File: GraphicTools.pas

package info (click to toggle)
mysql-gui-tools 5.0r12-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 105,540 kB
  • ctags: 50,897
  • sloc: sql: 348,439; pascal: 285,780; cpp: 94,578; ansic: 90,768; objc: 33,761; sh: 25,629; xml: 10,924; yacc: 10,755; java: 9,986; php: 2,806; python: 2,068; makefile: 1,945; perl: 3
file content (1509 lines) | stat: -rw-r--r-- 58,730 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
unit GraphicTools;

//----------------------------------------------------------------------------------------------------------------------
//
// Description:
//   This unit contains helper routines related to computer graphics, like drop shadows, gradient fills etc.
//   Note: The code here requires OS support, which is only available with Windows 98 and up and Windows 2000 and up.
//         Hence including this unit will discontinue support of your application for Windows 95, Windows NT 4.0 and
//         lower.
//
//----------------------------------------------------------------------------------------------------------------------
//
// This unit is released under the MIT license:
// Copyright (c) 1999-2005 Mike Lischke (support@soft-gems.net, www.soft-gems.net).
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
// OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// You are asked to give the author(s) the due credit. This means that you acknowledge the work of the author(s)
// in the product documentation, about box, help or wherever a prominent place is.
//
//----------------------------------------------------------------------------------------------------------------------
// The original code is GraphicTools.pas, released 1. October 2003.
//
// The initial developer of the original code is:
//   Mike Lischke, Delphi Gems software solutions (support@delphi-gems.com, www.delphi-gems.com).
//
// Portions created by Delphi Gems are
//   (C) 1999-2003 Delphi Gems. All Rights Reserved.
//
// Credits:
//   - LordCRC for providing the gaussian blur code.
//----------------------------------------------------------------------------------------------------------------------
//
// August 2003:
//   Initial implementation.
//
//----------------------------------------------------------------------------------------------------------------------

interface

{$Include Compilers.inc}
{$ifdef COMPILER_7_UP}
  // For some things to work we need code, which is classified as being unsafe for .NET.
  // We switch off warnings about that fact. We know it and we accept it.
  {$warn UNSAFE_TYPE off}
  {$warn UNSAFE_CAST off}
  {$warn UNSAFE_CODE off}
{$endif COMPILER_7_UP}

uses
  Windows, Graphics, Classes, ColorTypes, ColorTools;

const
  // Maximum size of the gaussian kernel used for blurring.
  MaxKernelSize = 100;

type
  TFloatPoint = record
    X, Y: Single;
  end;

  COLOR16 = Word;

  PTriVertex = ^TTriVertex;
  {$EXTERNALSYM _TRIVERTEX}
  _TRIVERTEX = packed record
    x: Integer;
    y: Integer;
    Red: COLOR16;
    Green: COLOR16;
    Blue: COLOR16;                   
    Alpha: COLOR16;
  end;
  TTriVertex = _TRIVERTEX;
  {$EXTERNALSYM TRIVERTEX}
  TRIVERTEX = _TRIVERTEX;

  TKernelSize = 1..MaxKernelSize;

  TKernel = record
    Size: TKernelSize;
    Weights: array[-MaxKernelSize..MaxKernelSize] of Single;
  end;

  // TDropShadow is a comfortable helper class to create and draw a bitmap with a drop shadow.
  // Note: this class only works with Windows 98/Me, Windows 2000 or better as it relies on the AlphaBlend API.
  TDropShadow = class(TPersistent)
  private
    FGrayRampPalette: HPALETTE;             // Gray scale palette for the 8 bit shadow.
    FColor: TColor;                         // The color to use for the shadow.
    FOffset: Integer;                       // Distance of the shadow from the original pixels in the given direction.
    FSize: Integer;                         // Size of the shadow (directly determines the Gauss kernel size).
    FAlpha: Single;                         // Overall translucency (strength) of the shadow (1 - fully opaque).
    FSourceAlpha: Single;                   // Translucency of the source image.
    FDirection: Integer;                    // Direction (in degrees) into which to throw the shadow (e.g. -45 for lower right)

    FOnChange: TNotifyEvent;
    procedure SetAlpha(const Value: Single);
    procedure SetColor(const Value: TColor);
    procedure SetDirection(const Value: Integer);
    procedure SetOffset(const Value: Integer);
    procedure SetSourceAlpha(const Value: Single);
    procedure SetSize(Value: Integer);
  protected
    procedure AverageMeanBlur(Bitmap: TBitmap);
    procedure DoChange; virtual;
    procedure SetGrayScalePalette(Bitmap: TBitmap);
  public
    constructor Create; virtual;
    destructor Destroy; override;

    procedure Draw(Source: TBitmap; SourceRect: TRect; Target: HDC; TargetPos: TPoint);
    procedure InitializeBitmap(Source: TBitmap);
  published
    property Color: TColor read FColor write SetColor default clBtnShadow;
    property Offset: Integer read FOffset write SetOffset default 4;
    property Size: Integer read FSize write SetSize;
    property Direction: Integer read FDirection write SetDirection default -45;
    property ShadowAlpha: Single read FAlpha write SetAlpha;
    property SourceAlpha: Single read FSourceAlpha write SetSourceAlpha;

    property OnChange: TNotifyEvent read FOnChange write FOnChange;
  end;


  // Describes the mode how to blend pixels.
  TBlendMode = (
    bmConstantAlpha,         // apply given constant alpha
    bmPerPixelAlpha,         // use alpha value of the source pixel
    bmMasterAlpha,           // use alpha value of source pixel and multiply it with the constant alpha value
    bmConstantAlphaAndColor  // blend the destination color with the given constant color und the constant alpha value
  );

procedure AlphaBlendPixel(Source, Destination: HDC; R: TRect; Target: TPoint; Mode: TBlendMode; ConstantAlpha, Bias: Integer);

// Gradient functions.
procedure DrawColorCircle(DC: HDC; Center: TPoint; CenterColor: TRGB; Radius: Integer; Gamma: Double = 1);
procedure DrawGradientBox(DC: HDC; const R: TRect; Colors: array of TRGB);

// Simple paint functions.
procedure DrawComb(Canvas: TCanvas; Center: TPoint; Size: Integer);

// Other support functions.
procedure GaussianBlur(Source: TBitmap; Radius: Double);

// APIs, which are either not yet defined or are defined wrongly.
function GradientFill(DC: HDC; const Vertex {PTriVertex}; NumVertex: ULONG; const Mesh {PGradientTriangle}; NumMesh,
  Mode: ULONG): BOOL; stdcall; external 'msimg32.dll';

var
  CombCorners: array[0..5] of TFloatPoint;

//----------------------------------------------------------------------------------------------------------------------

implementation

uses
  Math, Types, SysUtils;

const
  // Do not modify the copyright in any way! Usage of this unit is prohibited without the copyright notice
  // in the compiled binary file.
  Copyright: string = 'Graphic Tools  2003 Mike Lischke, Delphi Gems software solutions';

type
  PRGBTriple = ^TRGBTriple;
  TRGBTriple = packed record
    B, G, R: Byte;
  end;
  TRGBArray = array of TRGBTriple;

