1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
|
#define NO_SDL_GLEXT 1
#include "flow.h"
#include "embedded_files.h"
#include "gpu_timers.h"
#include "shared/read_file.h"
#include "util.h"
#include <algorithm>
#include <assert.h>
#include <deque>
#include <dlfcn.h>
#include <epoxy/gl.h>
#include <map>
#include <memory>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <vector>
#define BUFFER_OFFSET(i) ((char *)nullptr + (i))
using namespace std;
// Weighting constants for the different parts of the variational refinement.
// These don't correspond 1:1 to the values given in the DIS paper,
// since we have different normalizations and ranges in some cases.
// These are found through a simple grid search on some MPI-Sintel data,
// although the error (EPE) seems to be fairly insensitive to the precise values.
// Only the relative values matter, so we fix alpha (the smoothness constant)
// at unity and tweak the others.
//
// TODO: Maybe this should not be global.
float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
// Some global OpenGL objects.
// TODO: These should really be part of DISComputeFlow.
GLuint nearest_sampler, linear_sampler, zero_border_sampler;
GLuint vertex_vbo;
int find_num_levels(int width, int height)
{
int levels = 1;
for (int w = width, h = height; w > 1 || h > 1;) {
w >>= 1;
h >>= 1;
++levels;
}
return levels;
}
GLuint compile_shader(const string &shader_src, GLenum type)
{
GLuint obj = glCreateShader(type);
const GLchar *source[] = { shader_src.data() };
const GLint length[] = { (GLint)shader_src.size() };
glShaderSource(obj, 1, source, length);
glCompileShader(obj);
GLchar info_log[4096];
GLsizei log_length = sizeof(info_log) - 1;
glGetShaderInfoLog(obj, log_length, &log_length, info_log);
info_log[log_length] = 0;
if (strlen(info_log) > 0) {
fprintf(stderr, "Shader compile log: %s\n", info_log);
}
GLint status;
glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE) {
// Add some line numbers to easier identify compile errors.
string src_with_lines = "/* 1 */ ";
size_t lineno = 1;
for (char ch : shader_src) {
src_with_lines.push_back(ch);
if (ch == '\n') {
char buf[32];
snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
src_with_lines += buf;
}
}
fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
abort();
}
return obj;
}
GLuint link_program(GLuint vs_obj, GLuint fs_obj)
{
GLuint program = glCreateProgram();
glAttachShader(program, vs_obj);
glAttachShader(program, fs_obj);
glLinkProgram(program);
GLint success;
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE) {
GLchar error_log[1024] = { 0 };
glGetProgramInfoLog(program, 1024, nullptr, error_log);
fprintf(stderr, "Error linking program: %s\n", error_log);
abort();
}
return program;
}
void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
{
if (location == -1) {
return;
}
glBindTextureUnit(texture_unit, tex);
glBindSampler(texture_unit, sampler);
glProgramUniform1i(program, location, texture_unit);
}
template<size_t num_elements>
void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
{
auto it = fbos.find(textures);
if (it != fbos.end()) {
glBindFramebuffer(GL_FRAMEBUFFER, it->second);
return;
}
GLuint fbo;
glCreateFramebuffers(1, &fbo);
GLenum bufs[num_elements];
for (size_t i = 0; i < num_elements; ++i) {
glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
bufs[i] = GL_COLOR_ATTACHMENT0 + i;
}
glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
fbos[textures] = fbo;
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
}
template<size_t num_elements>
void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_rb, const array<GLuint, num_elements> &textures)
{
auto key = make_pair(depth_rb, textures);
auto it = fbos.find(key);
if (it != fbos.end()) {
glBindFramebuffer(GL_FRAMEBUFFER, it->second);
return;
}
GLuint fbo;
glCreateFramebuffers(1, &fbo);
GLenum bufs[num_elements];
glNamedFramebufferRenderbuffer(fbo, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_rb);
for (size_t i = 0; i < num_elements; ++i) {
glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
bufs[i] = GL_COLOR_ATTACHMENT0 + i;
}
glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
fbos[key] = fbo;
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
}
GrayscaleConversion::GrayscaleConversion()
{
gray_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
gray_fs_obj = compile_shader(read_file("gray.frag", _binary_gray_frag_data, _binary_gray_frag_size), GL_FRAGMENT_SHADER);
gray_program = link_program(gray_vs_obj, gray_fs_obj);
// Set up the VAO containing all the required position/texcoord data.
