File: g11.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (51 lines) | stat: -rw-r--r-- 1,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
#
# Problem definition:
# A-R Hedar and M Fukushima, "Derivative-Free Filter Simulated Annealing
# Method for Constrained Continuous Global Optimization", Journal of
# Global Optimization, 35(4), 521-549 (2006).
# 
# Original Matlab code written by A. Hedar (Nov. 23, 2005)
# http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm
# and ported to Python by Mike McKerns (December 2014)
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE

def objective(x):
    x0,x1 = x
    return x0**2 + (x1 - 1)**2

bounds = [(-1,1)]*2
# with penalty='penalty' applied, solution is:
xs, xs_ = [(0.5)**.5, 0.5], [-(0.5)**.5, 0.5]
ys = 0.75

from mystic.symbolic import generate_constraint, generate_solvers, solve
from mystic.symbolic import generate_penalty, generate_conditions

equations = """
x1 - x0**2 = 0.0
"""
cf = generate_constraint(generate_solvers(solve(equations, target='x1')))
pf = generate_penalty(generate_conditions(equations), k=1e12)



if __name__ == '__main__':

    from mystic.solvers import diffev2
    from mystic.math import almostEqual

    result = diffev2(objective, x0=bounds, bounds=bounds, constraints=cf, npop=40, disp=False, full_output=True)

    assert almostEqual(result[0], xs, tol=1e-2) \
        or almostEqual(result[0], xs_, tol=1e-2)
    assert almostEqual(result[1], ys, rel=1e-2)



# EOF