File: CubeSection.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (228 lines) | stat: -rw-r--r-- 6,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python
#
# Author: Patrick Hung (patrickh @caltech)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE
#
# This example is a derivative of vtk's ClipCow
# It is a visualization of Prince Rupert's problem

import tkinter
import vtk
from vtk.tk.vtkTkRenderWindowInteractor import \
     vtkTkRenderWindowInteractor
from numpy import array, cross
from vtk.util.colors import peacock, tomato

#cube = vtk.vtkBYUReader()
#cube.SetGeometryFileName("./cube.g")
cube = vtk.vtkCubeSource()
cube.SetCenter(0.5,0.5,0.5)

cubeNormals = vtk.vtkPolyDataNormals()
cubeNormals.SetInputConnection(cube.GetOutputPort())
cube = cubeNormals

def PlaneNormal(a, b, c):
    assert(a >= 0 and a <= 1)
    assert(b >= 0 and b <= 1)
    assert(c >= 0 and c <= 2)
    A = array([a, 0.0, 0.0])
    B = array([0.0, b, 0.0])
    if c < 1:
        C = array([c, 0.0, 1.0])
    else:
        C = array([1.0, c-1.0, 1.0])
    BA = B-A
    CA = C-A
    return cross(BA, CA)

def CuttingPlane(a, b, c):
    N = PlaneNormal(a,b,c)
    plane = vtk.vtkPlane()
    plane.SetOrigin(a, 0, 0)
    plane.SetNormal(*N)
    return plane

def getAxes(Origin, scale = 1):
    axes = vtk.vtkAxes()
    axes.SetOrigin(*Origin)
    axes.SetScaleFactor(scale)

    axesTubes = vtk.vtkTubeFilter()

    axesTubes.SetInputConnection(axes.GetOutputPort())
    axesTubes.SetRadius(0.01)
    axesTubes.SetNumberOfSides(6)

    axesMapper = vtk.vtkPolyDataMapper()
    axesMapper.SetInputConnection(axesTubes.GetOutputPort())

    axesActor = vtk.vtkActor()
    axesActor.SetMapper(axesMapper)

    XText = vtk.vtkVectorText()
    XText.SetText("x")

    XTextMapper = vtk.vtkPolyDataMapper()
    XTextMapper.SetInputConnection(XText.GetOutputPort())

    XActor = vtk.vtkFollower()
    XActor.SetMapper(XTextMapper)
    XActor.SetScale(.1, .1, .1)
    XActor.SetPosition(1, Origin[1], Origin[2])
    XActor.GetProperty().SetColor(0, 0, 0)

    YText = vtk.vtkVectorText()
    YText.SetText("y")

    YTextMapper = vtk.vtkPolyDataMapper()
    YTextMapper.SetInputConnection(YText.GetOutputPort())

    YActor = vtk.vtkFollower()
    YActor.SetMapper(YTextMapper)
    YActor.SetScale(.1, .1, .1)
    YActor.SetPosition(Origin[0], 1, Origin[2])
    YActor.GetProperty().SetColor(0, 0, 0)
    return axesActor, XActor, YActor

axesActor, XActor, YActor = getAxes([-.1, -.1, -.1])


P = (0.75, 0.75, 1.25)

# vtkClipPolyData requires an implicit function to define what it is to
# clip with. Any implicit function, including complex boolean combinations
# can be used. Notice that we can specify the value of the implicit function
# with the SetValue method.
clipper = vtk.vtkClipPolyData()
clipper.SetInputConnection(cubeNormals.GetOutputPort())
clipper.SetClipFunction(CuttingPlane(*P))

clipper.GenerateClipScalarsOn()
clipper.GenerateClippedOutputOn()
clipper.SetValue(0)
clipMapper = vtk.vtkPolyDataMapper()
clipMapper.SetInputConnection(clipper.GetOutputPort())
clipMapper.ScalarVisibilityOff()
backProp = vtk.vtkProperty()
backProp.SetDiffuseColor(tomato)
clipActor = vtk.vtkActor()
clipActor.SetMapper(clipMapper)
clipActor.GetProperty().SetColor(peacock)
clipActor.SetBackfaceProperty(backProp)