  PRGBRow = ^TRGBRow;
  TRGBRow = array[0..10000] of TRGBTriple;
  TRGBRows = array of PRGBRow;

  PGrayValue = ^Byte;
  TGArray = array of Byte;

  PGrayRow = ^TGrayRow;
  TGrayRow = array[0..10000] of Byte;
  TGrayRows = array of PGrayRow;

  PRGBAQuadrupel = ^TRGBAQuadrupel;
  TRGBAQuadrupel = packed record
    B, G, R, A: Byte;
  end;

//----------------------------------------------------------------------------------------------------------------------

procedure AlphaBlendLineConstant(Source, Destination: Pointer; Count: Integer; ConstantAlpha, Bias: Integer);

// Blends a line of Count pixels from Source to Destination using a constant alpha value.
// The layout of a pixel must be BGRA where A is ignored (but is calculated as the other components).
// ConstantAlpha must be in the range 0..255 where 0 means totally transparent (destination pixel only)
// and 255 totally opaque (source pixel only).
// Bias is an additional value which gets added to every component and must be in the range -128..127
//
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// ConstantAlpha and Bias are on the stack

asm
        PUSH    ESI                    // save used registers
        PUSH    EDI

        MOV     ESI, EAX               // ESI becomes the actual source pointer
        MOV     EDI, EDX               // EDI becomes the actual target pointer

        // Load MM6 with the constant alpha value (replicate it for every component).
        // Expand it to word size.
        MOV     EAX, [ConstantAlpha]
        DB      $0F, $6E, $F0          /// MOVD      MM6, EAX
        DB      $0F, $61, $F6          /// PUNPCKLWD MM6, MM6
        DB      $0F, $62, $F6          /// PUNPCKLDQ MM6, MM6

        // Load MM5 with the bias value.
        MOV     EAX, [Bias]
        DB      $0F, $6E, $E8          /// MOVD      MM5, EAX
        DB      $0F, $61, $ED          /// PUNPCKLWD MM5, MM5
        DB      $0F, $62, $ED          /// PUNPCKLDQ MM5, MM5

        // Load MM4 with 128 to allow for saturated biasing.
        MOV     EAX, 128
        DB      $0F, $6E, $E0          /// MOVD      MM4, EAX
        DB      $0F, $61, $E4          /// PUNPCKLWD MM4, MM4
        DB      $0F, $62, $E4          /// PUNPCKLDQ MM4, MM4

@1:     // The pixel loop calculates an entire pixel in one run.
        // Note: The pixel byte values are expanded into the higher bytes of a word due
        //       to the way unpacking works. We compensate for this with an extra shift.
        DB      $0F, $EF, $C0          /// PXOR      MM0, MM0,   clear source pixel register for unpacking
        DB      $0F, $60, $06          /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     move higher bytes to lower bytes
        DB      $0F, $EF, $C9          /// PXOR      MM1, MM1,   clear target pixel register for unpacking
        DB      $0F, $60, $0F          /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
        DB      $0F, $6F, $D1          /// MOVQ      MM2, MM1,   make a copy of the shifted values, we need them again
        DB      $0F, $71, $D1, $08     /// PSRLW     MM1, 8,     move higher bytes to lower bytes

        // calculation is: target = (alpha * (source - target) + 256 * target) / 256
        DB      $0F, $F9, $C1          /// PSUBW     MM0, MM1,   source - target
        DB      $0F, $D5, $C6          /// PMULLW    MM0, MM6,   alpha * (source - target)
        DB      $0F, $FD, $C2          /// PADDW     MM0, MM2,   add target (in shifted form)
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     divide by 256

        // Bias is accounted for by conversion of range 0..255 to -128..127,
        // doing a saturated add and convert back to 0..255.
        DB      $0F, $F9, $C4          /// PSUBW     MM0, MM4
        DB      $0F, $ED, $C5          /// PADDSW    MM0, MM5
        DB      $0F, $FD, $C4          /// PADDW     MM0, MM4
        DB      $0F, $67, $C0          /// PACKUSWB  MM0, MM0,   convert words to bytes with saturation
        DB      $0F, $7E, $07          /// MOVD      [EDI], MM0, store the result
@3:
        ADD     ESI, 4
        ADD     EDI, 4
        DEC     ECX
        JNZ     @1
        POP     EDI
        POP     ESI
end;

//----------------------------------------------------------------------------------------------------------------------

procedure AlphaBlendLinePerPixel(Source, Destination: Pointer; Count, Bias: Integer);

// Blends a line of Count pixels from Source to Destination using the alpha value of the source pixels.
// The layout of a pixel must be BGRA.
// Bias is an additional value which gets added to every component and must be in the range -128..127
//
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// Bias is on the stack

asm
        PUSH    ESI                    // save used registers
        PUSH    EDI

        MOV     ESI, EAX               // ESI becomes the actual source pointer
        MOV     EDI, EDX               // EDI becomes the actual target pointer

        // Load MM5 with the bias value.
        MOV     EAX, [Bias]
        DB      $0F, $6E, $E8          /// MOVD      MM5, EAX
        DB      $0F, $61, $ED          /// PUNPCKLWD MM5, MM5
        DB      $0F, $62, $ED          /// PUNPCKLDQ MM5, MM5

        // Load MM4 with 128 to allow for saturated biasing.
        MOV     EAX, 128
        DB      $0F, $6E, $E0          /// MOVD      MM4, EAX
        DB      $0F, $61, $E4          /// PUNPCKLWD MM4, MM4
        DB      $0F, $62, $E4          /// PUNPCKLDQ MM4, MM4

@1:     // The pixel loop calculates an entire pixel in one run.
        // Note: The pixel byte values are expanded into the higher bytes of a word due
        //       to the way unpacking works. We compensate for this with an extra shift.
        DB      $0F, $EF, $C0          /// PXOR      MM0, MM0,   clear source pixel register for unpacking
        DB      $0F, $60, $06          /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     move higher bytes to lower bytes
        DB      $0F, $EF, $C9          /// PXOR      MM1, MM1,   clear target pixel register for unpacking
        DB      $0F, $60, $0F          /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
        DB      $0F, $6F, $D1          /// MOVQ      MM2, MM1,   make a copy of the shifted values, we need them again
        DB      $0F, $71, $D1, $08     /// PSRLW     MM1, 8,     move higher bytes to lower bytes

        // Load MM6 with the source alpha value (replicate it for every component).
        // Expand it to word size.
        DB      $0F, $6F, $F0          /// MOVQ MM6, MM0
        DB      $0F, $69, $F6          /// PUNPCKHWD MM6, MM6
        DB      $0F, $6A, $F6          /// PUNPCKHDQ MM6, MM6

