File: flow.cpp

package info (click to toggle)
nageru 2.3.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 3,120 kB
  • sloc: cpp: 39,131; perl: 94; sh: 18; makefile: 4
file content (1096 lines) | stat: -rw-r--r-- 43,760 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
#define NO_SDL_GLEXT 1

#include "flow.h"

#include "embedded_files.h"
#include "gpu_timers.h"
#include "shared/read_file.h"
#include "util.h"

#include <algorithm>
#include <assert.h>
#include <deque>
#include <dlfcn.h>
#include <epoxy/gl.h>
#include <map>
#include <memory>
#include <stack>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <vector>

#define BUFFER_OFFSET(i) ((char *)nullptr + (i))

using namespace std;

// Weighting constants for the different parts of the variational refinement.
// These don't correspond 1:1 to the values given in the DIS paper,
// since we have different normalizations and ranges in some cases.
// These are found through a simple grid search on some MPI-Sintel data,
// although the error (EPE) seems to be fairly insensitive to the precise values.
// Only the relative values matter, so we fix alpha (the smoothness constant)
// at unity and tweak the others.
//
// TODO: Maybe this should not be global.
float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;

// Some global OpenGL objects.
// TODO: These should really be part of DISComputeFlow.
GLuint nearest_sampler, linear_sampler, zero_border_sampler;
GLuint vertex_vbo;

int find_num_levels(int width, int height)
{
	int levels = 1;
	for (int w = width, h = height; w > 1 || h > 1;) {
		w >>= 1;
		h >>= 1;
		++levels;
	}
	return levels;
}

GLuint compile_shader(const string &shader_src, GLenum type)
{
	GLuint obj = glCreateShader(type);
	const GLchar *source[] = { shader_src.data() };
	const GLint length[] = { (GLint)shader_src.size() };
	glShaderSource(obj, 1, source, length);
	glCompileShader(obj);

	GLchar info_log[4096];
	GLsizei log_length = sizeof(info_log) - 1;
	glGetShaderInfoLog(obj, log_length, &log_length, info_log);
	info_log[log_length] = 0;
	if (strlen(info_log) > 0) {
		fprintf(stderr, "Shader compile log: %s\n", info_log);
	}

	GLint status;
	glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
	if (status == GL_FALSE) {
		// Add some line numbers to easier identify compile errors.
		string src_with_lines = "/*   1 */ ";
		size_t lineno = 1;
		for (char ch : shader_src) {
			src_with_lines.push_back(ch);
			if (ch == '\n') {
				char buf[32];
				snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
				src_with_lines += buf;
			}
		}

		fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
		abort();
	}

	return obj;
}

GLuint link_program(GLuint vs_obj, GLuint fs_obj)
{
	GLuint program = glCreateProgram();
	glAttachShader(program, vs_obj);
	glAttachShader(program, fs_obj);
	glLinkProgram(program);
	GLint success;
	glGetProgramiv(program, GL_LINK_STATUS, &success);
	if (success == GL_FALSE) {
		GLchar error_log[1024] = { 0 };
		glGetProgramInfoLog(program, 1024, nullptr, error_log);
		fprintf(stderr, "Error linking program: %s\n", error_log);
		abort();
	}
	return program;
}

void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
{
	if (location == -1) {
		return;
	}

	glBindTextureUnit(texture_unit, tex);
	glBindSampler(texture_unit, sampler);
	glProgramUniform1i(program, location, texture_unit);
}

template<size_t num_elements>
void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
{
	auto it = fbos.find(textures);
	if (it != fbos.end()) {
		glBindFramebuffer(GL_FRAMEBUFFER, it->second);
		return;
	}

	GLuint fbo;
	glCreateFramebuffers(1, &fbo);
	GLenum bufs[num_elements];
	for (size_t i = 0; i < num_elements; ++i) {
		glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
		bufs[i] = GL_COLOR_ATTACHMENT0 + i;
	}
	glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);

	fbos[textures] = fbo;
	glBindFramebuffer(GL_FRAMEBUFFER, fbo);
}

template<size_t num_elements>
void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_rb, const array<GLuint, num_elements> &textures)
{
	auto key = make_pair(depth_rb, textures);

	auto it = fbos.find(key);
	if (it != fbos.end()) {
		glBindFramebuffer(GL_FRAMEBUFFER, it->second);
		return;
	}

