File: plotter.py

package info (click to toggle)
mystic 0.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,656 kB
  • sloc: python: 40,894; makefile: 33; sh: 9
file content (283 lines) | stat: -rw-r--r-- 11,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @uqfoundation)
# Copyright (c) 2018-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
plotter for data (x,z) and response surface function(*x)
  - initalize with x and z (and function)
  - interpolate if function is not provided
  - can downsample
  - plot data and response surface
"""

class Plotter(object):

    def __init__(self, x, z=None, function=None, **kwds):
        """scatter plotter for data (x,z) and response surface function(*x)

        Input:
          x: an array of shape (npts, dim) or (npts,)
          z: an array of shape (npts,) or (npts, N)
          function: function f, where z=f(*x.T), or str (interpolation method)

        Additional Inputs:
          step: int, plot every 'step' points on the grid [default: 200]
          scale: float, scaling factor for the z-axis [default: False]
          shift: float, additive shift for the z-axis [default: False]
          density: int, density of wireframe for the plot surface [default: 9]
          axes: tuple, indicies of the x-axes to plot [default: ()]
          axis: int, index of the z-axis to plot, if multi-dim [default: 0]
          vals: list of values (one per axis) for unplotted axes [default: ()]
          maxpts: int, maximum number of (x,z) points to use [default: None]
          kernel: function transforming x to x', where x' = kernel(x)
          vtol: float, maximum distance outside bounds hypercube to plot data

        NOTE:
          if scipy is not installed, will use np.interp for 1D (non-rbf),
          or mystic's rbf otherwise. default method is 'nearest' for
          1D and 'linear' otherwise. method can be one of ('rbf','linear',
          'nearest','cubic','inverse','gaussian','quintic','thin_plate').
        """
        self.x = getattr(x, '_x', x)  # params (x)
        self.z = x._y if z is None else z # cost (f(x))
        if function is None:
            function='linear'
        if type(function) is str:
            from mystic.math.interpolate import interpf #NOTE: axis may change
            function = interpf(self.x,self.z, method=function, arrays=True) #XXX: extrap, smooth, epsilon, norm?
        self.function = function
       #self.dim = kwds.pop('dim', None) #XXX: or len(x)?
        # interpolator configuration
        self.args = dict(step=200, scale=False, shift=False, vtol=None, \
            kernel=None, density=9, axes=(), vals=(), maxpts=None, axis=0)
        self.args.update(kwds)
        self.maxpts = self.args.pop('maxpts')
        return

    def _downsample(self, maxpts=None, x=None, z=None):
        """downsample (x,z) to at most maxpts

        Input:
          maxpts: int, maximum number of points to use from (x,z)
          x: an array of shape (npts, dim) or (npts,)
          z: an array of shape (npts,) or (npts, N)

        Output:
          x: an array of shape (npts, dim) or (npts,)
          z: an array of shape (npts,) or (npts, N)
        """
        if maxpts is None: maxpts = self.maxpts
        if x is None: x = self.x
        if z is None: z = self.z
        if len(x) != len(z):
            raise ValueError("the input array lengths must match exactly")
        if maxpts is not None and len(z) > maxpts:
            N = max(int(round(len(z)/float(maxpts))),1)
        #   print("for speed, sampling {} down to {}".format(len(z),len(z)/N))
        #   ax.plot(x[:,0], x[:,1], z, 'ko', linewidth=2, markersize=4)
            x = x[::N]
            z = z[::N]
        #   plt.show()
        #   exit()
        return x, z

    def _max(self, **kwds):
        """get the x[i],z[i] corresponding to the max(z)

        if z is multi-valued, accepts int axis to return single-valued z
        """
        import numpy as np
        mz = np.argmax(self.z, axis=0)
        x = np.asarray(self.x)[mz]
        z = np.asarray(self.z)[mz]
        zdim = len(z) if hasattr(z, '__len__') else 0
        if zdim > 1:
            axis = kwds.get('axis', self.args['axis']) # default = None?
            z = z.diagonal()
            if axis is not None:
                return (x[axis], z[axis])
        return (x,z)