        // calculation is: target = (alpha * (source - target) + 256 * target) / 256
        DB      $0F, $F9, $C1          /// PSUBW     MM0, MM1,   source - target
        DB      $0F, $D5, $C6          /// PMULLW    MM0, MM6,   alpha * (source - target)
        DB      $0F, $FD, $C2          /// PADDW     MM0, MM2,   add target (in shifted form)
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     divide by 256

        // Bias is accounted for by conversion of range 0..255 to -128..127,
        // doing a saturated add and convert back to 0..255.
        DB      $0F, $F9, $C4          /// PSUBW     MM0, MM4
        DB      $0F, $ED, $C5          /// PADDSW    MM0, MM5
        DB      $0F, $FD, $C4          /// PADDW     MM0, MM4
        DB      $0F, $67, $C0          /// PACKUSWB  MM0, MM0,   convert words to bytes with saturation
        DB      $0F, $7E, $07          /// MOVD      [EDI], MM0, store the result
@3:
        ADD     ESI, 4
        ADD     EDI, 4
        DEC     ECX
        JNZ     @1
        POP     EDI
        POP     ESI
end;

//----------------------------------------------------------------------------------------------------------------------

procedure AlphaBlendLineMaster(Source, Destination: Pointer; Count: Integer; ConstantAlpha, Bias: Integer);

// Blends a line of Count pixels from Source to Destination using the source pixel and a constant alpha value.
// The layout of a pixel must be BGRA.
// ConstantAlpha must be in the range 0..255.
// Bias is an additional value which gets added to every component and must be in the range -128..127
//
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// ConstantAlpha and Bias are on the stack

asm
        PUSH    ESI                    // save used registers
        PUSH    EDI

        MOV     ESI, EAX               // ESI becomes the actual source pointer
        MOV     EDI, EDX               // EDI becomes the actual target pointer

        // Load MM6 with the constant alpha value (replicate it for every component).
        // Expand it to word size.
        MOV     EAX, [ConstantAlpha]
        DB      $0F, $6E, $F0          /// MOVD      MM6, EAX
        DB      $0F, $61, $F6          /// PUNPCKLWD MM6, MM6
        DB      $0F, $62, $F6          /// PUNPCKLDQ MM6, MM6

        // Load MM5 with the bias value.
        MOV     EAX, [Bias]
        DB      $0F, $6E, $E8          /// MOVD      MM5, EAX
        DB      $0F, $61, $ED          /// PUNPCKLWD MM5, MM5
        DB      $0F, $62, $ED          /// PUNPCKLDQ MM5, MM5

        // Load MM4 with 128 to allow for saturated biasing.
        MOV     EAX, 128
        DB      $0F, $6E, $E0          /// MOVD      MM4, EAX
        DB      $0F, $61, $E4          /// PUNPCKLWD MM4, MM4
        DB      $0F, $62, $E4          /// PUNPCKLDQ MM4, MM4

@1:     // The pixel loop calculates an entire pixel in one run.
        // Note: The pixel byte values are expanded into the higher bytes of a word due
        //       to the way unpacking works. We compensate for this with an extra shift.
        DB      $0F, $EF, $C0          /// PXOR      MM0, MM0,   clear source pixel register for unpacking
        DB      $0F, $60, $06          /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     move higher bytes to lower bytes
        DB      $0F, $EF, $C9          /// PXOR      MM1, MM1,   clear target pixel register for unpacking
        DB      $0F, $60, $0F          /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
        DB      $0F, $6F, $D1          /// MOVQ      MM2, MM1,   make a copy of the shifted values, we need them again
        DB      $0F, $71, $D1, $08     /// PSRLW     MM1, 8,     move higher bytes to lower bytes

        // Load MM7 with the source alpha value (replicate it for every component).
        // Expand it to word size.
        DB      $0F, $6F, $F8          /// MOVQ      MM7, MM0
        DB      $0F, $69, $FF          /// PUNPCKHWD MM7, MM7
        DB      $0F, $6A, $FF          /// PUNPCKHDQ MM7, MM7
        DB      $0F, $D5, $FE          /// PMULLW    MM7, MM6,   source alpha * master alpha
        DB      $0F, $71, $D7, $08     /// PSRLW     MM7, 8,     divide by 256

        // calculation is: target = (alpha * master alpha * (source - target) + 256 * target) / 256
        DB      $0F, $F9, $C1          /// PSUBW     MM0, MM1,   source - target
        DB      $0F, $D5, $C7          /// PMULLW    MM0, MM7,   alpha * (source - target)
        DB      $0F, $FD, $C2          /// PADDW     MM0, MM2,   add target (in shifted form)
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8,     divide by 256

        // Bias is accounted for by conversion of range 0..255 to -128..127,
        // doing a saturated add and convert back to 0..255.
        DB      $0F, $F9, $C4          /// PSUBW     MM0, MM4
        DB      $0F, $ED, $C5          /// PADDSW    MM0, MM5
        DB      $0F, $FD, $C4          /// PADDW     MM0, MM4
        DB      $0F, $67, $C0          /// PACKUSWB  MM0, MM0,   convert words to bytes with saturation
        DB      $0F, $7E, $07          /// MOVD      [EDI], MM0, store the result
@3:
        ADD     ESI, 4
        ADD     EDI, 4
        DEC     ECX
        JNZ     @1
        POP     EDI
        POP     ESI
end;

//----------------------------------------------------------------------------------------------------------------------

procedure AlphaBlendLineMasterAndColor(Destination: Pointer; Count: Integer; ConstantAlpha, Color: Integer);

// Blends a line of Count pixels in Destination against the given color using a constant alpha value.
// The layout of a pixel must be BGRA and Color must be rrggbb00 (as stored by a COLORREF).
// ConstantAlpha must be in the range 0..255.
//
// EAX contains Destination
// EDX contains Count
// ECX contains ConstantAlpha
// Color is passed on the stack

asm
        // The used formula is: target = (alpha * color + (256 - alpha) * target) / 256.
        // alpha * color (factor 1) and 256 - alpha (factor 2) are constant values which can be calculated in advance.
        // The remaining calculation is therefore: target = (F1 + F2 * target) / 256

        // Load MM3 with the constant alpha value (replicate it for every component).
        // Expand it to word size. (Every calculation here works on word sized operands.)
        DB      $0F, $6E, $D9          /// MOVD      MM3, ECX
        DB      $0F, $61, $DB          /// PUNPCKLWD MM3, MM3
        DB      $0F, $62, $DB          /// PUNPCKLDQ MM3, MM3

        // Calculate factor 2.
        MOV     ECX, $100
        DB      $0F, $6E, $D1          /// MOVD      MM2, ECX
        DB      $0F, $61, $D2          /// PUNPCKLWD MM2, MM2
        DB      $0F, $62, $D2          /// PUNPCKLDQ MM2, MM2
        DB      $0F, $F9, $D3          /// PSUBW     MM2, MM3             // MM2 contains now: 255 - alpha = F2