# Here we are cutting the cube. Cutting creates lines where the cut
# function intersects the model. (Clipping removes a portion of the
# model but the dimension of the data does not change.)
#
# The reason we are cutting is to generate a closed polygon at the
# boundary of the clipping process. The cutter generates line
# segments, the stripper then puts them together into polylines. We
# then pull a trick and define polygons using the closed line
# segements that the stripper created.
cutEdges = vtk.vtkCutter()
cutEdges.SetInputConnection(cubeNormals.GetOutputPort())
cutEdges.SetCutFunction(CuttingPlane(*P))
cutEdges.GenerateCutScalarsOn()
cutEdges.SetValue(0, 0)
cutStrips = vtk.vtkStripper()
cutStrips.SetInputConnection(cutEdges.GetOutputPort())
cutStrips.Update()
cutPoly = vtk.vtkPolyData()
cutPoly.SetPoints(cutStrips.GetOutput().GetPoints())
cutPoly.SetPolys(cutStrips.GetOutput().GetLines())

# Triangle filter is robust enough to ignore the duplicate point at
# the beginning and end of the polygons and triangulate them.
cutTriangles = vtk.vtkTriangleFilter()
cutTriangles.SetInput(cutPoly)
cutMapper = vtk.vtkPolyDataMapper()
cutMapper.SetInput(cutPoly)
cutMapper.SetInputConnection(cutTriangles.GetOutputPort())
cutActor = vtk.vtkActor()
cutActor.SetMapper(cutMapper)
cutActor.GetProperty().SetColor(peacock)

# The clipped part of the cube is rendered wireframe.
restMapper = vtk.vtkPolyDataMapper()
restMapper.SetInput(clipper.GetClippedOutput())
restMapper.ScalarVisibilityOff()
restActor = vtk.vtkActor()
restActor.SetMapper(restMapper)
restActor.GetProperty().SetRepresentationToWireframe()

# Create graphics stuff
renWin = vtk.vtkRenderWindow()
ren = vtk.vtkRenderer()
ren.SetBackground(tomato)
renWin.AddRenderer(ren)

# Add the actors to the renderer, set the background and size
ren.AddActor(clipActor)
ren.AddActor(cutActor)
ren.AddActor(restActor)
ren.AddActor(axesActor)
ren.AddActor(XActor)
ren.AddActor(YActor)
ren.SetBackground(1, 1, 1)
ren.ResetCamera()
camera = ren.GetActiveCamera()
camera.SetFocalPoint(0.489125, 0.481143, 0.445)
camera.SetPosition(-0.870854, -1.51779, 3.14336)
camera.SetParallelScale(1.00818)
camera.SetParallelProjection(1)
camera.SetViewUp(-0.239476, 0.833984, 0.497114)
ren.ResetCameraClippingRange()

renWin.SetSize(400, 400)

def Cut(v):
    Q = (P[0], P[1], v)
    cp = CuttingPlane(*Q)
    pn = PlaneNormal(*Q)
    clipper.SetClipFunction(cp)
    clipper.SetValue(0)
    cutEdges.SetCutFunction(cp)
    cutEdges.SetValue(0, 0)
    cutStrips.Update()
    cutPoly.SetPoints(cutStrips.GetOutput().GetPoints())
    cutPoly.SetPolys(cutStrips.GetOutput().GetLines())
    cutMapper.Update()
    renWin.Render()
 
root = tkinter.Tk()
vtkw = vtkTkRenderWindowInteractor(root, rw=renWin, width=800)

def set_cut(sz):
    sz = float(sz)
    # print(ren.GetActiveCamera())
    Cut(sz)

# propagate this GUI setting to the corresponding VTK object.
size_slider = tkinter.Scale(root, from_=0.0,
                            to=2.0, res=0.01,
                            orient='horizontal', label="Clipping Center", 
                            command=set_cut)

size_slider.set(P[2])
vtkw.Initialize()
size_slider.pack(side="top", fill="both")
vtkw.pack(side="top", fill='both', expand=1)


# Define a quit method that exits cleanly.
def quit(obj=root):
    obj.quit()

root.protocol("WM_DELETE_WINDOW", quit)

renWin.Render()
vtkw.Start()

# start the Tkinter event loop.
root.mainloop()

# end of file