    def _min(self, **kwds):
        """get the x[i],z[i] corresponding to the min(z)

        if z is multi-valued, accepts int axis to return single-valued z
        """
        import numpy as np
        mz = np.argmin(self.z, axis=0)
        x = np.asarray(self.x)[mz]
        z = np.asarray(self.z)[mz]
        zdim = len(z) if hasattr(z, '__len__') else 0
        if zdim > 1:
            axis = kwds.get('axis', self.args['axis']) # default = None?
            z = z.diagonal()
            if axis is not None:
                return (x[axis], z[axis])
        return (x,z)

    def Plot(self, **kwds):
        """produce a scatterplot of (x,z) and the surface z = function(*x.T)

        Input:
          step: int, plot every 'step' points on the grid [default: 200]
          scale: float, scaling factor for the z-axis [default: False]
          shift: float, additive shift for the z-axis [default: False]
          density: int, density of wireframe for the plot surface [default: 9]
          axes: tuple, indicies of the x-axes to plot [default: ()]
          axis: int, index of the z-axis to plot, if multi-dim [default: 0]
          vals: list of values (one per axis) for unplotted axes [default: ()]
          maxpts: int, maximum number of (x,z) points to use [default: None]
          kernel: function transforming x to x', where x' = kernel(x)
          vtol: float, maximum distance outside bounds hypercube to plot data
        """ #XXX: vtol can also be a tuple of vtols for each parameter
        step = kwds['step'] if 'step' in kwds else self.args['step']
        scale = kwds['scale'] if 'scale' in kwds else self.args['scale']
        shift = kwds['shift'] if 'shift' in kwds else self.args['shift']
        axes = kwds['axes'] if 'axes' in kwds else self.args['axes']
        axis = kwds['axis'] if 'axis' in kwds else self.args['axis']
        vals = kwds['vals'] if 'vals' in kwds else self.args['vals']
        maxpts = kwds['maxpts'] if 'maxpts' in kwds else self.maxpts
        kernel = kwds['kernel'] if 'kernel' in kwds else self.args['kernel']
        vtol = kwds['vtol'] if 'vtol' in kwds else self.args['vtol']
        density = kwds['density'] if 'density' in kwds else self.args['density']

        # plot response surface
        from mpl_toolkits.mplot3d import axes3d
        import matplotlib.pyplot as plt
        from matplotlib import cm
        import numpy as np
        from mystic.scripts import (_visual_filter as filtered,
                                    _parse_tol as parsetol)

        figure = plt.figure()
        kwds = {'projection':'3d'}
        ax = figure.axes[0] if figure.axes else plt.axes(**kwds)
        ax.autoscale(tight=True)

        from numbers import Integral
        zdim = len(self.z[0]) if hasattr(self.z[0], '__len__') else 0
        if zdim == 0:
            pass
        elif (not isinstance(axis, Integral)) and (zdim != 1):
            msg = "axis should be an int in the range 0 to %s" % (zdim-1)
            raise ValueError(msg)
        x, z = self._downsample(maxpts)
        x = np.asarray(x)
        z = np.asarray(z)
        z = z[:,axis] if zdim > 1 else z

        # get two axes to plot, and indices of the remaining axes
        axes = axes[:2]  #XXX: error if wrong size?
        ix = [i for i in range(len(x.T)) if i not in axes]
        n = 2-len(axes)
        axes, ix = list(axes)+ix[:n], ix[n:]

        # build list of fixed values (default mins), override with user input
       #fix = np.zeros(len(ix))
        fix = enumerate(self._min()[0])
        fix = np.array(tuple(j for (i,j) in fix if i not in axes))
        fix[:len(vals)] = vals