        // Now calculate factor 1. Alpha is still in MM3, but the r and b components of Color must be swapped.
        MOV     ECX, [Color]
        BSWAP   ECX
        ROR     ECX, 8
        DB      $0F, $6E, $C9          /// MOVD      MM1, ECX             // Load the color and convert to word sized values.
        DB      $0F, $EF, $E4          /// PXOR      MM4, MM4
        DB      $0F, $60, $CC          /// PUNPCKLBW MM1, MM4
        DB      $0F, $D5, $CB          /// PMULLW    MM1, MM3             // MM1 contains now: color * alpha = F1

@1:     // The pixel loop calculates an entire pixel in one run.
        DB      $0F, $6E, $00          /// MOVD      MM0, [EAX]
        DB      $0F, $60, $C4          /// PUNPCKLBW MM0, MM4

        DB      $0F, $D5, $C2          /// PMULLW    MM0, MM2             // calculate F1 + F2 * target
        DB      $0F, $FD, $C1          /// PADDW     MM0, MM1
        DB      $0F, $71, $D0, $08     /// PSRLW     MM0, 8               // divide by 256

        DB      $0F, $67, $C0          /// PACKUSWB  MM0, MM0             // convert words to bytes with saturation
        DB      $0F, $7E, $00          /// MOVD      [EAX], MM0           // store the result

        ADD     EAX, 4
        DEC     EDX
        JNZ     @1
end;

//----------------------------------------------------------------------------------------------------------------------

procedure EMMS;

// Reset MMX state to use the FPU for other tasks again.

asm
        DB      $0F, $77               /// EMMS
end;

//----------------------------------------------------------------------------------------------------------------------

function GetBitmapBitsFromDeviceContext(DC: HDC; var Width, Height: Integer): Pointer;

// Helper function used to retrieve the bitmap selected into the given device context. If there is a bitmap then
// the function will return a pointer to its bits otherwise nil is returned.
// Additionally the dimensions of the bitmap are returned. 

var
  Bitmap: HBITMAP;
  DIB: TDIBSection;

begin
  Result := nil;
  Width := 0;
  Height := 0;

  Bitmap := GetCurrentObject(DC, OBJ_BITMAP);
  if Bitmap <> 0 then
  begin
    if GetObject(Bitmap, SizeOf(DIB), @DIB) = SizeOf(DIB) then
    begin
      Assert(DIB.dsBm.bmPlanes * DIB.dsBm.bmBitsPixel = 32, 'Alpha blending error: bitmap must use 32 bpp.');
      Result := DIB.dsBm.bmBits;
      Width := DIB.dsBmih.biWidth;
      Height := DIB.dsBmih.biHeight;
    end;
  end;
  Assert(Result <> nil, 'Alpha blending DC error: no bitmap available.');
end;

//----------------------------------------------------------------------------------------------------------------------

function CalculateScanline(Bits: Pointer; Width, Height, Row: Integer): Pointer;

// Helper function to calculate the start address for the given row.

begin
  if Height > 0 then  // bottom-up DIB
    Row := Height - Row - 1;
  // Return DWORD aligned address of the requested scanline.
  Integer(Result) := Integer(Bits) + Row * ((Width * 32 + 31) and not 31) div 8;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure AlphaBlendPixel(Source, Destination: HDC; R: TRect; Target: TPoint; Mode: TBlendMode; ConstantAlpha, Bias: Integer);

// Optimized alpha blend procedure using MMX instructions to perform as quick as possible.
// For this procedure to work properly it is important that both source and target bitmap use the 32 bit color format.
// R describes the source rectangle to work on.
// Target is the place (upper left corner) in the target bitmap where to blend to. Note that source width + X offset
// must be less or equal to the target width. Similar for the height.
// If Mode is bmConstantAlpha then the blend operation uses the given ConstantAlpha value for all pixels.
// If Mode is bmPerPixelAlpha then each pixel is blended using its individual alpha value (the alpha value of the source).
// If Mode is bmMasterAlpha then each pixel is blended using its individual alpha value multiplied by ConstantAlpha.
// If Mode is bmConstantAlphaAndColor then each destination pixel is blended using ConstantAlpha but also a constant
// color which will be obtained from Bias. In this case no offset value is added, otherwise Bias is used as offset.
// Blending of a color into target only (bmConstantAlphaAndColor) ignores Source (the DC) and Target (the position).
// CAUTION: This procedure does not check whether MMX instructions are actually available! Call it only if MMX is really
//          usable.

var
  Y: Integer;
  SourceRun,
  TargetRun: PByte;

  SourceBits,
  DestBits: Pointer;
  SourceWidth,
  SourceHeight,
  DestWidth,
  DestHeight: Integer;
  
begin                              
  if not IsRectEmpty(R) then
  begin
    // Note: it is tempting to optimize the special cases for constant alpha 0 and 255 by just ignoring soure
    //       (alpha = 0) or simply do a blit (alpha = 255). But this does not take the bias into account.
    case Mode of
      bmConstantAlpha:
        begin
          // Get a pointer to the bitmap bits for the source and target device contexts.
          // Note: this supposes that both contexts do actually have bitmaps assigned!
          SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
          DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
          if Assigned(SourceBits) and Assigned(DestBits) then
          begin
            for Y := 0 to R.Bottom - R.Top - 1 do
            begin
              SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
              Inc(SourceRun, 4 * R.Left);
              TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
              Inc(TargetRun, 4 * Target.X);
              AlphaBlendLineConstant(SourceRun, TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
            end;
          end;
          EMMS;
        end;
      bmPerPixelAlpha:
        begin
          SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
          DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
          if Assigned(SourceBits) and Assigned(DestBits) then
          begin
            for Y := 0 to R.Bottom - R.Top - 1 do
            begin
              SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
              Inc(SourceRun, 4 * R.Left);
              TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
              Inc(TargetRun, 4 * Target.X);
              AlphaBlendLinePerPixel(SourceRun, TargetRun, R.Right - R.Left, Bias);
            end;
          end;
          EMMS;
        end;
      bmMasterAlpha:
        begin
          SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
          DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
          if Assigned(SourceBits) and Assigned(DestBits) then
          begin
            for Y := 0 to R.Bottom - R.Top - 1 do
            begin
              SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
              Inc(SourceRun, 4 * Target.X);
              TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
              AlphaBlendLineMaster(SourceRun, TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
            end;
          end;
          EMMS;
        end;
      bmConstantAlphaAndColor:
        begin
          // Source is ignored since there is a constant color value.
          DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
          if Assigned(DestBits) then
          begin
            for Y := 0 to R.Bottom - R.Top - 1 do
            begin
              TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + R.Top);
              Inc(TargetRun, 4 * R.Left);
              AlphaBlendLineMasterAndColor(TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
            end;
          end;
          EMMS;
        end;
    end;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

function ComputeComponent(Sector: Double): Double;

// Computes a component value depending on the given sector.
// The entire distribution is spread over 6 sectors in total. In sector 1 the component's value raises linearly from 0 to 1,
// In sector 2 and 3 it stays constant. In sector 4 the value is decreased linearly to zero and during the last
// two sectors the value remains zero.