glCreateVertexArrays(1, &gray_vao);
glBindVertexArray(gray_vao);
GLint position_attrib = glGetAttribLocation(gray_program, "position");
glEnableVertexArrayAttrib(gray_vao, position_attrib);
glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
uniform_tex = glGetUniformLocation(gray_program, "tex");
}
void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height, int num_layers)
{
glUseProgram(gray_program);
bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
glViewport(0, 0, width, height);
fbos.render_to(gray_tex);
glBindVertexArray(gray_vao);
glDisable(GL_BLEND);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
Sobel::Sobel()
{
sobel_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
sobel_fs_obj = compile_shader(read_file("sobel.frag", _binary_sobel_frag_data, _binary_sobel_frag_size), GL_FRAGMENT_SHADER);
sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
uniform_tex = glGetUniformLocation(sobel_program, "tex");
}
void Sobel::exec(GLint tex_view, GLint grad_tex, int level_width, int level_height, int num_layers)
{
glUseProgram(sobel_program);
bind_sampler(sobel_program, uniform_tex, 0, tex_view, nearest_sampler);
glViewport(0, 0, level_width, level_height);
fbos.render_to(grad_tex);
glDisable(GL_BLEND);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
MotionSearch::MotionSearch(const OperatingPoint &op)
: op(op)
{
motion_vs_obj = compile_shader(read_file("motion_search.vert", _binary_motion_search_vert_data, _binary_motion_search_vert_size), GL_VERTEX_SHADER);
motion_fs_obj = compile_shader(read_file("motion_search.frag", _binary_motion_search_frag_data, _binary_motion_search_frag_size), GL_FRAGMENT_SHADER);
motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
uniform_out_flow_size = glGetUniformLocation(motion_search_program, "out_flow_size");
uniform_image_tex = glGetUniformLocation(motion_search_program, "image_tex");
uniform_grad_tex = glGetUniformLocation(motion_search_program, "grad_tex");
uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
uniform_patch_size = glGetUniformLocation(motion_search_program, "patch_size");
uniform_num_iterations = glGetUniformLocation(motion_search_program, "num_iterations");
}
void MotionSearch::exec(GLuint tex_view, GLuint grad_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches, int num_layers)
{
glUseProgram(motion_search_program);
bind_sampler(motion_search_program, uniform_image_tex, 0, tex_view, linear_sampler);
bind_sampler(motion_search_program, uniform_grad_tex, 1, grad_tex, nearest_sampler);
bind_sampler(motion_search_program, uniform_flow_tex, 2, flow_tex, linear_sampler);
glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
glProgramUniform2f(motion_search_program, uniform_out_flow_size, width_patches, height_patches);
glProgramUniform1ui(motion_search_program, uniform_patch_size, op.patch_size_pixels);
glProgramUniform1ui(motion_search_program, uniform_num_iterations, op.search_iterations);
glViewport(0, 0, width_patches, height_patches);
fbos.render_to(flow_out_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
Densify::Densify(const OperatingPoint &op)
: op(op)
{
densify_vs_obj = compile_shader(read_file("densify.vert", _binary_densify_vert_data, _binary_densify_vert_size), GL_VERTEX_SHADER);
densify_fs_obj = compile_shader(read_file("densify.frag", _binary_densify_frag_data, _binary_densify_frag_size), GL_FRAGMENT_SHADER);
densify_program = link_program(densify_vs_obj, densify_fs_obj);
uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
uniform_image_tex = glGetUniformLocation(densify_program, "image_tex");
uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
}
void Densify::exec(GLuint tex_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches, int num_layers)
{
glUseProgram(densify_program);
bind_sampler(densify_program, uniform_image_tex, 0, tex_view, linear_sampler);
bind_sampler(densify_program, uniform_flow_tex, 1, flow_tex, nearest_sampler);
glProgramUniform2f(densify_program, uniform_patch_size,
float(op.patch_size_pixels) / level_width,
float(op.patch_size_pixels) / level_height);
glViewport(0, 0, level_width, level_height);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
fbos.render_to(dense_flow_tex);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches * num_layers);
}
Prewarp::Prewarp()
{
prewarp_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
prewarp_fs_obj = compile_shader(read_file("prewarp.frag", _binary_prewarp_frag_data, _binary_prewarp_frag_size), GL_FRAGMENT_SHADER);
prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
uniform_image_tex = glGetUniformLocation(prewarp_program, "image_tex");
uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
}
void Prewarp::exec(GLuint tex_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height, int num_layers)
{
glUseProgram(prewarp_program);
bind_sampler(prewarp_program, uniform_image_tex, 0, tex_view, linear_sampler);
bind_sampler(prewarp_program, uniform_flow_tex, 1, flow_tex, nearest_sampler);
glViewport(0, 0, level_width, level_height);
glDisable(GL_BLEND);
fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
Derivatives::Derivatives()
{
derivatives_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
derivatives_fs_obj = compile_shader(read_file("derivatives.frag", _binary_derivatives_frag_data, _binary_derivatives_frag_size), GL_FRAGMENT_SHADER);
derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
uniform_tex = glGetUniformLocation(derivatives_program, "tex");
}
void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height, int num_layers)
{
glUseProgram(derivatives_program);
bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
glViewport(0, 0, level_width, level_height);
glDisable(GL_BLEND);
fbos.render_to(I_x_y_tex, beta_0_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
ComputeDiffusivity::ComputeDiffusivity()
{
diffusivity_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag", _binary_diffusivity_frag_data, _binary_diffusivity_frag_size), GL_FRAGMENT_SHADER);
diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
}
void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers)
{
glUseProgram(diffusivity_program);
bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
glViewport(0, 0, level_width, level_height);
glDisable(GL_BLEND);
fbos.render_to(diffusivity_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
SetupEquations::SetupEquations()
{
equations_vs_obj = compile_shader(read_file("equations.vert", _binary_equations_vert_data, _binary_equations_vert_size), GL_VERTEX_SHADER);
equations_fs_obj = compile_shader(read_file("equations.frag", _binary_equations_frag_data, _binary_equations_frag_size), GL_FRAGMENT_SHADER);
equations_program = link_program(equations_vs_obj, equations_fs_obj);
uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
uniform_gamma = glGetUniformLocation(equations_program, "gamma");
uniform_delta = glGetUniformLocation(equations_program, "delta");
uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
}
void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers)
{
glUseProgram(equations_program);
bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
glProgramUniform1f(equations_program, uniform_delta, vr_delta);
glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
glViewport(0, 0, (level_width + 1) / 2, level_height);
glDisable(GL_BLEND);
fbos.render_to(equation_red_tex, equation_black_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
SOR::SOR()
{
sor_vs_obj = compile_shader(read_file("sor.vert", _binary_sor_vert_data, _binary_sor_vert_size), GL_VERTEX_SHADER);
sor_fs_obj = compile_shader(read_file("sor.frag", _binary_sor_frag_data, _binary_sor_frag_size), GL_FRAGMENT_SHADER);
sor_program = link_program(sor_vs_obj, sor_fs_obj);
uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
uniform_equation_red_tex = glGetUniformLocation(sor_program, "equation_red_tex");
uniform_equation_black_tex = glGetUniformLocation(sor_program, "equation_black_tex");
uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
uniform_phase = glGetUniformLocation(sor_program, "phase");
uniform_num_nonzero_phases = glGetUniformLocation(sor_program, "num_nonzero_phases");
}
void SOR::exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, int num_layers, ScopedTimer *sor_timer)
{
glUseProgram(sor_program);
bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
bind_sampler(sor_program, uniform_equation_red_tex, 2, equation_red_tex, nearest_sampler);
bind_sampler(sor_program, uniform_equation_black_tex, 3, equation_black_tex, nearest_sampler);
if (!zero_diff_flow) {
glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
}
// NOTE: We bind to the texture we are rendering from, but we never write any value
// that we read in the same shader pass (we call discard for red values when we compute
// black, and vice versa), and we have barriers between the passes, so we're fine
// as per the spec.