	GLuint fbo;
	glCreateFramebuffers(1, &fbo);
	GLenum bufs[num_elements];
	glNamedFramebufferRenderbuffer(fbo, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_rb);
	for (size_t i = 0; i < num_elements; ++i) {
		glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
		bufs[i] = GL_COLOR_ATTACHMENT0 + i;
	}
	glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);

	fbos[key] = fbo;
	glBindFramebuffer(GL_FRAMEBUFFER, fbo);
}

GrayscaleConversion::GrayscaleConversion()
{
	gray_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	gray_fs_obj = compile_shader(read_file("gray.frag", _binary_gray_frag_data, _binary_gray_frag_size), GL_FRAGMENT_SHADER);
	gray_program = link_program(gray_vs_obj, gray_fs_obj);

	// Set up the VAO containing all the required position/texcoord data.
	glCreateVertexArrays(1, &gray_vao);
	glBindVertexArray(gray_vao);

	GLint position_attrib = glGetAttribLocation(gray_program, "position");
	glEnableVertexArrayAttrib(gray_vao, position_attrib);
	glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));

	uniform_tex = glGetUniformLocation(gray_program, "tex");
}

void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height, int num_layers)
{
	glUseProgram(gray_program);
	bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);

	glViewport(0, 0, width, height);
	fbos.render_to(gray_tex);
	glBindVertexArray(gray_vao);
	glDisable(GL_BLEND);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

Sobel::Sobel()
{
	sobel_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	sobel_fs_obj = compile_shader(read_file("sobel.frag", _binary_sobel_frag_data, _binary_sobel_frag_size), GL_FRAGMENT_SHADER);
	sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);

	uniform_tex = glGetUniformLocation(sobel_program, "tex");
}

void Sobel::exec(GLint tex_view, GLint grad_tex, int level_width, int level_height, int num_layers)
{
	glUseProgram(sobel_program);
	bind_sampler(sobel_program, uniform_tex, 0, tex_view, nearest_sampler);

	glViewport(0, 0, level_width, level_height);
	fbos.render_to(grad_tex);
	glDisable(GL_BLEND);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

MotionSearch::MotionSearch(const OperatingPoint &op)
	: op(op)
{
	motion_vs_obj = compile_shader(read_file("motion_search.vert", _binary_motion_search_vert_data, _binary_motion_search_vert_size), GL_VERTEX_SHADER);
	motion_fs_obj = compile_shader(read_file("motion_search.frag", _binary_motion_search_frag_data, _binary_motion_search_frag_size), GL_FRAGMENT_SHADER);
	motion_search_program = link_program(motion_vs_obj, motion_fs_obj);

	uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
	uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
	uniform_out_flow_size = glGetUniformLocation(motion_search_program, "out_flow_size");
	uniform_image_tex = glGetUniformLocation(motion_search_program, "image_tex");
	uniform_grad_tex = glGetUniformLocation(motion_search_program, "grad_tex");
	uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
	uniform_patch_size = glGetUniformLocation(motion_search_program, "patch_size");
	uniform_num_iterations = glGetUniformLocation(motion_search_program, "num_iterations");
}

void MotionSearch::exec(GLuint tex_view, GLuint grad_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches, int num_layers)
{
	glUseProgram(motion_search_program);

	bind_sampler(motion_search_program, uniform_image_tex, 0, tex_view, linear_sampler);
	bind_sampler(motion_search_program, uniform_grad_tex, 1, grad_tex, nearest_sampler);
	bind_sampler(motion_search_program, uniform_flow_tex, 2, flow_tex, linear_sampler);

	glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
	glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
	glProgramUniform2f(motion_search_program, uniform_out_flow_size, width_patches, height_patches);
	glProgramUniform1ui(motion_search_program, uniform_patch_size, op.patch_size_pixels);
	glProgramUniform1ui(motion_search_program, uniform_num_iterations, op.search_iterations);

	glViewport(0, 0, width_patches, height_patches);
	fbos.render_to(flow_out_tex);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