begin
  // Limit value to the range [0..6).
  while (Sector < 0) do
    Sector := Sector + 5;
  while (Sector >= 6) do
    Sector := Sector - 6;

  if Sector < 1 then
    Result := Sector
  else
    if Sector < 3 then
        Result := 1
    else
      if Sector < 4 then
        Result := 4 - Sector
      else
        Result := 0;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure DrawColorCircle(DC: HDC; Center: TPoint; CenterColor: TRGB; Radius: Integer; Gamma: Double);

// Draws a circle filled with a color gradient, which spans the entire rainbow.

const
  RadFactor = Pi / 180;
  ComponentFactor = 6 / 360.0;

var
  Segments: Integer;
  Vertices: array of TTriVertex;
  Triangles: array of TGradientTriangle;
  Angle: Double;
  I: Integer;
  Sector: Double;
  RGB: TRGB;

begin
  // Determine number of segments (filled triangles) to draw, depending on the radius.
  Segments := Max(6, Min(Radius, 180));

  // Allocate memory for vertices and triangles.
  // Center point plus one vertex for each triangle. Two triangles share one vertex.
  SetLength(Vertices, Segments + 1);
  SetLength(Triangles, Segments);

  // Center point is special.
  Vertices[0].x := Center.X;
  Vertices[0].y := Center.Y;
  GammaCorrection(CenterColor, Gamma);
  Vertices[0].Red := Round($FF00 * CenterColor.R);
  Vertices[0].Green := Round($FF00 * CenterColor.G);
  Vertices[0].Blue := Round($FF00 * CenterColor.B);
  Vertices[0].Alpha := 0;

  Angle := 0;
  for I := 1 to Segments do
  begin
    Vertices[I].x :=  Center.X + Round(Radius * cos(Angle * RadFactor));
    Vertices[I].y :=  Center.Y + Round(Radius * sin(Angle * RadFactor));
    Sector := Angle * ComponentFactor;
    RGB.R := ComputeComponent(Sector + 2);
    RGB.G := ComputeComponent(Sector + 4);
    RGB.B := ComputeComponent(Sector);
    GammaCorrection(RGB, Gamma);
    Vertices[I].Red := Round(RGB.R * $FF00);
    Vertices[I].Green := Round(RGB.G * $FF00);
    Vertices[I].Blue := Round(RGB.B * $FF00);
    Vertices[I].Alpha := 0;

    Triangles[I - 1].Vertex1 := 0; // Center
    Triangles[I - 1].Vertex2 := I;
    Triangles[I - 1].Vertex3 := I + 1;

    Angle := Angle + 360.0 / Segments;
  end;
  // Connect the last triangle with the first one.
  Triangles[Segments - 1].Vertex3 := 1;

  GradientFill(DC, Vertices[0], Segments + 1, Triangles[0], Segments, GRADIENT_FILL_TRIANGLE);
end;

//----------------------------------------------------------------------------------------------------------------------

procedure DrawGradientBox(DC: HDC; const R: TRect; Colors: array of TRGB);

// Draws a box with a gradient for all four corners. The Colors parameter carries the required colors where
// index 0 contains the color for the left-upper corner and the others keep the colors for the remaining vertices
// in clock-wise direction. If there are less color than there are corners then the missing colors are derived from the
// last given color by simply copying it.

var
  Vertices: array[0..3] of TTriVertex;
  Triangles: array[0..1] of TGradientTriangle;
  LastColor: TRGB;

  //--------------- local functions --------------------------------------------

  procedure FillVertex(Index: Integer; X, Y: Integer);

  begin
    Vertices[Index].x := X;
    Vertices[Index].y := Y;                           
    if Length(Colors) > Index then
    begin
      Vertices[Index].Red := Round($FF00 * Colors[Index].R);
      Vertices[Index].Green := Round($FF00 * Colors[Index].G);
      Vertices[Index].Blue := Round($FF00 * Colors[Index].B);
      LastColor := MakeRGB(Vertices[Index].Red, Vertices[Index].Green, Vertices[Index].Blue);
    end
    else
    begin
      Vertices[Index].Red := Round(LastColor.R);
      Vertices[Index].Green := Round(LastColor.R);
      Vertices[Index].Blue := Round(LastColor.R);
    end;
    // Alpha is ignored by GradientFill.
    Vertices[Index].Alpha := 0;
  end;

  //--------------- end local functions ----------------------------------------

begin
  // Colors in GradientFill are scaled by 256 to enhance resolution.
  LastColor := MakeRGB($FF00, $FF00, $FF00);

  // Fill 4 vertices...
  FillVertex(0, R.Left, R.Top);
  FillVertex(1, R.Right, R.Top);
  FillVertex(2, R.Right, R.Bottom);
  FillVertex(3, R.Left, R.Bottom);

  // ... and 2 triangles. Two vertices are shared between both triangles.
  Triangles[0].Vertex1 := 0;
  Triangles[0].Vertex2 := 1;
  Triangles[0].Vertex3 := 2;

  Triangles[1].Vertex1 := 2;
  Triangles[1].Vertex2 := 3;
  Triangles[1].Vertex3 := 0;

  GradientFill(DC, Vertices[0], 4, Triangles[0], 2, GRADIENT_FILL_TRIANGLE);
end;

//----------------------------------------------------------------------------------------------------------------------

procedure MakeGaussianKernel(var K: TKernel; Radius: Double; MaxData, DataGranularity: Double);

// Makes K into a gaussian kernel with standard deviation = radius. For the current application you set MaxData = 255,
// DataGranularity = 1. Now the procedure sets the value of K.Size so that when we use K we will ignore the Weights
// that are so small they can't possibly matter. Small size is good because the execution time is going to be
// propertional to K.Size.

var
  I: Integer;
  Temp, Delta: Double;
  KernelSize: TKernelSize;

begin
  for I := Low(K.Weights) to High(K.Weights) do
  begin
    Temp := I / Radius;
    K.Weights[I]:= exp(-Temp * Temp / 2);
  end;

  // Divide by constant so sum(Weights) is 1.
  Temp := 0;
  for I := Low(K.Weights) to High(K.Weights) do
    Temp := Temp + K.Weights[I];

  for I:= Low(K.Weights) to High(K.Weights) do
    K.Weights[I]:= K.Weights[I] / Temp;

  // Discard (or rather mark as ignorable by setting Size) the entries that are too small to matter. This is important,
  // otherwise a blur with a small radius will take as long as with a large radius.
  KernelSize := MaxKernelSize;
  Delta := DataGranularity / (2 * MaxData);
  Temp := 0;
  while (Temp < Delta) and (KernelSize > 1) do
  begin
    Temp := Temp + 2 * K.Weights[KernelSize];
    Dec(KernelSize);
  end;
  K.Size := KernelSize;

