File: forward_model.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (34 lines) | stat: -rwxr-xr-x 1,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python
#
# Author: Patrick Hung (patrickh @caltech)
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
forward_model example
"""
from mystic.forward_model import *


if __name__=='__main__':
    from mystic.models import mogi; ForwardMogiFactory = mogi.ForwardFactory
    import random
    from numpy import *
    xstations = array([random.uniform(-500,500) for i in range(300)])+1250.
    ystations =  0*xstations - 200.
    stations  = array((xstations, ystations))

    A = CostFactory()
    A.addModel(ForwardMogiFactory, 4, 'mogi1', outputFilter=PickComponent(2))
    A.addModel(ForwardMogiFactory, 4, 'mogi2', outputFilter=PickComponent(2))
    fe = A.getForwardEvaluator(stations)
    p = [random.random() for i in range(8)]
    c =  fe(p)
    print(len(c))
    print(sum(c).shape)
    print(A)


# End of file