Densify::Densify(const OperatingPoint &op)
	: op(op)
{
	densify_vs_obj = compile_shader(read_file("densify.vert", _binary_densify_vert_data, _binary_densify_vert_size), GL_VERTEX_SHADER);
	densify_fs_obj = compile_shader(read_file("densify.frag", _binary_densify_frag_data, _binary_densify_frag_size), GL_FRAGMENT_SHADER);
	densify_program = link_program(densify_vs_obj, densify_fs_obj);

	uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
	uniform_image_tex = glGetUniformLocation(densify_program, "image_tex");
	uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
}

void Densify::exec(GLuint tex_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches, int num_layers)
{
	glUseProgram(densify_program);

	bind_sampler(densify_program, uniform_image_tex, 0, tex_view, linear_sampler);
	bind_sampler(densify_program, uniform_flow_tex, 1, flow_tex, nearest_sampler);

	glProgramUniform2f(densify_program, uniform_patch_size,
	                   float(op.patch_size_pixels) / level_width,
	                   float(op.patch_size_pixels) / level_height);

	glViewport(0, 0, level_width, level_height);
	glEnable(GL_BLEND);
	glBlendFunc(GL_ONE, GL_ONE);
	fbos.render_to(dense_flow_tex);
	glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
	glClear(GL_COLOR_BUFFER_BIT);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches * num_layers);
}

Prewarp::Prewarp()
{
	prewarp_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	prewarp_fs_obj = compile_shader(read_file("prewarp.frag", _binary_prewarp_frag_data, _binary_prewarp_frag_size), GL_FRAGMENT_SHADER);
	prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);

	uniform_image_tex = glGetUniformLocation(prewarp_program, "image_tex");
	uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
}

void Prewarp::exec(GLuint tex_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height, int num_layers)
{
	glUseProgram(prewarp_program);

	bind_sampler(prewarp_program, uniform_image_tex, 0, tex_view, linear_sampler);
	bind_sampler(prewarp_program, uniform_flow_tex, 1, flow_tex, nearest_sampler);

	glViewport(0, 0, level_width, level_height);
	glDisable(GL_BLEND);
	fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

Derivatives::Derivatives()
{
	derivatives_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	derivatives_fs_obj = compile_shader(read_file("derivatives.frag", _binary_derivatives_frag_data, _binary_derivatives_frag_size), GL_FRAGMENT_SHADER);
	derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);

	uniform_tex = glGetUniformLocation(derivatives_program, "tex");
}

void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height, int num_layers)
{
	glUseProgram(derivatives_program);

	bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);

	glViewport(0, 0, level_width, level_height);
	glDisable(GL_BLEND);
	fbos.render_to(I_x_y_tex, beta_0_tex);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

ComputeDiffusivity::ComputeDiffusivity()
{
	diffusivity_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag", _binary_diffusivity_frag_data, _binary_diffusivity_frag_size), GL_FRAGMENT_SHADER);
	diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);

	uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
	uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
	uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
	uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
}

void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers)
{
	glUseProgram(diffusivity_program);

	bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
	bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
	glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
	glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);

	glViewport(0, 0, level_width, level_height);

	glDisable(GL_BLEND);
	fbos.render_to(diffusivity_tex);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

SetupEquations::SetupEquations()
{
	equations_vs_obj = compile_shader(read_file("equations.vert", _binary_equations_vert_data, _binary_equations_vert_size), GL_VERTEX_SHADER);
	equations_fs_obj = compile_shader(read_file("equations.frag", _binary_equations_frag_data, _binary_equations_frag_size), GL_FRAGMENT_SHADER);
	equations_program = link_program(equations_vs_obj, equations_fs_obj);

	uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
	uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
	uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
	uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
	uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
	uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
	uniform_gamma = glGetUniformLocation(equations_program, "gamma");
	uniform_delta = glGetUniformLocation(equations_program, "delta");
	uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
}

void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow, int num_layers)
{
	glUseProgram(equations_program);

	bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
	bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
	bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
	bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
	bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
	bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
	glProgramUniform1f(equations_program, uniform_delta, vr_delta);
	glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
	glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);

	glViewport(0, 0, (level_width + 1) / 2, level_height);
	glDisable(GL_BLEND);
	fbos.render_to(equation_red_tex, equation_black_tex);
	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