  // Now just to be correct go back and jiggle again so the sum of the entries we'll be using is exactly 1.
  Temp := 0;
  for I := -K.Size to K.Size do
    Temp := Temp + K.Weights[I];
  for I := -K.Size to K.Size do
    K.Weights[I] := K.Weights[I] / Temp;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure BlurRowRGB(var Row: array of TRGBTriple; const K: TKernel; P: TRGBArray);

var
  I, N: Integer;
  Red, Green, Blue: Double;
  W: Double;
  
begin
  for I := 0 to K.Size - 1 do
  begin
    Red := 0;
    Green := 0;
    Blue := 0;
    for N := -K.Size to K.Size do
    begin
      W := K.Weights[N];
      // The Max keeps us from running off the edge of the row.
      with Row[Max(0, I + N)] do
      begin
        Blue := Blue + W * B;
        Green := Green + W * G;
        Red := Red + W * R;
      end;
    end;
    with P[I] do
    begin
      B := Round(Blue);
      G := Round(Green);
      R := Round(Red);
    end;
  end;

  for I := K.Size to High(Row) - K.Size - 1 do
  begin
    Blue := 0;
    Green := 0;
    Red := 0;
    for N:= -K.Size to K.Size do
    begin
      W := K.Weights[N];
      with Row[I + N] do
      begin
        Blue := Blue + W * B;
        Green := Green + W * G;
        Red := Red + W * R;
      end;
    end;
    with P[I] do
    begin
      B := Round(Blue);
      G := Round(Green);
      R := Round(Red);
    end;
  end;

  for I := High(Row) - K.Size to High(Row) do
  begin
    Blue := 0;
    Green := 0;
    Red := 0;
    for N := -K.Size to K.Size do
    begin
      W := K.Weights[N];
      // The Min keeps us from running off the edge of the row.
      with Row[Min(High(Row), I + N)] do
      begin
        Blue := Blue + W * B;
        Green := Green + W * G;
        Red := Red + W * R;
      end;
    end;
    with P[I] do
    begin
      B := Round(Blue);
      G := Round(Green);
      R := Round(Red);
    end;
  end;

  Move(P[0], Row[0], (High(Row) + 1) * Sizeof(TRGBTriple));
end;

//----------------------------------------------------------------------------------------------------------------------

procedure BlurRowGray(var Row: array of Byte; const K: TKernel; P: TGArray);

var
  I, N: Integer;
  Gray: Double;

begin
  for I := 0 to K.Size - 1 do
  begin
    Gray := 0;
    for N := -K.Size to K.Size do                               
      // The Max keeps us from running off the edge of the row.
      Gray := Gray + K.Weights[N] * Row[Max(0, I + N)];
    P[I] := Round(Gray);
  end;

  for I := K.Size to High(Row) - K.Size - 1 do
  begin
    Gray := 0;
    for N:= -K.Size to K.Size do
      Gray := Gray + K.Weights[N] * Row[I + N];
    P[I] := Round(Gray);
  end;

  for I := High(Row) - K.Size to High(Row) do
  begin
    Gray := 0;
    for N := -K.Size to K.Size do
      // The Min keeps us from running off the edge of the row.
      Gray := Gray + K.Weights[N] * Row[Min(High(Row), I + N)];
    P[I] := Round(Gray);
  end;

  Move(P[0], Row[0], Length(Row));
end;

//----------------------------------------------------------------------------------------------------------------------

procedure DrawComb(Canvas: TCanvas; Center: TPoint; Size: Integer);

// Draws one single comb at position X, Y and with size Size.
// Fill and border colors must already be set on call (Pen/Brush color).

var
  I: Integer;
  P: array[0..5] of TPoint;

begin
  for I := 0 to 5 do
  begin
    P[I].X := Round(CombCorners[I].X * Size + Center.X);
    P[I].Y := Round(CombCorners[I].Y * Size + Center.Y);
  end;
  Canvas.Polygon(P);
end;

//----------------------------------------------------------------------------------------------------------------------

procedure GaussianBlur(Source: TBitmap; Radius: Double);

// Blurrs the content of Source by the amount given in Radius.
// Note: the source bitmap must be either 24 bits per pixel or 8 bits per pixel grayscale (palette is not considered).

var
  Row, Col: Integer;
  K: TKernel;
  RGBRows: TRGBRows;
  RGBColumn,
  RGBHelp: TRGBArray;
  GRows: TGrayRows;
  GColumn,
  GHelp: TGArray;

begin
  Assert(Source.PixelFormat in [pf8Bit, pf24Bit], 'GaussianBlur: Input source bitmap must be either 24 bpp or 8 bpp.');

  MakeGaussianKernel(K, Radius, 128, 1);
  if Source.PixelFormat = pf24Bit then
  begin
    SetLength(RGBRows, Source.Height);

    // Record the location of the bitmap data.
    for Row := 0 to Source.Height - 1 do
      RGBRows[Row] := Source.Scanline[Row];

    // Blur each row. Allocate temporary memory here to avoid frequent (re)allocation in BlurRow.
    SetLength(RGBHelp, Source.Width);
    for Row:= 0 to Source.Height - 1 do
      BlurRowRGB(Slice(RGBRows[Row]^, Source.Width), K, RGBHelp);

    // Blur each column. Allocate temporary memory here to avoid frequent (re)allocation in BlurRow.
    SetLength(RGBHelp, Source.Height);
    SetLength(RGBColumn, Source.Height);
    for Col := 0 to Source.Width - 1 do
    begin
      // First read the column into a row.
      for Row := 0 to Source.Height - 1 do
        RGBColumn[Row] := RGBRows[Row][Col];

      BlurRowRGB(RGBColumn, K, RGBHelp);

      // Finally put that column back into the data.
      for Row := 0 to Source.Height - 1 do
        RGBRows[Row][Col] := RGBColumn[Row];
    end;
  end
  else
  begin
    SetLength(GRows, Source.Height);

    // Record the location of the bitmap data.
    for Row := 0 to Source.Height - 1 do
      GRows[Row] := Source.Scanline[Row];

    // Blur each row. Allocate temporary memory here to avoid frequent (re)allocation in BlurRow.
    SetLength(GHelp, Source.Width);
    for Row:= 0 to Source.Height - 1 do
      BlurRowGray(Slice(GRows[Row]^, Source.Width), K, GHelp);
    
    // Blur each column. Allocate temporary memory here to avoid frequent (re)allocation in BlurRow.
    SetLength(GHelp, Source.Height);
    SetLength(GColumn, Source.Height);
    for Col := 0 to Source.Width - 1 do
    begin
      // First read the column into a row.
      for Row := 0 to Source.Height - 1 do
        GColumn[Row] := GRows[Row][Col];

      BlurRowGray(GColumn, K, GHelp);

      // Finally put that column back into the data.
      for Row := 0 to Source.Height - 1 do
        GRows[Row][Col] := GColumn[Row];
    end;

  end;
  // Memory for dynamic arrays is freed implicitely.
end;

//----------------- TDropShadow ----------------------------------------------------------------------------------------

constructor TDropShadow.Create;

begin
  FColor := clBtnShadow;
  FOffset := 4;
  FSize := 3;
  FAlpha := 1;
  FDirection := -45;
end;