glViewport(0, 0, level_width, level_height);
glDisable(GL_BLEND);
fbos.render_to(diff_flow_tex);
for (int i = 0; i < num_iterations; ++i) {
{
ScopedTimer timer("Red pass", sor_timer);
if (zero_diff_flow && i == 0) {
glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 0);
}
glProgramUniform1i(sor_program, uniform_phase, 0);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
glTextureBarrier();
}
{
ScopedTimer timer("Black pass", sor_timer);
if (zero_diff_flow && i == 0) {
glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 1);
}
glProgramUniform1i(sor_program, uniform_phase, 1);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
if (zero_diff_flow && i == 0) {
glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
}
if (i != num_iterations - 1) {
glTextureBarrier();
}
}
}
}
AddBaseFlow::AddBaseFlow()
{
add_flow_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag", _binary_add_base_flow_frag_data, _binary_add_base_flow_frag_size), GL_FRAGMENT_SHADER);
add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
}
void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height, int num_layers)
{
glUseProgram(add_flow_program);
bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
glViewport(0, 0, level_width, level_height);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
fbos.render_to(base_flow_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
ResizeFlow::ResizeFlow()
{
resize_flow_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag", _binary_resize_flow_frag_data, _binary_resize_flow_frag_size), GL_FRAGMENT_SHADER);
resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
}
void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height, int num_layers)
{
glUseProgram(resize_flow_program);
bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
glViewport(0, 0, output_width, output_height);
glDisable(GL_BLEND);
fbos.render_to(out_tex);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}
DISComputeFlow::DISComputeFlow(int width, int height, const OperatingPoint &op)
: width(width), height(height), op(op), motion_search(op), densify(op)
{
// Make some samplers.
glCreateSamplers(1, &nearest_sampler);
glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glCreateSamplers(1, &linear_sampler);
glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// The smoothness is sampled so that once we get to a smoothness involving
// a value outside the border, the diffusivity between the two becomes zero.
// Similarly, gradients are zero outside the border, since the edge is taken
// to be constant.
glCreateSamplers(1, &zero_border_sampler);
glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f }; // Note that zero alpha means we can also see whether we sampled outside the border or not.
glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
// Initial flow is zero, 1x1.
glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &initial_flow_tex);
glTextureStorage3D(initial_flow_tex, 1, GL_RG16F, 1, 1, 1);
glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
// Set up the vertex data that will be shared between all passes.
float vertices[] = {
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
1.0f, 0.0f,
};
glCreateBuffers(1, &vertex_vbo);
glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
glCreateVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
GLint position_attrib = 0; // Hard-coded in every vertex shader.