SOR::SOR()
{
	sor_vs_obj = compile_shader(read_file("sor.vert", _binary_sor_vert_data, _binary_sor_vert_size), GL_VERTEX_SHADER);
	sor_fs_obj = compile_shader(read_file("sor.frag", _binary_sor_frag_data, _binary_sor_frag_size), GL_FRAGMENT_SHADER);
	sor_program = link_program(sor_vs_obj, sor_fs_obj);

	uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
	uniform_equation_red_tex = glGetUniformLocation(sor_program, "equation_red_tex");
	uniform_equation_black_tex = glGetUniformLocation(sor_program, "equation_black_tex");
	uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
	uniform_phase = glGetUniformLocation(sor_program, "phase");
	uniform_num_nonzero_phases = glGetUniformLocation(sor_program, "num_nonzero_phases");
}

void SOR::exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, int num_layers, ScopedTimer *sor_timer)
{
	glUseProgram(sor_program);

	bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
	bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
	bind_sampler(sor_program, uniform_equation_red_tex, 2, equation_red_tex, nearest_sampler);
	bind_sampler(sor_program, uniform_equation_black_tex, 3, equation_black_tex, nearest_sampler);

	if (!zero_diff_flow) {
		glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
	}

	// NOTE: We bind to the texture we are rendering from, but we never write any value
	// that we read in the same shader pass (we call discard for red values when we compute
	// black, and vice versa), and we have barriers between the passes, so we're fine
	// as per the spec.
	glViewport(0, 0, level_width, level_height);
	glDisable(GL_BLEND);
	fbos.render_to(diff_flow_tex);

	for (int i = 0; i < num_iterations; ++i) {
		{
			ScopedTimer timer("Red pass", sor_timer);
			if (zero_diff_flow && i == 0) {
				glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 0);
			}
			glProgramUniform1i(sor_program, uniform_phase, 0);
			glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
			glTextureBarrier();
		}
		{
			ScopedTimer timer("Black pass", sor_timer);
			if (zero_diff_flow && i == 0) {
				glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 1);
			}
			glProgramUniform1i(sor_program, uniform_phase, 1);
			glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
			if (zero_diff_flow && i == 0) {
				glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
			}
			if (i != num_iterations - 1) {
				glTextureBarrier();
			}
		}
	}
}

AddBaseFlow::AddBaseFlow()
{
	add_flow_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag", _binary_add_base_flow_frag_data, _binary_add_base_flow_frag_size), GL_FRAGMENT_SHADER);
	add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);

	uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
}

void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height, int num_layers)
{
	glUseProgram(add_flow_program);

	bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);

	glViewport(0, 0, level_width, level_height);
	glEnable(GL_BLEND);
	glBlendFunc(GL_ONE, GL_ONE);
	fbos.render_to(base_flow_tex);

	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

ResizeFlow::ResizeFlow()
{
	resize_flow_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag", _binary_resize_flow_frag_data, _binary_resize_flow_frag_size), GL_FRAGMENT_SHADER);
	resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);

	uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
	uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
}

void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height, int num_layers)
{
	glUseProgram(resize_flow_program);

	bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);

	glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);

	glViewport(0, 0, output_width, output_height);
	glDisable(GL_BLEND);
	fbos.render_to(out_tex);

