1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @uqfoundation)
# Copyright (c) 2018-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD. The full license text is available at:
# - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
plotter for data (x,z) and response surface function(*x)
- initalize with x and z (and function)
- interpolate if function is not provided
- can downsample
- plot data and response surface
"""
class Plotter(object):
def __init__(self, x, z=None, function=None, **kwds):
"""scatter plotter for data (x,z) and response surface function(*x)
Input:
x: an array of shape (npts, dim) or (npts,)
z: an array of shape (npts,) or (npts, N)
function: function f, where z=f(*x.T), or str (interpolation method)
Additional Inputs:
step: int, plot every 'step' points on the grid [default: 200]
scale: float, scaling factor for the z-axis [default: False]
shift: float, additive shift for the z-axis [default: False]
density: int, density of wireframe for the plot surface [default: 9]
axes: tuple, indicies of the x-axes to plot [default: ()]
axis: int, index of the z-axis to plot, if multi-dim [default: 0]
vals: list of values (one per axis) for unplotted axes [default: ()]
maxpts: int, maximum number of (x,z) points to use [default: None]
kernel: function transforming x to x', where x' = kernel(x)
vtol: float, maximum distance outside bounds hypercube to plot data
NOTE:
if scipy is not installed, will use np.interp for 1D (non-rbf),
or mystic's rbf otherwise. default method is 'nearest' for
1D and 'linear' otherwise. method can be one of ('rbf','linear',
'nearest','cubic','inverse','gaussian','quintic','thin_plate').
"""
self.x = getattr(x, '_x', x) # params (x)
self.z = x._y if z is None else z # cost (f(x))
if function is None:
function='linear'
if type(function) is str:
from mystic.math.interpolate import interpf #NOTE: axis may change
function = interpf(self.x,self.z, method=function, arrays=True) #XXX: extrap, smooth, epsilon, norm?
self.function = function
#self.dim = kwds.pop('dim', None) #XXX: or len(x)?
# interpolator configuration
self.args = dict(step=200, scale=False, shift=False, vtol=None, \
kernel=None, density=9, axes=(), vals=(), maxpts=None, axis=0)
self.args.update(kwds)
self.maxpts = self.args.pop('maxpts')
return
def _downsample(self, maxpts=None, x=None, z=None):
"""downsample (x,z) to at most maxpts
Input:
maxpts: int, maximum number of points to use from (x,z)
x: an array of shape (npts, dim) or (npts,)
z: an array of shape (npts,) or (npts, N)
Output:
x: an array of shape (npts, dim) or (npts,)
z: an array of shape (npts,) or (npts, N)
"""
if maxpts is None: maxpts = self.maxpts
if x is None: x = self.x
if z is None: z = self.z
if len(x) != len(z):
raise ValueError("the input array lengths must match exactly")
if maxpts is not None and len(z) > maxpts:
N = max(int(round(len(z)/float(maxpts))),1)
# print("for speed, sampling {} down to {}".format(len(z),len(z)/N))
# ax.plot(x[:,0], x[:,1], z, 'ko', linewidth=2, markersize=4)
x = x[::N]
z = z[::N]
# plt.show()
# exit()
return x, z
def _max(self, **kwds):
"""get the x[i],z[i] corresponding to the max(z)
if z is multi-valued, accepts int axis to return single-valued z
"""
import numpy as np
mz = np.argmax(self.z, axis=0)
x = np.asarray(self.x)[mz]
z = np.asarray(self.z)[mz]
zdim = len(z) if hasattr(z, '__len__') else 0
if zdim > 1:
axis = kwds.get('axis', self.args['axis']) # default = None?
z = z.diagonal()
if axis is not None:
return (x[axis], z[axis])
return (x,z)
def _min(self, **kwds):
"""get the x[i],z[i] corresponding to the min(z)
if z is multi-valued, accepts int axis to return single-valued z
"""
import numpy as np
mz = np.argmin(self.z, axis=0)
x = np.asarray(self.x)[mz]
z = np.asarray(self.z)[mz]
zdim = len(z) if hasattr(z, '__len__') else 0
if zdim > 1:
axis = kwds.get('axis', self.args['axis']) # default = None?
