File: spring_alt.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (59 lines) | stat: -rw-r--r-- 1,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
#
# Problem definition:
# A-R Hedar and M Fukushima, "Derivative-Free Filter Simulated Annealing
# Method for Constrained Continuous Global Optimization", Journal of
# Global Optimization, 35(4), 521-549 (2006).
# 
# Original Matlab code written by A. Hedar (Nov. 23, 2005)
# http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm
# and ported to Python by Mike McKerns (December 2014)
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"a Tension-Compression String"

from spring import objective, bounds, xs, ys

from mystic.constraints import as_constraint
from mystic.penalty import quadratic_inequality

def penalty1(x): # <= 0.0
    return 1.0 - (x[1]**3 * x[2])/(71785*x[0]**4)

def penalty2(x): # <= 0.0
    return (4*x[1]**2 - x[0]*x[1])/(12566*x[0]**3 * (x[1] - x[0])) + 1./(5108*x[0]**2) - 1.0

def penalty3(x): # <= 0.0
    return 1.0 - 140.45*x[0]/(x[2] * x[1]**2)

def penalty4(x): # <= 0.0
    return (x[0] + x[1])/1.5 - 1.0

@quadratic_inequality(penalty1, k=1e12)
@quadratic_inequality(penalty2, k=1e12)
@quadratic_inequality(penalty3, k=1e12)
@quadratic_inequality(penalty4, k=1e12)
def penalty(x):
    return 0.0

solver = as_constraint(penalty)



if __name__ == '__main__':

    from mystic.solvers import diffev2
    from mystic.math import almostEqual

    result = diffev2(objective, x0=bounds, bounds=bounds, penalty=penalty, npop=40, gtol=500, disp=False, full_output=True)

    assert almostEqual(result[0], xs, rel=1e-2)
    assert almostEqual(result[1], ys, rel=1e-2)



# EOF