	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, num_layers);
}

DISComputeFlow::DISComputeFlow(int width, int height, const OperatingPoint &op)
	: width(width), height(height), op(op), motion_search(op), densify(op)
{
	// Make some samplers.
	glCreateSamplers(1, &nearest_sampler);
	glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	glCreateSamplers(1, &linear_sampler);
	glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	// The smoothness is sampled so that once we get to a smoothness involving
	// a value outside the border, the diffusivity between the two becomes zero.
	// Similarly, gradients are zero outside the border, since the edge is taken
	// to be constant.
	glCreateSamplers(1, &zero_border_sampler);
	glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
	glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
	float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
	glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);

	// Initial flow is zero, 1x1.
	glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &initial_flow_tex);
	glTextureStorage3D(initial_flow_tex, 1, GL_RG16F, 1, 1, 1);
	glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);

	// Set up the vertex data that will be shared between all passes.
	float vertices[] = {
		0.0f, 1.0f,
		0.0f, 0.0f,
		1.0f, 1.0f,
		1.0f, 0.0f,
	};
	glCreateBuffers(1, &vertex_vbo);
	glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);

	glCreateVertexArrays(1, &vao);
	glBindVertexArray(vao);
	glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);

	GLint position_attrib = 0;  // Hard-coded in every vertex shader.
	glEnableVertexArrayAttrib(vao, position_attrib);
	glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
}

GLuint DISComputeFlow::exec(GLuint tex, FlowDirection flow_direction, ResizeStrategy resize_strategy)
{
	int num_layers = (flow_direction == FORWARD_AND_BACKWARD) ? 2 : 1;
	int prev_level_width = 1, prev_level_height = 1;
	GLuint prev_level_flow_tex = initial_flow_tex;

	GPUTimers timers;

	glBindVertexArray(vao);
	glDisable(GL_DITHER);

	ScopedTimer total_timer("Compute flow", &timers);
	for (int level = op.coarsest_level; level >= int(op.finest_level); --level) {
		char timer_name[256];
		snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
		ScopedTimer level_timer(timer_name, &total_timer);

		int level_width = width >> level;
		int level_height = height >> level;
		float patch_spacing_pixels = op.patch_size_pixels * (1.0f - op.patch_overlap_ratio);

		// Make sure we have patches at least every Nth pixel, e.g. for width=9
		// and patch_spacing=3 (the default), we put out patch centers in
		// x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
		// lock all the centers to integer coordinates if needed.
		int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
		int height_patches = 1 + ceil(level_height / patch_spacing_pixels);

		// Make sure we always read from the correct level; the chosen
		// mipmapping could otherwise be rather unpredictable, especially
		// during motion search.
		GLuint tex_view;
		glGenTextures(1, &tex_view);
		glTextureView(tex_view, GL_TEXTURE_2D_ARRAY, tex, GL_R8, level, 1, 0, 2);

		// Create a new texture to hold the gradients.
		GLuint grad_tex = pool.get_texture(GL_R32UI, level_width, level_height, num_layers);

		// Find the derivative.
		{
			ScopedTimer timer("Sobel", &level_timer);
			sobel.exec(tex_view, grad_tex, level_width, level_height, num_layers);
		}

		// Motion search to find the initial flow. We use the flow from the previous
		// level (sampled bilinearly; no fancy tricks) as a guide, then search from there.

		// Create an output flow texture.
		GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches, num_layers);

		// And draw.
		{
			ScopedTimer timer("Motion search", &level_timer);
			motion_search.exec(tex_view, grad_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches, num_layers);
		}
		pool.release_texture(grad_tex);

		// Densification.

		// Set up an output texture (cleared in Densify).
		GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height, num_layers);

		// And draw.
		{
			ScopedTimer timer("Densification", &level_timer);
			densify.exec(tex_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches, num_layers);
		}
		pool.release_texture(flow_out_tex);

		// Everything below here in the loop belongs to variational refinement.
		ScopedTimer varref_timer("Variational refinement", &level_timer);