glEnableVertexArrayAttrib(vao, position_attrib);
glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
}
GLuint DISComputeFlow::exec(GLuint tex, FlowDirection flow_direction, ResizeStrategy resize_strategy)
{
int num_layers = (flow_direction == FORWARD_AND_BACKWARD) ? 2 : 1;
int prev_level_width = 1, prev_level_height = 1;
GLuint prev_level_flow_tex = initial_flow_tex;
GPUTimers timers;
glBindVertexArray(vao);
glDisable(GL_DITHER);
ScopedTimer total_timer("Compute flow", &timers);
for (int level = op.coarsest_level; level >= int(op.finest_level); --level) {
char timer_name[256];
snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
ScopedTimer level_timer(timer_name, &total_timer);
int level_width = width >> level;
int level_height = height >> level;
float patch_spacing_pixels = op.patch_size_pixels * (1.0f - op.patch_overlap_ratio);
// Make sure we have patches at least every Nth pixel, e.g. for width=9
// and patch_spacing=3 (the default), we put out patch centers in
// x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
// lock all the centers to integer coordinates if needed.
int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
// Make sure we always read from the correct level; the chosen
// mipmapping could otherwise be rather unpredictable, especially
// during motion search.
GLuint tex_view;
glGenTextures(1, &tex_view);
glTextureView(tex_view, GL_TEXTURE_2D_ARRAY, tex, GL_R8, level, 1, 0, 2);
// Create a new texture to hold the gradients.
GLuint grad_tex = pool.get_texture(GL_R32UI, level_width, level_height, num_layers);
// Find the derivative.
{
ScopedTimer timer("Sobel", &level_timer);
sobel.exec(tex_view, grad_tex, level_width, level_height, num_layers);
}
// Motion search to find the initial flow. We use the flow from the previous
// level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
// Create an output flow texture.
GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches, num_layers);
// And draw.
{
ScopedTimer timer("Motion search", &level_timer);
motion_search.exec(tex_view, grad_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches, num_layers);
}
pool.release_texture(grad_tex);
// Densification.
// Set up an output texture (cleared in Densify).
GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height, num_layers);
// And draw.
{
ScopedTimer timer("Densification", &level_timer);
densify.exec(tex_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches, num_layers);
}
pool.release_texture(flow_out_tex);
// Everything below here in the loop belongs to variational refinement.
ScopedTimer varref_timer("Variational refinement", &level_timer);
// Prewarping; create I and I_t, and a normalized base flow (so we don't
// have to normalize it over and over again, and also save some bandwidth).
//
// During the entire rest of the variational refinement, flow will be measured
// in pixels, not 0..1 normalized OpenGL texture coordinates.
// This is because variational refinement depends so heavily on derivatives,
// which are measured in intensity levels per pixel.
GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);
{
ScopedTimer timer("Prewarping", &varref_timer);
prewarp.exec(tex_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height, num_layers);
}
pool.release_texture(dense_flow_tex);
glDeleteTextures(1, &tex_view);
// TODO: If we don't have variational refinement, we don't need I and I_t,
// so computing them is a waste.
if (op.variational_refinement) {
// Calculate I_x and I_y. We're only calculating first derivatives;
// the others will be taken on-the-fly in order to sample from fewer
// textures overall, since sampling from the L1 cache is cheap.
// (TODO: Verify that this is indeed faster than making separate
// double-derivative textures.)
GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);
GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
{
ScopedTimer timer("First derivatives", &varref_timer);
derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height, num_layers);
}
pool.release_texture(I_tex);
// We need somewhere to store du and dv (the flow increment, relative
// to the non-refined base flow u0 and v0). It's initially garbage,
// but not read until we've written something sane to it.
GLuint diff_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);
// And for diffusivity.
GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
// And finally for the equation set. See SetupEquations for
// the storage format.
GLuint equation_red_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height, num_layers);
GLuint equation_black_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height, num_layers);
for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
// Calculate the diffusivity term for each pixel.
{
ScopedTimer timer("Compute diffusivity", &varref_timer);
compute_diffusivity.exec(base_flow_tex, diff_flow_tex, diffusivity_tex, level_width, level_height, outer_idx == 0, num_layers);
}
// Set up the 2x2 equation system for each pixel.
{
ScopedTimer timer("Set up equations", &varref_timer);
setup_equations.exec(I_x_y_tex, I_t_tex, diff_flow_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_red_tex, equation_black_tex, level_width, level_height, outer_idx == 0, num_layers);
}
// Run a few SOR iterations. Note that these are to/from the same texture.
