1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 2010-2016 California Institute of Technology.
# Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
# License: 3-clause BSD. The full license text is available at:
# - https://github.com/uqfoundation/mystic/blob/master/LICENSE
"""
an interpolator
- initalize with objective f(x) (and 'Sampler' object)
- can attach a monitor and/or archiver
- can sample points (using the Sampler)
- can downsample and/or add noise
- interpolates with "interp.interp"
- converts f(*x) <-> f(x)
- plot data and interpolated surface
"""
class Surface(object): #FIXME: should be subclass of Interpolator (?)
#surface has:
# args - interpolation configuration (smooth, function, ...)
# sampler - a search algorithm
# maxpts - a maximum number of sampling points
# noise - a noise coefficient
# dim - dimensionality of the model
# function - target function [F(*x)]
# objective - target function [F(x)]
# surrogate - interpolated function [F(*x)]
# model - interpolated function [F(x)]
# x,y,z - sampled points(*)
#
#surface (or sampler) has:
# _minmon,_maxmon - step monitor(*)
# _minarch,_maxarch - sampled point archives(*)
#
#surface can:
# Sample - populate sampled point archive with solver trajectories
# Interpolate - build interpolated function from sampled points
# Plot - plot sampled points and interpolated surface
#
#surface (or sampler) can:
# UseMonitor - track trajectories with a monitor(s)
# UseArchive - track sampled points in an archive(s)
# _max - fetch (x,y,z,model(x,y)) for maximal z of sampled points
# _min - fetch (x,y,z,model(x,y)) for minimal z of sampled points
def __init__(self, objective, sampler=None, **kwds):
"""response surface interpolator, where data is sampled from objective
Input:
objective: function of the form z=f(x)
sampler: mystic.search.Searcher instance
Additional Inputs:
maxpts: int, maximum number of points to use from (x,z)
noise: float, amplitude of gaussian noise to remove duplicate x
method: string for kind of interpolator
dim: number of parameters in the input for the objective function
filter: a data filter produced with mystic.filters.generate_filter
penalty: mystic.penalty instance of the form y' = k*p(x)
constraints: mystic.constraints instance of the form x' = c(x)
NOTE:
if scipy is not installed, will use np.interp for 1D (non-rbf),
or mystic's rbf otherwise. default method is 'nearest' for
1D and 'linear' otherwise. method can be one of ('rbf','linear',
'nearest','cubic','inverse','gaussian','quintic','thin_plate').
"""
# sampler configuration
from mystic.search import Searcher
self.sampler = Searcher() if sampler is None else sampler
self.maxpts = kwds.pop('maxpts', None) # N = 1000
self.noise = kwds.pop('noise', 1e-8)
self.filter = kwds.pop('filter', None)
self.penalty = kwds.pop('penalty', None)
self.constraints = kwds.pop('constraints', None)
# monitor, archive, and trajectories
self._minmon = self._maxmon = None #XXX: better default?
self._minarch = self._maxarch = None #XXX: better default?
self.x = None # params (x)
self.z = None # cost (objective(x))
# point generator(s) and interpolated model(s) #XXX: better names?
self.dim = kwds.pop('dim', None) #XXX: should be (or set) len(x)
self.objective = objective # original F(x)
self.surrogate = None # interpolated F(*x)
# interpolator configuration
self.args = {}#dict(smooth=0, function='thin_plate')
self.args.update(kwds)