//----------------------------------------------------------------------------------------------------------------------

destructor TDropShadow.Destroy;

begin
  if FGrayRampPalette <> 0 then
    DeleteObject(FGrayRampPalette);
    
  inherited;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetAlpha(const Value: Single);

// Alpha must be in the range of 0..1 and allows to specify the translucency of the shadow with 1 being fully opaque
// and 0 being fully transparent.

begin
  if FAlpha <> Value then
  begin
    FAlpha := Value;
    DoChange;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetColor(const Value: TColor);

begin
  if FColor <> Value then
  begin
    FColor := Value;
    DoChange;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetDirection(const Value: Integer);

// Direction indicates into which direction the shadow should expand.

begin
  if FDirection <> Value then
  begin
    FDirection := Value;
    DoChange;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetOffset(const Value: Integer);

// Offset specifies the shadow distance and Size the shadow size in pixels.

begin
  if FOffset <> Value then
  begin
    FOffset := Value;
    DoChange;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetSize(Value: Integer);

begin
  if Value < 1 then
    Value := 1;
  // Value must be odd.
  Value := Value or 1;
  if FSize <> Value then
  begin
    FSize := Value;
    DoChange;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetSourceAlpha(const Value: Single);

begin
  FSourceAlpha := Value;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.DoChange;

begin
  if Assigned(FOnChange) then
    FOnChange(Self);
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.AverageMeanBlur(Bitmap: TBitmap);

// Implementation of a recursive moving average filter to blur the input bitmap.
// Currently only gray scale images (8 bpp) are supported as this method is used to create a soft drop shadow.

var
  BytesPerLine: Integer;     // The physical length of a scanline (Windows bitmaps are 32 bit aligned).
  X, Y, I: Integer;
  Run: PGrayValue;
  RunIndex: Integer;
  RunLow,
  RunHigh: PGrayValue;
  DIB: TDIBSection;          // The bitmap's DIB section.

  //---------------------------------------------------------------------------

  function GetPixelAddress(Column, Row: Integer): Pointer;

  // Computes the address of the pixel given by Row and Column in Bitmap.

  begin
    with DIB, dsbm, dsbmih do
    begin
      if biHeight > 0 then
        Row := bmHeight  - Row - 1;
      Integer(Result) := Integer(bmBits) + Row * Abs(BytesPerLine) + Column {* bytes per pixel};
    end;
  end;

  //---------------------------------------------------------------------------

var
  Accumulator: Integer;
  Buffer: array of Byte;

begin
  if (Bitmap.PixelFormat = pf8Bit) and (GetObject(Bitmap.Handle, SizeOf(DIB), @DIB) = SizeOf(DIB)) then
  begin
    with DIB, dsbm, dsbmih do
    begin
      BytesPerLine := BytesPerScanline(biWidth, biBitCount, 32);
      if biHeight > 0 then
        BytesPerLine := -BytesPerLine;
    end;
    // Start with horizontal spans.
    SetLength(Buffer, Bitmap.Width);
    for Y := 0 to Bitmap.Height - 1 do
    begin
      Run := GetPixelAddress(0, Y);
      // Compute first FSize number of averages. Note: FSize must be odd!
      Accumulator := 0;
      for I := 0 to FSize - 1 do
      begin
        Accumulator :=  Accumulator + Integer(Run^);
        Inc(Run);
      end;
      Buffer[FSize div 2] := Accumulator div FSize;
      RunIndex := (FSize div 2) + 1;

      // Continue with the recursive part.
      RunLow := GetPixelAddress(0, Y);
      RunHigh := GetPixelAddress(FSize, Y);
      for I := 0 to Bitmap.Width - FSize - 1 do
      begin
        Accumulator := Accumulator + RunHigh^ - RunLow^;
        Buffer[RunIndex] := Accumulator div FSize;
        Inc(RunIndex);
        Inc(RunHigh);
        Inc(RunLow);
      end;
      Run := GetPixelAddress(0, Y);
      Move(Buffer[0], Run^, Length(Buffer));
    end;

    SetLength(Buffer, Bitmap.Height);
    for X := 0 to Bitmap.Width - 1 do
    begin
      Run := GetPixelAddress(X, 0);
      // Compute first FSize number of averages. Note: FSize must be odd!
      Accumulator := 0;
      for I := 0 to FSize - 1 do
      begin
        Accumulator :=  Accumulator + Integer(Run^);
        Inc(Run, BytesPerLine);
      end;
      Buffer[FSize div 2] := Accumulator div FSize;
      RunIndex := (FSize div 2) + 1;

      // Continue with the recursive part.
      RunLow := GetPixelAddress(X, 0);
      RunHigh := GetPixelAddress(X, FSize);
      for I := 0 to Bitmap.Height - FSize - 1 do
      begin
        Accumulator := Accumulator + RunHigh^ - RunLow^;
        Buffer[RunIndex] := Accumulator div FSize;
        Inc(RunIndex);
        Inc(RunHigh, BytesPerLine);
        Inc(RunLow, BytesPerLine);
      end;
      Run := GetPixelAddress(X, 0);
      for I := 0 to Bitmap.Height - 1 do
      begin
        Run^ := Buffer[I];
        Inc(Run, BytesPerLine);
      end;
    end;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.SetGrayScalePalette(Bitmap: TBitmap);

var
  LogPalette: TMaxLogPalette;
  I: Integer;

begin
  if FGrayRampPalette = 0 then
  begin
    LogPalette.palVersion := $300;
    LogPalette.palNumEntries := 256;
    for I := 0 to 255 do
    begin
      LogPalette.palPalEntry[I].peBlue := I;
      LogPalette.palPalEntry[I].peGreen := I;
      LogPalette.palPalEntry[I].peRed := I;
    end;
    FGrayRampPalette := CreatePalette(PLogPalette(@LogPalette)^);
  end;
  Bitmap.Palette := CopyPalette(FGrayRampPalette);
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.Draw(Source: TBitmap; SourceRect: TRect; Target: HDC; TargetPos: TPoint);

// Draws the given bitmap (which must have an alpha channel) on Target but creates a drop shadow underneath the source pixels.
// SourceRect determines the area of the source bitmap to create a shadow for.
// Target is where the result is to be drawn to and TargetPos gives the final position.
// Note: Usually the alpha value of a pixel must be 255 to be fully opaque and that's how the AlphaBlend API
//       expects the values. However we cannot make all Delphi paint code (see TCanvas methods) to issue an alpha channel
//       value of 255 for its graphic output. Hence the meaning is reversed here. So make everything, which should be
//       transparent 255 and everything else 0. Of course you can also have a partially translucent source image of which
//       also a correct drop shadow will be created. In case of translucent source pixels the shadow shines through but
//       the shadow translucency is not modified by the source translucency.

var
  WorkBitmap: TBitmap;
  ShadowBitmap: TBitmap;
  TargetBitmap: TBitmap;

  X, Y: Integer;
  SourceWidth,
  SourceHeight: Integer;
  Alpha: Byte;

