by the user */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 100,
ut_dulint_max);
/* If we had to do the flush, it may have taken
even more than 1 second, and also, there may be more
to flush. Do not sleep 1 second during the next
iteration of this loop. */
skip_sleep = TRUE;
}
if (srv_activity_count == old_activity_count) {
/* There is no user activity at the moment, go to
the background loop */
goto background_loop;
}
}
/* ---- We perform the following code approximately once per
10 seconds when there is database activity */
#ifdef MEM_PERIODIC_CHECK
/* Check magic numbers of every allocated mem block once in 10
seconds */
mem_validate_all_blocks();
#endif
/* If there were less than 200 i/os during the 10 second period,
we assume that there is free disk i/o capacity available, and it
makes sense to flush 100 pages. */
n_pend_ios = buf_get_n_pending_ios() + log_sys->n_pending_writes;
n_ios = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
if (n_pend_ios < 3 && (n_ios - n_ios_very_old < 200)) {
srv_main_thread_op_info = "flushing buffer pool pages";
buf_flush_batch(BUF_FLUSH_LIST, 100, ut_dulint_max);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
}
/* We run a batch of insert buffer merge every 10 seconds,
even if the server were active */
srv_main_thread_op_info = "doing insert buffer merge";
ibuf_contract_for_n_pages(TRUE, 5);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
/* We run a full purge every 10 seconds, even if the server
were active */
n_pages_purged = 1;
last_flush_time = time(NULL);
while (n_pages_purged) {
if (srv_fast_shutdown && srv_shutdown_state > 0) {
goto background_loop;
}
srv_main_thread_op_info = "purging";
n_pages_purged = trx_purge();
current_time = time(NULL);
if (difftime(current_time, last_flush_time) > 1) {
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
last_flush_time = current_time;
}
}
srv_main_thread_op_info = "flushing buffer pool pages";
/* Flush a few oldest pages to make a new checkpoint younger */
if (buf_get_modified_ratio_pct() > 70) {
/* If there are lots of modified pages in the buffer pool
(> 70 %), we assume we can afford reserving the disk(s) for
the time it requires to flush 100 pages */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 100,
ut_dulint_max);
} else {
/* Otherwise, we only flush a small number of pages so that
we do not unnecessarily use much disk i/o capacity from
other work */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 10,
ut_dulint_max);
}
srv_main_thread_op_info = "making checkpoint";
/* Make a new checkpoint about once in 10 seconds */
log_checkpoint(TRUE, FALSE);
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
/* ---- When there is database activity, we jump from here back to
the start of loop */
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
/* If the database is quiet, we enter the background loop */
/*****************************************************************/
background_loop:
/* ---- In this loop we run background operations when the server
is quiet from user activity. Also in the case of a shutdown, we
loop here, flushing the buffer pool to the data files. */
/* The server has been quiet for a while: start running background
operations */
srv_main_thread_op_info = "doing background drop tables";
n_tables_to_drop = row_drop_tables_for_mysql_in_background();
if (n_tables_to_drop > 0) {
/* Do not monopolize the CPU even if there are tables waiting
in the background drop queue. (It is essentially a bug if
MySQL tries to drop a table while there are still open handles
to it and we had to put it to the background drop queue.) */
os_thread_sleep(100000);
}
srv_main_thread_op_info = "purging";
/* Run a full purge */
n_pages_purged = 1;
last_flush_time = time(NULL);
while (n_pages_purged) {
if (srv_fast_shutdown && srv_shutdown_state > 0) {
break;
}
srv_main_thread_op_info = "purging";
n_pages_purged = trx_purge();
current_time = time(NULL);
if (difftime(current_time, last_flush_time) > 1) {
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
last_flush_time = current_time;
}
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
srv_main_thread_op_info = "doing insert buffer merge";
if (srv_fast_shutdown && srv_shutdown_state > 0) {
n_bytes_merged = 0;
} else {
n_bytes_merged = ibuf_contract_for_n_pages(TRUE, 20);
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
flush_loop:
srv_main_thread_op_info = "flushing buffer pool pages";
if (srv_fast_shutdown < 2) {
n_pages_flushed =
buf_flush_batch(BUF_FLUSH_LIST, 100, ut_dulint_max);
} else {
/* In the fastest shutdown we do not flush the buffer pool
to data files: we set n_pages_flushed to 0 artificially. */
n_pages_flushed = 0;
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
srv_main_thread_op_info = "waiting for buffer pool flush to end";
buf_flush_wait_batch_end(BUF_FLUSH_LIST);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
srv_main_thread_op_info = "making checkpoint";
log_checkpoint(TRUE, FALSE);
if (buf_get_modified_ratio_pct() > srv_max_buf_pool_modified_pct) {
/* Try to keep the number of modified pages in the
buffer pool under the limit wished by the user */
goto flush_loop;
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
/*
srv_main_thread_op_info = "archiving log (if log archive is on)";
log_archive_do(FALSE, &n_bytes_archived);
*/
n_bytes_archived = 0;
/* Keep looping in the background loop if still work to do */
if (srv_fast_shutdown && srv_shutdown_state > 0) {
if (n_tables_to_drop + n_pages_flushed
+ n_bytes_archived != 0) {
/* If we are doing a fast shutdown (= the default)
we do not do purge or insert buffer merge. But we
flush the buffer pool completely to disk.
In a 'very fast' shutdown we do not flush the buffer
pool to data files: we have set n_pages_flushed to
0 artificially. */
goto background_loop;
}
} else if (n_tables_to_drop +
n_pages_purged + n_bytes_merged + n_pages_flushed
+ n_bytes_archived != 0) {
/* In a 'slow' shutdown we run purge and the insert buffer
merge to completion */
goto background_loop;
}
/* There is no work for background operations either: suspend
master thread to wait for more server activity */
suspend_thread:
srv_main_thread_op_info = "suspending";
mutex_enter(&kernel_mutex);
if (row_get_background_drop_list_len_low() > 0) {
mutex_exit(&kernel_mutex);
goto loop;
}
event = srv_suspend_thread();
mutex_exit(&kernel_mutex);
srv_main_thread_op_info = "waiting for server activity";
os_event_wait(event);
if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
/* This is only extra safety, the thread should exit
already when the event wait ends */
os_thread_exit(NULL);
}
/* When there is user activity, InnoDB will set the event and the main
thread goes back to loop: */
goto loop;
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit.
The thread actually never comes here because it is exited in an
os_event_wait(). */
os_thread_exit(NULL);
#ifndef __WIN__
return(NULL); /* Not reached */
#else
return(0);
#endif
}
#endif /* !UNIV_HOTBACKUP */
|