        # build grid of points, one for each param, apply fixed values
        grid = np.ones((len(x.T),step,step))
        grid[ix] = fix[:,None,None]

        # build sub-surface of function(x) to display, apply to the grid
        xy = x.T[axes]
        M = complex('{}j'.format(step))
        grid[axes] = np.mgrid[xy[0].min():xy[0].max():M,
                              xy[1].min():xy[1].max():M]

        # filter the plotted data points by the given vtol
        ixy = iter(xy)
        ifx = iter(fix)
        bounds = ""
        for i in range(max(axes + ix)+1):
            if i in axes:
                it = next(ixy)
                bounds += "%s:%s:%s" % (it.min(), it.max(), M)
            else:
                it = next(ifx)
                bounds += "%s" % it
            bounds += ", "
        bounds = bounds[:-2]
        del xy, fix, ix, ixy, ifx
        x, z = filtered(bounds, x, z, *parsetol(vtol, axes))

        # evaluate the function on the sub-surface
        z_ = np.asarray(self.function(*grid)) #XXX: is orientiation correct?
        z_ = z_[axis] if zdim > 1 else z_
        # scaling used by function plotter
        if scale:
            if shift:
                z_ = z_+shift
            z_ = np.log(4*z_*scale+1)+2

        # apply transform #NOTE: should do this w/o fixing points first
        if hasattr(kernel, '__call__'):
            _grid = np.zeros_like(grid[:2])
            for i in range(step):
                _grid.T[i] = [kernel(j)[:2] for j in grid.T[i]] #XXX: correct?
            grid = _grid
            ax0,ax1 = 0,1
        else: ax0,ax1 = axes

        # plot surface
        d = max(11 - density, 1)
        x_ = grid[ax0]
        y_ = grid[ax1]
        ax.plot_wireframe(x_, y_, z_, rstride=d, cstride=d, alpha=.3)
        #ax.plot_surface(x_, y_, z_, rstride=d, cstride=d, cmap=cm.jet, linewidth=0, antialiased=False)

        # use the sampled values
        z_ = np.asarray(z)
        # scaling used by function plotter
        if scale:
            if shift:
                z_ = z_+shift
            z_ = np.log(4*z_*scale+1)+2

        # apply transform
        if hasattr(kernel, '__call__'):
            x = np.array([kernel(j)[:2] for j in x])

        # plot data points
        x_ = x.T[ax0]
        y_ = x.T[ax1]
        ax.plot(x_, y_, z_, 'ko', linewidth=2, markersize=4)
        plt.show()  #XXX: show or don't show?... or return?


def plot(monitor, function=None, **kwds):
    '''generic interface to Plotter, returning an Plotter instance

    Input:
      monitor: a mystic.monitor instance
      function: function f, where z=f(*x.T), or str (interpolation method)

    Additional Inputs:
      step: int, plot every 'step' points on the grid [default: 200]
      scale: float, scaling factor for the z-axis [default: False]
      shift: float, additive shift for the z-axis [default: False]
      density: int, density of wireframe for the plot surface [default: 9]
      axes: tuple, indicies of the x-axes to plot [default: ()]
      axis: int, index of the z-axis to plot, if multi-dim [default: 0]
      vals: list of values (one per axis) for unplotted axes [default: ()]
      maxpts: int, maximum number of (x,z) points to use [default: None]
      kernel: function transforming x to x', where x' = kernel(x)
      vtol: float, maximum distance outside bounds hypercube to plot data

    NOTE:
      if scipy is not installed, will use np.interp for 1D (non-rbf),
      or mystic's rbf otherwise. default method is 'nearest' for
      1D and 'linear' otherwise. method can be one of ('rbf','linear',
      'nearest','cubic','inverse','gaussian','quintic','thin_plate').
    '''
    p = Plotter(monitor, function=function, **kwds)
    p.Plot()
    return p  #XXX: return nothing?


# EOF