1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*
* crypto_scalarmult/try.c version 20090118
* D. J. Bernstein
* Public domain.
*/
#include <stdlib.h>
#include "crypto_scalarmult.h"
extern unsigned char *alignedcalloc(unsigned long long);
const char *primitiveimplementation = crypto_scalarmult_IMPLEMENTATION;
#define mlen crypto_scalarmult_SCALARBYTES
#define nlen crypto_scalarmult_SCALARBYTES
#define plen crypto_scalarmult_BYTES
#define qlen crypto_scalarmult_BYTES
#define rlen crypto_scalarmult_BYTES
static unsigned char *m;
static unsigned char *n;
static unsigned char *p;
static unsigned char *q;
static unsigned char *r;
static unsigned char *m2;
static unsigned char *n2;
static unsigned char *p2;
static unsigned char *q2;
static unsigned char *r2;
static unsigned char *na;
static unsigned char *pa;
static unsigned char *qa;
void preallocate(void)
{
}
void allocate(void)
{
m = alignedcalloc(mlen);
n = alignedcalloc(nlen);
p = alignedcalloc(plen);
q = alignedcalloc(qlen);
r = alignedcalloc(rlen);
m2 = alignedcalloc(mlen + crypto_scalarmult_BYTES);
n2 = alignedcalloc(nlen + crypto_scalarmult_BYTES);
p2 = alignedcalloc(plen + crypto_scalarmult_BYTES);
q2 = alignedcalloc(qlen + crypto_scalarmult_BYTES);
r2 = alignedcalloc(rlen + crypto_scalarmult_BYTES);
na = alignedcalloc(mlen + 16);
pa = alignedcalloc(plen + 16);
qa = alignedcalloc(qlen + 16);
}
void predoit(void)
{
}
void doit(void)
{
crypto_scalarmult(q,n,p);
crypto_scalarmult_base(r,n);
}
char checksum[crypto_scalarmult_BYTES * 2 + 1];
const char *checksum_compute(void)
{
long long i;
long long j;
long long tests;
for (j = 0;j < 16;++j) if (crypto_scalarmult_base(pa + j,na + j) != 0) return "crypto_scalarmult_base with unaligned input returns nonzero";
for (j = 0;j < 16;++j) if (crypto_scalarmult(qa + j,na + j,pa + j) != 0) return "crypto_scalarmult with unaligned input returns nonzero";
for (i = 0;i < mlen;++i) m[i] = i;
for (i = 0;i < nlen;++i) n[i] = i + 1;
for (i = 0;i < plen;++i) p[i] = i + 2;
for (i = 0;i < qlen;++i) q[i] = i + 3;
for (i = 0;i < rlen;++i) r[i] = i + 4;
for (i = -16;i < 0;++i) p[i] = random();
for (i = -16;i < 0;++i) n[i] = random();
for (i = plen;i < plen + 16;++i) p[i] = random();
for (i = nlen;i < nlen + 16;++i) n[i] = random();
for (i = -16;i < plen + 16;++i) p2[i] = p[i];
for (i = -16;i < nlen + 16;++i) n2[i] = n[i];
if (crypto_scalarmult_base(p,n) != 0) return "crypto_scalarmult_base returns nonzero";
for (i = -16;i < nlen + 16;++i) if (n2[i] != n[i]) return "crypto_scalarmult_base overwrites input";
for (i = -16;i < 0;++i) if (p2[i] != p[i]) return "crypto_scalarmult_base writes before output";
for (i = plen;i < plen + 16;++i) if (p2[i] != p[i]) return "crypto_scalarmult_base writes after output";
for (tests = 0;tests < 100;++tests) {
for (i = -16;i < 0;++i) q[i] = random();
for (i = -16;i < 0;++i) p[i] = random();
for (i = -16;i < 0;++i) m[i] = random();
for (i = qlen;i < qlen + 16;++i) q[i] = random();
for (i = plen;i < plen + 16;++i) p[i] = random();
for (i = mlen;i < mlen + 16;++i) m[i] = random();
for (i = -16;i < qlen + 16;++i) q2[i] = q[i];
for (i = -16;i < plen + 16;++i) p2[i] = p[i];
for (i = -16;i < mlen + 16;++i) m2[i] = m[i];
if (crypto_scalarmult(q,m,p) != 0) return "crypto_scalarmult returns nonzero";
for (i = -16;i < mlen + 16;++i) if (m2[i] != m[i]) return "crypto_scalarmult overwrites n input";
for (i = -16;i < plen + 16;++i) if (p2[i] != p[i]) return "crypto_scalarmult overwrites p input";
for (i = -16;i < 0;++i) if (q2[i] != q[i]) return "crypto_scalarmult writes before output";
for (i = qlen;i < qlen + 16;++i) if (q2[i] != q[i]) return "crypto_scalarmult writes after output";
if (crypto_scalarmult(m2,m2,p) != 0) return "crypto_scalarmult returns nonzero";
for (i = 0;i < qlen;++i) if (q[i] != m2[i]) return "crypto_scalarmult does not handle n overlap";
for (i = 0;i < qlen;++i) m2[i] = m[i];
if (crypto_scalarmult(p2,m2,p2) != 0) return "crypto_scalarmult returns nonzero";
for (i = 0;i < qlen;++i) if (q[i] != p2[i]) return "crypto_scalarmult does not handle p overlap";
if (crypto_scalarmult(r,n,q) != 0) return "crypto_scalarmult returns nonzero";
if (crypto_scalarmult(q,n,p) != 0) return "crypto_scalarmult returns nonzero";
if (crypto_scalarmult(p,m,q) != 0) return "crypto_scalarmult returns nonzero";
for (j = 0;j < plen;++j) if (p[j] != r[j]) return "crypto_scalarmult not associative";
for (j = 0;j < mlen;++j) m[j] ^= q[j % qlen];
for (j = 0;j < nlen;++j) n[j] ^= p[j % plen];
}
for (i = 0;i < crypto_scalarmult_BYTES;++i) {
checksum[2 * i] = "0123456789abcdef"[15 & (p[i] >> 4)];
checksum[2 * i + 1] = "0123456789abcdef"[15 & p[i]];
}
checksum[2 * i] = 0;
return 0;
}
|