1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
#!/usr/bin/env python
#
# Problem definition:
# A-R Hedar and M Fukushima, "Derivative-Free Filter Simulated Annealing
# Method for Constrained Continuous Global Optimization", Journal of
# Global Optimization, 35(4), 521-549 (2006).
#
# Original Matlab code written by A. Hedar (Nov. 23, 2005)
# http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm
# and ported to Python by Mike McKerns (December 2014)
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD. The full license text is available at:
# - https://github.com/uqfoundation/mystic/blob/master/LICENSE
def objective(x):
x0,x1 = x
return (x0 - 10)**3 + (x1 - 20)**3
bounds = [(13,100),(0,100)]
# with penalty='penalty' applied, solution is:
xs = [14.095, 0.84296079]
ys = -6961.81387628
from mystic.symbolic import generate_constraint, generate_solvers, simplify
from mystic.symbolic import generate_penalty, generate_conditions
equations = """
(x0 - 5)**2 + (x1 - 5)**2 - 100 >= 0.0
(x0 - 6)**2 + (x1 - 5)**2 - 82.81 <= 0.0
"""
cf = generate_constraint(generate_solvers(simplify(equations)))
pf = generate_penalty(generate_conditions(equations), k=1e12)
if __name__ == '__main__':
x = [0]*len(xs)
from mystic.solvers import fmin_powell
from mystic.math import almostEqual
result = fmin_powell(objective, x0=x, bounds=bounds, constraints=cf, penalty=pf, disp=False, full_output=True)
assert almostEqual(result[0], xs, tol=1e-2)
assert almostEqual(result[1], ys, rel=1e-2)
# EOF
|