z = z.diagonal()
if axis is not None:
return (x[axis], z[axis])
return (x,z)
def Plot(self, **kwds):
"""produce a scatterplot of (x,z) and the surface z = function(*x.T)
Input:
step: int, plot every 'step' points on the grid [default: 200]
scale: float, scaling factor for the z-axis [default: False]
shift: float, additive shift for the z-axis [default: False]
density: int, density of wireframe for the plot surface [default: 9]
axes: tuple, indicies of the x-axes to plot [default: ()]
axis: int, index of the z-axis to plot, if multi-dim [default: 0]
vals: list of values (one per axis) for unplotted axes [default: ()]
maxpts: int, maximum number of (x,z) points to use [default: None]
kernel: function transforming x to x', where x' = kernel(x)
vtol: float, maximum distance outside bounds hypercube to plot data
""" #XXX: vtol can also be a tuple of vtols for each parameter
step = kwds['step'] if 'step' in kwds else self.args['step']
scale = kwds['scale'] if 'scale' in kwds else self.args['scale']
shift = kwds['shift'] if 'shift' in kwds else self.args['shift']
axes = kwds['axes'] if 'axes' in kwds else self.args['axes']
axis = kwds['axis'] if 'axis' in kwds else self.args['axis']
vals = kwds['vals'] if 'vals' in kwds else self.args['vals']
maxpts = kwds['maxpts'] if 'maxpts' in kwds else self.maxpts
kernel = kwds['kernel'] if 'kernel' in kwds else self.args['kernel']
vtol = kwds['vtol'] if 'vtol' in kwds else self.args['vtol']
density = kwds['density'] if 'density' in kwds else self.args['density']
# plot response surface
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
from mystic.scripts import (_visual_filter as filtered,
_parse_tol as parsetol)
figure = plt.figure()
kwds = {'projection':'3d'}
ax = figure.axes[0] if figure.axes else plt.axes(**kwds)
ax.autoscale(tight=True)
from numbers import Integral
zdim = len(self.z[0]) if hasattr(self.z[0], '__len__') else 0
if zdim == 0:
pass
elif (not isinstance(axis, Integral)) and (zdim != 1):
msg = "axis should be an int in the range 0 to %s" % (zdim-1)
raise ValueError(msg)
x, z = self._downsample(maxpts)
x = np.asarray(x)
z = np.asarray(z)
z = z[:,axis] if zdim > 1 else z
# get two axes to plot, and indices of the remaining axes
axes = axes[:2] #XXX: error if wrong size?
ix = [i for i in range(len(x.T)) if i not in axes]
n = 2-len(axes)
axes, ix = list(axes)+ix[:n], ix[n:]
# build list of fixed values (default mins), override with user input
#fix = np.zeros(len(ix))
fix = enumerate(self._min()[0])
fix = np.array(tuple(j for (i,j) in fix if i not in axes))
fix[:len(vals)] = vals
# build grid of points, one for each param, apply fixed values
grid = np.ones((len(x.T),step,step))
grid[ix] = fix[:,None,None]
# build sub-surface of function(x) to display, apply to the grid
xy = x.T[axes]
M = complex('{}j'.format(step))
grid[axes] = np.mgrid[xy[0].min():xy[0].max():M,
xy[1].min():xy[1].max():M]
# filter the plotted data points by the given vtol
ixy = iter(xy)
ifx = iter(fix)
bounds = ""
for i in range(max(axes + ix)+1):
if i in axes:
it = next(ixy)
bounds += "%s:%s:%s" % (it.min(), it.max(), M)
else:
it = next(ifx)
bounds += "%s" % it
bounds += ", "
bounds = bounds[:-2]
del xy, fix, ix, ixy, ifx
x, z = filtered(bounds, x, z, *parsetol(vtol, axes))
# evaluate the function on the sub-surface
z_ = np.asarray(self.function(*grid)) #XXX: is orientiation correct?
z_ = z_[axis] if zdim > 1 else z_
# scaling used by function plotter
if scale:
if shift:
z_ = z_+shift
z_ = np.log(4*z_*scale+1)+2
# apply transform #NOTE: should do this w/o fixing points first
if hasattr(kernel, '__call__'):
_grid = np.zeros_like(grid[:2])
for i in range(step):
_grid.T[i] = [kernel(j)[:2] for j in grid.T[i]] #XXX: correct?
grid = _grid
ax0,ax1 = 0,1
else: ax0,ax1 = axes
# plot surface
d = max(11 - density, 1)
x_ = grid[ax0]
y_ = grid[ax1]
ax.plot_wireframe(x_, y_, z_, rstride=d, cstride=d, alpha=.3)
#ax.plot_surface(x_, y_, z_, rstride=d, cstride=d, cmap=cm.jet, linewidth=0, antialiased=False)
# use the sampled values
z_ = np.asarray(z)
# scaling used by function plotter
if scale:
if shift:
z_ = z_+shift
z_ = np.log(4*z_*scale+1)+2
# apply transform
if hasattr(kernel, '__call__'):
x = np.array([kernel(j)[:2] for j in x])
# plot data points
x_ = x.T[ax0]
y_ = x.T[ax1]
ax.plot(x_, y_, z_, 'ko', linewidth=2, markersize=4)
plt.show() #XXX: show or don't show?... or return?
def plot(monitor, function=None, **kwds):
'''generic interface to Plotter, returning an Plotter instance
Input:
monitor: a mystic.monitor instance
function: function f, where z=f(*x.T), or str (interpolation method)
Additional Inputs:
step: int, plot every 'step' points on the grid [default: 200]
scale: float, scaling factor for the z-axis [default: False]
shift: float, additive shift for the z-axis [default: False]
density: int, density of wireframe for the plot surface [default: 9]
axes: tuple, indicies of the x-axes to plot [default: ()]
axis: int, index of the z-axis to plot, if multi-dim [default: 0]
vals: list of values (one per axis) for unplotted axes [default: ()]
maxpts: int, maximum number of (x,z) points to use [default: None]
kernel: function transforming x to x', where x' = kernel(x)
vtol: float, maximum distance outside bounds hypercube to plot data
NOTE:
if scipy is not installed, will use np.interp for 1D (non-rbf),
or mystic's rbf otherwise. default method is 'nearest' for
1D and 'linear' otherwise. method can be one of ('rbf','linear',
'nearest','cubic','inverse','gaussian','quintic','thin_plate').
'''
p = Plotter(monitor, function=function, **kwds)
p.Plot()
return p #XXX: return nothing?
# EOF
|