		// Prewarping; create I and I_t, and a normalized base flow (so we don't
		// have to normalize it over and over again, and also save some bandwidth).
		//
		// During the entire rest of the variational refinement, flow will be measured
		// in pixels, not 0..1 normalized OpenGL texture coordinates.
		// This is because variational refinement depends so heavily on derivatives,
		// which are measured in intensity levels per pixel.
		GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
		GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
		GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);
		{
			ScopedTimer timer("Prewarping", &varref_timer);
			prewarp.exec(tex_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height, num_layers);
		}
		pool.release_texture(dense_flow_tex);
		glDeleteTextures(1, &tex_view);

		// TODO: If we don't have variational refinement, we don't need I and I_t,
		// so computing them is a waste.
		if (op.variational_refinement) {
			// Calculate I_x and I_y. We're only calculating first derivatives;
			// the others will be taken on-the-fly in order to sample from fewer
			// textures overall, since sampling from the L1 cache is cheap.
			// (TODO: Verify that this is indeed faster than making separate
			// double-derivative textures.)
			GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);
			GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);
			{
				ScopedTimer timer("First derivatives", &varref_timer);
				derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height, num_layers);
			}
			pool.release_texture(I_tex);

			// We need somewhere to store du and dv (the flow increment, relative
			// to the non-refined base flow u0 and v0). It's initially garbage,
			// but not read until we've written something sane to it.
			GLuint diff_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height, num_layers);

			// And for diffusivity.
			GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height, num_layers);

			// And finally for the equation set. See SetupEquations for
			// the storage format.
			GLuint equation_red_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height, num_layers);
			GLuint equation_black_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height, num_layers);

			for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
				// Calculate the diffusivity term for each pixel.
				{
					ScopedTimer timer("Compute diffusivity", &varref_timer);
					compute_diffusivity.exec(base_flow_tex, diff_flow_tex, diffusivity_tex, level_width, level_height, outer_idx == 0, num_layers);
				}

				// Set up the 2x2 equation system for each pixel.
				{
					ScopedTimer timer("Set up equations", &varref_timer);
					setup_equations.exec(I_x_y_tex, I_t_tex, diff_flow_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_red_tex, equation_black_tex, level_width, level_height, outer_idx == 0, num_layers);
				}

				// Run a few SOR iterations. Note that these are to/from the same texture.
				{
					ScopedTimer timer("SOR", &varref_timer);
					sor.exec(diff_flow_tex, equation_red_tex, equation_black_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, num_layers, &timer);
				}
			}

			pool.release_texture(I_t_tex);
			pool.release_texture(I_x_y_tex);
			pool.release_texture(beta_0_tex);
			pool.release_texture(diffusivity_tex);
			pool.release_texture(equation_red_tex);
			pool.release_texture(equation_black_tex);

			// Add the differential flow found by the variational refinement to the base flow,
			// giving the final flow estimate for this level.
			// The output is in base_flow_tex; we don't need to make a new texture.
			{
				ScopedTimer timer("Add differential flow", &varref_timer);
				add_base_flow.exec(base_flow_tex, diff_flow_tex, level_width, level_height, num_layers);
			}
			pool.release_texture(diff_flow_tex);
		}

		if (prev_level_flow_tex != initial_flow_tex) {
			pool.release_texture(prev_level_flow_tex);
		}
		prev_level_flow_tex = base_flow_tex;
		prev_level_width = level_width;
		prev_level_height = level_height;
	}
	total_timer.end();

	if (!in_warmup) {
		timers.print();
	}

	// Scale up the flow to the final size (if needed).
	if (op.finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
		return prev_level_flow_tex;
	} else {
		GLuint final_tex = pool.get_texture(GL_RG16F, width, height, num_layers);
		resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height, num_layers);
		pool.release_texture(prev_level_flow_tex);
		return final_tex;
	}
}