{
ScopedTimer timer("SOR", &varref_timer);
sor.exec(diff_flow_tex, equation_red_tex, equation_black_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, num_layers, &timer);
}
}
pool.release_texture(I_t_tex);
pool.release_texture(I_x_y_tex);
pool.release_texture(beta_0_tex);
pool.release_texture(diffusivity_tex);
pool.release_texture(equation_red_tex);
pool.release_texture(equation_black_tex);
// Add the differential flow found by the variational refinement to the base flow,
// giving the final flow estimate for this level.
// The output is in base_flow_tex; we don't need to make a new texture.
{
ScopedTimer timer("Add differential flow", &varref_timer);
add_base_flow.exec(base_flow_tex, diff_flow_tex, level_width, level_height, num_layers);
}
pool.release_texture(diff_flow_tex);
}
if (prev_level_flow_tex != initial_flow_tex) {
pool.release_texture(prev_level_flow_tex);
}
prev_level_flow_tex = base_flow_tex;
prev_level_width = level_width;
prev_level_height = level_height;
}
total_timer.end();
if (!in_warmup) {
timers.print();
}
// Scale up the flow to the final size (if needed).
if (op.finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
return prev_level_flow_tex;
} else {
GLuint final_tex = pool.get_texture(GL_RG16F, width, height, num_layers);
resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height, num_layers);
pool.release_texture(prev_level_flow_tex);
return final_tex;
}
}
Splat::Splat(const OperatingPoint &op)
: op(op)
{
splat_vs_obj = compile_shader(read_file("splat.vert", _binary_splat_vert_data, _binary_splat_vert_size), GL_VERTEX_SHADER);
splat_fs_obj = compile_shader(read_file("splat.frag", _binary_splat_frag_data, _binary_splat_frag_size), GL_FRAGMENT_SHADER);
splat_program = link_program(splat_vs_obj, splat_fs_obj);
uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
uniform_alpha = glGetUniformLocation(splat_program, "alpha");
uniform_gray_tex = glGetUniformLocation(splat_program, "gray_tex");
uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
}
void Splat::exec(GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint flow_tex, GLuint depth_rb, int width, int height, float alpha)
{
glUseProgram(splat_program);
bind_sampler(splat_program, uniform_gray_tex, 0, gray_tex, linear_sampler);
bind_sampler(splat_program, uniform_flow_tex, 1, bidirectional_flow_tex, nearest_sampler);
glProgramUniform2f(splat_program, uniform_splat_size, op.splat_size / width, op.splat_size / height);
glProgramUniform1f(splat_program, uniform_alpha, alpha);
glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
glViewport(0, 0, width, height);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_LESS); // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
fbos.render_to(depth_rb, flow_tex);
// Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
// we've got it bound.
glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f); // Invalid flow.
glClearDepth(1.0f); // Effectively infinity.
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height * 2);
glDisable(GL_DEPTH_TEST);
}
HoleFill::HoleFill()
{
fill_vs_obj = compile_shader(read_file("hole_fill.vert", _binary_hole_fill_vert_data, _binary_hole_fill_vert_size), GL_VERTEX_SHADER);
fill_fs_obj = compile_shader(read_file("hole_fill.frag", _binary_hole_fill_frag_data, _binary_hole_fill_frag_size), GL_FRAGMENT_SHADER);
fill_program = link_program(fill_vs_obj, fill_fs_obj);
uniform_tex = glGetUniformLocation(fill_program, "tex");
uniform_z = glGetUniformLocation(fill_program, "z");
uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
}
void HoleFill::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
{
glUseProgram(fill_program);
bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
glViewport(0, 0, width, height);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS); // Only update the values > 0.999f (ie., only invalid pixels).
fbos.render_to(depth_rb, flow_tex); // NOTE: Reading and writing to the same texture.
// Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
for (int offs = 1; offs < width; offs *= 2) {
glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glTextureBarrier();
}
glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
// Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
// were overwritten in the last algorithm.
glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
for (int offs = 1; offs < width; offs *= 2) {
glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glTextureBarrier();
}
glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
// Up.
glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
for (int offs = 1; offs < height; offs *= 2) {
glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glTextureBarrier();
}
glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
// Down.
glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
for (int offs = 1; offs < height; offs *= 2) {
glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glTextureBarrier();
}
glDisable(GL_DEPTH_TEST);
}
HoleBlend::HoleBlend()
{
blend_vs_obj = compile_shader(read_file("hole_fill.vert", _binary_hole_fill_vert_data, _binary_hole_fill_vert_size), GL_VERTEX_SHADER); // Reuse the vertex shader from the fill.
blend_fs_obj = compile_shader(read_file("hole_blend.frag", _binary_hole_blend_frag_data, _binary_hole_blend_frag_size), GL_FRAGMENT_SHADER);
blend_program = link_program(blend_vs_obj, blend_fs_obj);
uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
uniform_z = glGetUniformLocation(blend_program, "z");
uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
}
void HoleBlend::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
{
glUseProgram(blend_program);
bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
glViewport(0, 0, width, height);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL); // Skip over all of the pixels that were never holes to begin with.
fbos.render_to(depth_rb, flow_tex); // NOTE: Reading and writing to the same texture.
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glDisable(GL_DEPTH_TEST);
}
Blend::Blend(bool split_ycbcr_output)
: split_ycbcr_output(split_ycbcr_output)
{
string frag_shader = read_file("blend.frag", _binary_blend_frag_data, _binary_blend_frag_size);
if (split_ycbcr_output) {
// Insert after the first #version line.
size_t offset = frag_shader.find('\n');
assert(offset != string::npos);
frag_shader = frag_shader.substr(0, offset + 1) + "#define SPLIT_YCBCR_OUTPUT 1\n" + frag_shader.substr(offset + 1);
}
blend_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
blend_fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
blend_program = link_program(blend_vs_obj, blend_fs_obj);
uniform_image_tex = glGetUniformLocation(blend_program, "image_tex");
uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
uniform_alpha = glGetUniformLocation(blend_program, "alpha");
uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
}
void Blend::exec(GLuint image_tex, GLuint flow_tex, GLuint output_tex, GLuint output2_tex, int level_width, int level_height, float alpha)
{
glUseProgram(blend_program);
bind_sampler(blend_program, uniform_image_tex, 0, image_tex, linear_sampler);
bind_sampler(blend_program, uniform_flow_tex, 1, flow_tex, linear_sampler); // May be upsampled.
glProgramUniform1f(blend_program, uniform_alpha, alpha);
glViewport(0, 0, level_width, level_height);
if (split_ycbcr_output) {
fbos_split.render_to(output_tex, output2_tex);
} else {
fbos.render_to(output_tex);
}
glDisable(GL_BLEND); // A bit ironic, perhaps.
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
Interpolate::Interpolate(const OperatingPoint &op, bool split_ycbcr_output)
: flow_level(op.finest_level),
split_ycbcr_output(split_ycbcr_output),
splat(op),
blend(split_ycbcr_output)
{
// Set up the vertex data that will be shared between all passes.
float vertices[] = {
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
1.0f, 0.0f,
};
glCreateBuffers(1, &vertex_vbo);
glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
glCreateVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
GLint position_attrib = 0; // Hard-coded in every vertex shader.
glEnableVertexArrayAttrib(vao, position_attrib);
glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
}
pair<GLuint, GLuint> Interpolate::exec(GLuint image_tex, GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint width, GLuint height, float alpha)
{
GPUTimers timers;
ScopedTimer total_timer("Interpolate", &timers);
glBindVertexArray(vao);
glDisable(GL_DITHER);
// Pick out the right level to test splatting results on.