return
# XXX: useful?
# def _invert_model:
# takes model and returns inverted_model (maxmodel or invmodel?)
# def _invert_trajectories:
# takes (xyz) trajectories and returns inverted trajectories (xy-z)
def UseMonitor(self, min=None, max=None):
"""track parameter trajectories with a monitor(s)
Input:
min: monitor instance to track minima; if True, use a new Monitor
max: monitor instance to track maxima; if True, use a new Monitor
Output:
None
"""
from mystic.monitors import Monitor
if repr(min) in ('True','False'):
self._minmon = Monitor() if min else None
elif min is not None: self._minmon = min
if repr(max) in ('True','False'):
self._maxmon = Monitor() if max else None
elif max is not None: self._maxmon = max
return
def UseArchive(self, min=None, max=None):
"""track sampled points in an archive(s)
Input:
min: archive instance to store minima; if True, use a new archive
max: archive instance to store maxima; if True, use a new archive
Output:
None
"""
from klepto.archives import dict_archive as d
if repr(min) in ('True','False'):
self._minarch = d(cached=False) if min else None
elif min is not None: self._minarch = min
if repr(max) in ('True','False'):
self._maxarch = d(cached=False) if max else None
elif max is not None: self._maxarch = max
return
"""
def doit(self, bounds, stop, step=200, scale=False, shift=False,
density=9, axes=(), vals=(), maxpts=maxpts, **kwds):
if not self.sampler.traj: self.sampler.UseTrajectories()
# get trajectories
self.Sample(bounds, stop)
# get interpolated function
self.Interpolate(**kwds)
# check extrema #XXX: put _min,_max in Interpolate? (downsampled)
f = lambda x,z: (z,surface.surrogate(*x))
print("min: {}; min@f: {}".format(*f(*surface._min())))
print("max: {}; max@f: {}".format(*f(*urfacef._max())))
# plot surface
self.Plot(step=step, scale=scale, shift=shift, density=density, axes=axes, vals=vals, maxpts=maxpts)
return
"""
def Sample(self, bounds, stop, clear=False, verbose=False, all=False, **kwds):
"""sample data (x,z) using objective function z=f(x)
Input:
bounds: tuple of floats (min,max), bounds on the search region
stop: termination condition
clear: if True, clear the archive of stored points
verbose: if True, print a summary of search/sampling results
all: if True, use solver EvalMonitor, else use StepMonitor
filter: a data filter produced with mystic.filters.generate_filter
penalty: mystic.penalty instance of the form y' = k*p(x)
constraints: mystic.constraints instance of the form x' = c(x)
Output:
x: an array of shape (npts, dim) or (npts,)
z: an array of shape (npts,)
"""
#XXX: does the strategy of finding min/max always apply?
import numpy as np
penalty = kwds.get('penalty', self.penalty)
constraints = kwds.get('constraints', self.constraints)
kwargs = dict(stop=stop, penalty=penalty, constraints=constraints)
# get model (for minima)
model = self.objective
self.dim = len(bounds)
### get mins ###
monitor = self._minmon
archive = None if clear else self._minarch
inverse = False
if all: #FIXME: better define role/use of Reset/Archive/clear...
self.sampler.Reset(None, inv=inverse) # reset the sampler
self.sampler.archive = archive
self.sampler.Search(model, bounds, evalmon=monitor, **kwargs)
else:
self.sampler.Reset(archive, inv=inverse) # reset the sampler
self.sampler.Search(model, bounds, monitor=monitor, **kwargs)
if verbose: self.sampler._summarize()
# read trajectories from log (or monitor)
xyz = self.sampler.Samples(all=all)
if clear: self.sampler.Reset() # reset the sampler
### end mins ###
# invert model (for maxima)
imodel = lambda *args, **kwds: -model(*args, **kwds)
if penalty is not None: # also invert penalty
kwargs['penalty'] = lambda *args, **kwds: -penalty(*args, **kwds)
### get maxs ###
monitor = self._maxmon
archive = None if clear else self._maxarch
inverse = True
if all: #FIXME: better define role/use of Reset/Archive/clear...
self.sampler.Reset(None, inv=inverse) # reset the sampler
self.sampler.archive = archive
self.sampler.Search(imodel, bounds, evalmon=monitor, **kwargs)
else:
self.sampler.Reset(archive, inv=inverse) # reset the sampler
self.sampler.Search(imodel, bounds, monitor=monitor, **kwargs)
if verbose: self.sampler._summarize()
xyz = np.hstack((xyz, self.sampler.Samples(all=all)))
if clear: self.sampler.Reset() # reset the sampler
### end maxs ###
# split into params and cost
self.x = xyz.T[:,:-1]
self.z = xyz.T[:,-1]
# apply any filter, and return
filter = kwds.pop('filter', self.filter)
if filter: #XXX: better here, or in Interpolate???
self.x, self.z = filter(self.x, self.z)
return self.x, self.z
def Interpolate(self, **kwds): #XXX: refactor so use self.interpolator ?
