1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
#!/usr/bin/env python
#
# Author: Patrick Hung (patrickh @caltech)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD. The full license text is available at:
# - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
See test_zimmermann.py.
This one uses Nelder-Mead plus matlab viz.
It uses a GenerationMonitor to track all simplices generated during
the search.
"""
import sam
from test_zimmermann import *
from mystic.solvers import NelderMeadSimplexSolver as fmin
from mystic.termination import CandidateRelativeTolerance as CRT
from mystic.monitors import Monitor
from mystic.tools import getch
def draw_contour():
import numpy
x, y = numpy.mgrid[0:7.5:0.05,0:7.5:0.05]
c = 0*x
s,t = x.shape
for i in range(s):
for j in range(t):
xx,yy = x[i,j], y[i,j]
c[i,j] = CostFunction([xx,yy])
sam.putarray('X',x)
sam.putarray('Y',y)
sam.putarray('C',c)
sam.verbose()
sam.eval("[c,h]=contourf(X,Y,log(C*20+1)+2,100);set(h,'EdgeColor','none')")
sam.eval("title('Zimmermann''s Corner. Min at 7,2')")
sam.eval('hold on')
def run_once():
simplex = Monitor()
solver = fmin(2)
solver.SetRandomInitialPoints([0,0],[7,7])
solver.SetGenerationMonitor(simplex)
solver.Solve(CostFunction, termination=CRT())
sol = solver.Solution()
for x in simplex.x:
sam.putarray('x',x)
sam.eval("plot(x([1,2,3,1],1),x([1,2,3,1],2),'k-')")
draw_contour()
for i in range(8):
run_once()
getch("Press any key to quit")
# end of file
|