GLuint tex_view;
glGenTextures(1, &tex_view);
glTextureView(tex_view, GL_TEXTURE_2D_ARRAY, gray_tex, GL_R8, flow_level, 1, 0, 2);
int flow_width = width >> flow_level;
int flow_height = height >> flow_level;
GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
GLuint depth_rb = pool.get_renderbuffer(GL_DEPTH_COMPONENT16, flow_width, flow_height); // Used for ranking flows.
{
ScopedTimer timer("Splat", &total_timer);
splat.exec(tex_view, bidirectional_flow_tex, flow_tex, depth_rb, flow_width, flow_height, alpha);
}
glDeleteTextures(1, &tex_view);
GLuint temp_tex[3];
temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
{
ScopedTimer timer("Fill holes", &total_timer);
hole_fill.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
hole_blend.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
}
pool.release_texture(temp_tex[0]);
pool.release_texture(temp_tex[1]);
pool.release_texture(temp_tex[2]);
pool.release_renderbuffer(depth_rb);
GLuint output_tex, output2_tex = 0;
if (split_ycbcr_output) {
output_tex = pool.get_texture(GL_R8, width, height);
output2_tex = pool.get_texture(GL_RG8, width, height);
{
ScopedTimer timer("Blend", &total_timer);
blend.exec(image_tex, flow_tex, output_tex, output2_tex, width, height, alpha);
}
} else {
output_tex = pool.get_texture(GL_RGBA8, width, height);
{
ScopedTimer timer("Blend", &total_timer);
blend.exec(image_tex, flow_tex, output_tex, 0, width, height, alpha);
}
}
pool.release_texture(flow_tex);
total_timer.end();
if (!in_warmup) {
timers.print();
}
return make_pair(output_tex, output2_tex);
}
GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height, GLuint num_layers)
{
{
lock_guard<mutex> lock(mu);
for (Texture &tex : textures) {
if (!tex.in_use && !tex.is_renderbuffer && tex.format == format &&
tex.width == width && tex.height == height && tex.num_layers == num_layers) {
tex.in_use = true;
return tex.tex_num;
}
}
}
Texture tex;
if (num_layers == 0) {
glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
glTextureStorage2D(tex.tex_num, 1, format, width, height);
} else {
glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &tex.tex_num);
glTextureStorage3D(tex.tex_num, 1, format, width, height, num_layers);
}
tex.format = format;
tex.width = width;
tex.height = height;
tex.num_layers = num_layers;
tex.in_use = true;
tex.is_renderbuffer = false;
{
lock_guard<mutex> lock(mu);
textures.push_back(tex);
}
return tex.tex_num;
}
GLuint TexturePool::get_renderbuffer(GLenum format, GLuint width, GLuint height)
{
{
lock_guard<mutex> lock(mu);
for (Texture &tex : textures) {
if (!tex.in_use && tex.is_renderbuffer && tex.format == format &&
tex.width == width && tex.height == height) {
tex.in_use = true;
return tex.tex_num;
}
}
}
Texture tex;
glCreateRenderbuffers(1, &tex.tex_num);
glNamedRenderbufferStorage(tex.tex_num, format, width, height);
tex.format = format;
tex.width = width;
tex.height = height;
tex.in_use = true;
tex.is_renderbuffer = true;
{
lock_guard<mutex> lock(mu);
textures.push_back(tex);
}
return tex.tex_num;
}
void TexturePool::release_texture(GLuint tex_num)
{
lock_guard<mutex> lock(mu);
for (Texture &tex : textures) {
if (!tex.is_renderbuffer && tex.tex_num == tex_num) {
assert(tex.in_use);
tex.in_use = false;
return;
}
}
assert(false);
}
void TexturePool::release_renderbuffer(GLuint tex_num)
{
lock_guard<mutex> lock(mu);
for (Texture &tex : textures) {
if (tex.is_renderbuffer && tex.tex_num == tex_num) {
assert(tex.in_use);
tex.in_use = false;
return;
}
}
//assert(false);
}
|