File: example04.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (76 lines) | stat: -rwxr-xr-x 1,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
Example:
    - Minimize Rosenbrock's Function with Nelder-Mead.
    - Dynamic plot of parameter convergence to function minimum.

Demonstrates:
    - standard models
    - minimal solver interface
    - parameter trajectories using callback
    - solver interactivity
"""

# Nelder-Mead solver
from mystic.solvers import fmin

# Rosenbrock function
from mystic.models import rosen

# tools
from mystic.tools import getch
import matplotlib.pyplot as plt
plt.ion()

# draw the plot
def plot_frame():
    plt.title("Rosenbrock parameter convergence")
    plt.xlabel("Nelder-Mead solver iterations")
    plt.ylabel("parameter value")
    plt.draw()
    plt.pause(0.001)
    return
 
iter = 0
step, xval, yval, zval = [], [], [], []
# plot the parameter trajectories
def plot_params(params):
    global iter, step, xval, yval, zval
    step.append(iter)
    xval.append(params[0])
    yval.append(params[1])
    zval.append(params[2])
    plt.plot(step,xval,'b-')
    plt.plot(step,yval,'g-')
    plt.plot(step,zval,'r-')
    plt.legend(["x", "y", "z"])
    plt.draw()
    plt.pause(0.001)
    iter += 1
    return


if __name__ == '__main__':

    # initial guess
    x0 = [0.8,1.2,0.7]

    # suggest that the user interacts with the solver
    print("NOTE: while solver is running, press 'Ctrl-C' in console window")
    getch()
    plot_frame()

    # use Nelder-Mead to minimize the Rosenbrock function
    solution = fmin(rosen,x0,disp=1,callback=plot_params,handler=True)
    print(solution)

    # don't exit until user is ready
    getch()

# end of file