File: g13.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (56 lines) | stat: -rw-r--r-- 2,074 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
#
# Problem definition:
# A-R Hedar and M Fukushima, "Derivative-Free Filter Simulated Annealing
# Method for Constrained Continuous Global Optimization", Journal of
# Global Optimization, 35(4), 521-549 (2006).
# 
# Original Matlab code written by A. Hedar (Nov. 23, 2005)
# http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm
# and ported to Python by Mike McKerns (December 2014)
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE

def objective(x):
    from numpy import exp, prod as product
    return exp(product(x))

bounds = [(-2.3,2.3)]*2 + [(-3.2,3.2)]*3
# with penalty='penalty' applied, solution is:
xs = [-1.717143, 1.595709, 1.827247, -0.7636413, -0.763645]
_xs = [-1.717143, 1.595709, 1.827247, 0.7636413, 0.763645]
x_s = [-1.717143, 1.595709, -1.827247, 0.7636413, -0.763645]
xs_ = [-1.717143, 1.595709, -1.827247, -0.7636413, 0.763645]
ys = 0.05394983

from mystic.symbolic import generate_constraint, generate_solvers, simplify
from mystic.symbolic import generate_penalty, generate_conditions

equations = """
x0**2 + x1**2 + x2**2 + x3**2 + x4**2 - 10.0 = 0.0
x1*x2 - 5.0*x3*x4 = 0.0
x0**3 + x1**3 + 1.0 = 0.0
"""
cf = generate_constraint(generate_solvers(simplify(equations))) # slow solve
pf = generate_penalty(generate_conditions(equations))



if __name__ == '__main__':

    from mystic.solvers import lattice
    from mystic.math import almostEqual

    result = lattice(objective, 5, [2]*5, bounds=bounds, penalty=pf, ftol=1e-8, xtol=1e-8, disp=False, full_output=True)

    assert almostEqual(result[0], xs, tol=5e-2) \
        or almostEqual(result[0], _xs, tol=5e-2) \
        or almostEqual(result[0], x_s, tol=5e-2) \
        or almostEqual(result[0], xs_, tol=5e-2)
    assert almostEqual(result[1], ys, rel=5e-2)

# EOF