"""interpolate data (x,z) to generate response function z=f(*x)
Input:
maxpts: int, maximum number of points to use from (x,z)
noise: float, amplitude of gaussian noise to remove duplicate x
method: string for kind of interpolator
extrap: if True, extrapolate a bounding box (can reduce # of nans)
arrays: if True, return a numpy array; otherwise don't return arrays
Output:
interpolated response function, where z=f(*x.T)
NOTE:
if scipy is not installed, will use np.interp for 1D (non-rbf),
or mystic's rbf otherwise. default method is 'nearest' for
1D and 'linear' otherwise. method can be one of ('rbf','linear',
'nearest','cubic','inverse','gaussian','quintic','thin_plate').
"""
from interpolator import Interpolator
args = self.args.copy()
args.update(kwds)
maxpts, noise = self.maxpts, self.noise
ii = Interpolator(self.x, self.z, maxpts=maxpts, noise=noise, **args)
self.surrogate = ii.Interpolate(**args)
# build the surrogate
self.surrogate.__doc__ = self.objective.__doc__
return self.surrogate
def _max(self): #XXX: remove?
"""get the x[i],z[i] corresponding to the max(z)
"""
import numpy as np
mz = np.argmax(self.z)
return self.x[mz], self.z[mz]
def _min(self): #XXX: remove?
"""get the x[i],z[i] corresponding to the min(z)
"""
import numpy as np
mz = np.argmin(self.z)
return self.x[mz], self.z[mz]
def Plot(self, **kwds):
"""produce a scatterplot of (x,z) and the surface z = function(*x.T)
Input:
step: int, plot every 'step' points on the grid [default: 200]
scale: float, scaling factor for the z-axis [default: False]
shift: float, additive shift for the z-axis [default: False]
density: int, density of wireframe for the plot surface [default: 9]
axes: tuple, indicies of the axes to plot [default: ()]
vals: list of values (one per axis) for unplotted axes [default: ()]
maxpts: int, maximum number of (x,z) points to use [default: None]
kernel: function transforming x to x', where x' = kernel(x)
vtol: float, maximum distance outside bounds hypercube to plot data
"""
# get interpolted function
fx = self.surrogate
# plot interpolated surface
from plotter import Plotter
p = Plotter(self.x, self.z, fx, **kwds)
p.Plot()
# if plotter interpolated the function, get the function
self.surrogate = fx or p.function
def __set_function(self, function): #XXX: deal w/ selector (2D)? ExtraArgs?
# convert to 'model' format (i.e. takes a parameter vector)
from mystic.math.interpolate import _to_objective
_objective = _to_objective(function)
def objective(x, *args, **kwds):
result = _objective(x, *args, **kwds)
return result.tolist() if hasattr(result, 'tolist') else result
self.objective = objective
self.objective.__doc__ = function.__doc__
return
def __function(self): #XXX: deal w/ selector (2D)? ExtraArgs? _to_function
# convert model to 'args' format (i.e. takes positional args)
from mystic.math.interpolate import _to_function
function = _to_function(self.objective, ndim=self.dim)
function.__doc__ = self.objective.__doc__
return function
def __model(self): #XXX: deal w/ selector (2D)? ExtraArgs? _to_objective
# convert to 'model' format (i.e. takes a parameter vector)
if self.surrogate is None: return None
from mystic.math.interpolate import _to_objective
_objective = _to_objective(self.surrogate)
def objective(x, *args, **kwds):
result = _objective(x, *args, **kwds)
return result.tolist() if hasattr(result, 'tolist') else result
objective.__doc__ = self.objective.__doc__
return objective
# interface
function = property(__function, __set_function )
model = property(__model )
# EOF
|