  SourceLine: PRGBAQuadrupel;
  TargetLine: PRGBAQuadrupel;
  ShadowLine: PGrayValue;
  NewShadowColor: TRGBAQuadrupel;

  BlendFunction: TBlendFunction;

begin
  // Source bitmap must have an alpha channel (pf32Bit), where an alpha value of 0 means fully opaque pixels and
  // a value of 255 denotes fully transparent pixels. The alpha channel is used to create the drop shadow outline.
  if Source.PixelFormat <> pf32Bit then
    BitBlt(Target, TargetPos.X, TargetPos.Y, SourceRect.Right - SourceRect.Left, SourceRect.Bottom - SourceRect.Top,
      Source.Canvas.Handle, SourceRect.Left, SourceRect.Top, SRCCOPY)
  else
  begin
    WorkBitmap := TBitmap.Create;
    ShadowBitmap := TBitmap.Create;
    TargetBitmap := TBitmap.Create;
    try
      SourceWidth := SourceRect.Right - SourceRect.Left;
      SourceHeight := SourceRect.Bottom - SourceRect.Top;
      with WorkBitmap do
      begin
        PixelFormat := pf32Bit;
        Width := Source.Width;
        Height := Source.Height;
        InitializeBitmap(WorkBitmap);
        // Determine X and Y offsets from direction and shadow offset.
        X := Round(FOffset * cos(DegToRad(-FDirection)));
        Y := Round(FOffset * sin(DegToRad(-FDirection)));
        // Copy the pixels given by the source rectangle out of the source bitmap.
        BitBlt(Canvas.Handle, X, Y, SourceWidth, SourceHeight, Source.Canvas.Handle, SourceRect.Left, SourceRect.Top,
          SRCCOPY);
      end;

      // Convert alpha channel into a grayscale image. We need a proper palette here before we do the blurring.
      ShadowBitmap.PixelFormat := pf8Bit;
      ShadowBitmap.Width := WorkBitmap.Width;
      ShadowBitmap.Height := WorkBitmap.Height;
      InitializeBitmap(ShadowBitmap);
      SetGrayScalePalette(ShadowBitmap);
      for Y := 0 to ShadowBitmap.Height - 1 do
      begin
        SourceLine := WorkBitmap.Scanline[Y];
        ShadowLine := ShadowBitmap.Scanline[Y];
        for X := 0 to ShadowBitmap.Width - 1 do
        begin
          // Convert the alpha value to its correct range (0 for full opacity).
          ShadowLine^ := not SourceLine.A;
          Inc(SourceLine);
          Inc(ShadowLine);
        end;
      end;
      AverageMeanBlur(ShadowBitmap);
      AverageMeanBlur(ShadowBitmap);
         
      // Convert the shadow bitmap into the target bitmap. Use the values from the shadow map as
      // alpha channel and the shadow color as the bitmap's color value at that pixel.
      with TargetBitmap do
      begin
        PixelFormat := pf32Bit;
        Width := ShadowBitmap.Width;
        Height := ShadowBitmap.Height;
      end;

      // For alpha blending we have to premultiply our shadow color by the alpha value.
      NewShadowColor.R := GetRValue(ColorToRGB(FColor));
      NewShadowColor.G := GetGValue(ColorToRGB(FColor));
      NewShadowColor.B := GetBValue(ColorToRGB(FColor));
      NewShadowColor.A := 0;

      for Y := 0 to ShadowBitmap.Height - 1 do
      begin
        TargetLine := TargetBitmap.Scanline[Y];
        ShadowLine := ShadowBitmap.ScanLine[Y];
        for X := 0 to ShadowBitmap.Width - 1 do
        begin
          TargetLine.R := MulDiv(NewShadowColor.R, ShadowLine^, 255);
          TargetLine.G := MulDiv(NewShadowColor.G, ShadowLine^, 255);
          TargetLine.B := MulDiv(NewShadowColor.B, ShadowLine^, 255);
          TargetLine.A := ShadowLine^;
          Inc(TargetLine);
          Inc(ShadowLine);
        end;
      end;

      // Now do the blending of shadow and source image.
      BlendFunction.BlendOp := AC_SRC_OVER;
      BlendFunction.BlendFlags := 0;
      BlendFunction.AlphaFormat := AC_SRC_ALPHA;

      // First blend shadow to the target DC.
      BlendFunction.SourceConstantAlpha := Round(255 * FAlpha);
      AlphaBlend(Target, TargetPos.X, TargetPos.Y, ShadowBitmap.Width, ShadowBitmap.Height, TargetBitmap.Canvas.Handle,
        SourceRect.Left, SourceRect.Top, ShadowBitmap.Width, ShadowBitmap.Height, BlendFunction);

      // Premultiply the source colors.
      for Y := 0 to Source.Height - 1 do
      begin
        SourceLine := Source.Scanline[Y];
        for X := 0 to Source.Width - 1 do
        begin
          Alpha := not SourceLine.A;
          SourceLine.R := MulDiv(SourceLine.R, Alpha, 255);
          SourceLine.G := MulDiv(SourceLine.G, Alpha, 255);
          SourceLine.B := MulDiv(SourceLine.B, Alpha, 255);
          SourceLine.A := Alpha;
          Inc(SourceLine);
        end;
      end;

      // Finally blend the source image data to the target DC.
      BlendFunction.SourceConstantAlpha := Round(255 * FSourceAlpha);
      AlphaBlend(Target, TargetPos.X, TargetPos.Y, SourceWidth, SourceHeight, Source.Canvas.Handle, SourceRect.Left,
        SourceRect.Top, SourceWidth, SourceHeight, BlendFunction);
    finally
      WorkBitmap.Free;
      TargetBitmap.Free;
      ShadowBitmap.Free;
    end;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure TDropShadow.InitializeBitmap(Source: TBitmap);

// Sets all component values of all pixels to 255. Particularly the alpha channel value is important for us.
// Source must be a 32 bit pixel format bitmap.

var
  DIB: TDIBSection;

begin
  case Source.PixelFormat of
    pf32Bit:
      begin
        if GetObject(Source.Handle, SizeOf(DIB), @DIB) = SizeOf(DIB) then
          FillChar(DIB.dsBm.bmBits^, Source.Width * Source.Height * 4, 255);
      end;
    pf8Bit:
      begin
        if GetObject(Source.Handle, SizeOf(DIB), @DIB) = SizeOf(DIB) then
          FillChar(DIB.dsBm.bmBits^, Source.Width * Source.Height, 255);
      end;
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

procedure InitializeGlobalData;

var
  I: Integer;
  
begin
  // Initialize comb calculation. Do this once for quick calculations.
  for I := 0 to 5 do
  begin
    CombCorners[I].X := 0.5 * cos(Pi * (90 - I * 60) / 180);
    CombCorners[I].Y := 0.5 * sin(Pi * (90 - I * 60) / 180);
  end;
end;

//----------------------------------------------------------------------------------------------------------------------

initialization
  InitializeGlobalData;
end.