Splat::Splat(const OperatingPoint &op)
	: op(op)
{
	splat_vs_obj = compile_shader(read_file("splat.vert", _binary_splat_vert_data, _binary_splat_vert_size), GL_VERTEX_SHADER);
	splat_fs_obj = compile_shader(read_file("splat.frag", _binary_splat_frag_data, _binary_splat_frag_size), GL_FRAGMENT_SHADER);
	splat_program = link_program(splat_vs_obj, splat_fs_obj);

	uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
	uniform_alpha = glGetUniformLocation(splat_program, "alpha");
	uniform_gray_tex = glGetUniformLocation(splat_program, "gray_tex");
	uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
	uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
}

void Splat::exec(GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint flow_tex, GLuint depth_rb, int width, int height, float alpha)
{
	glUseProgram(splat_program);

	bind_sampler(splat_program, uniform_gray_tex, 0, gray_tex, linear_sampler);
	bind_sampler(splat_program, uniform_flow_tex, 1, bidirectional_flow_tex, nearest_sampler);

	glProgramUniform2f(splat_program, uniform_splat_size, op.splat_size / width, op.splat_size / height);
	glProgramUniform1f(splat_program, uniform_alpha, alpha);
	glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);

	glViewport(0, 0, width, height);
	glDisable(GL_BLEND);
	glEnable(GL_DEPTH_TEST);
	glDepthMask(GL_TRUE);
	glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)

	fbos.render_to(depth_rb, flow_tex);

	// Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
	// we've got it bound.
	glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
	glClearDepth(1.0f);  // Effectively infinity.
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

	glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height * 2);

	glDisable(GL_DEPTH_TEST);
}

HoleFill::HoleFill()
{
	fill_vs_obj = compile_shader(read_file("hole_fill.vert", _binary_hole_fill_vert_data, _binary_hole_fill_vert_size), GL_VERTEX_SHADER);
	fill_fs_obj = compile_shader(read_file("hole_fill.frag", _binary_hole_fill_frag_data, _binary_hole_fill_frag_size), GL_FRAGMENT_SHADER);
	fill_program = link_program(fill_vs_obj, fill_fs_obj);

	uniform_tex = glGetUniformLocation(fill_program, "tex");
	uniform_z = glGetUniformLocation(fill_program, "z");
	uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
}

void HoleFill::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
{
	glUseProgram(fill_program);

	bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);

	glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);

	glViewport(0, 0, width, height);
	glDisable(GL_BLEND);
	glEnable(GL_DEPTH_TEST);
	glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).

	fbos.render_to(depth_rb, flow_tex);  // NOTE: Reading and writing to the same texture.

	// Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
	for (int offs = 1; offs < width; offs *= 2) {
		glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
		glTextureBarrier();
	}
	glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);

	// Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
	// were overwritten in the last algorithm.
	glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
	for (int offs = 1; offs < width; offs *= 2) {
		glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
		glTextureBarrier();
	}
	glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);

	// Up.
	glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
	for (int offs = 1; offs < height; offs *= 2) {
		glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
		glTextureBarrier();
	}
	glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);

	// Down.
	glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
	for (int offs = 1; offs < height; offs *= 2) {
		glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
		glTextureBarrier();
	}

	glDisable(GL_DEPTH_TEST);
}

HoleBlend::HoleBlend()
{
	blend_vs_obj = compile_shader(read_file("hole_fill.vert", _binary_hole_fill_vert_data, _binary_hole_fill_vert_size), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
	blend_fs_obj = compile_shader(read_file("hole_blend.frag", _binary_hole_blend_frag_data, _binary_hole_blend_frag_size), GL_FRAGMENT_SHADER);
	blend_program = link_program(blend_vs_obj, blend_fs_obj);

	uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
	uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
	uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
	uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
	uniform_z = glGetUniformLocation(blend_program, "z");
	uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
}

void HoleBlend::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
{
	glUseProgram(blend_program);

	bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
	bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
	bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
	bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);

	glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
	glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);

	glViewport(0, 0, width, height);
	glDisable(GL_BLEND);
	glEnable(GL_DEPTH_TEST);
	glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.

	fbos.render_to(depth_rb, flow_tex);  // NOTE: Reading and writing to the same texture.

	glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

	glDisable(GL_DEPTH_TEST);
}

Blend::Blend(bool split_ycbcr_output)
	: split_ycbcr_output(split_ycbcr_output)
{
	string frag_shader = read_file("blend.frag", _binary_blend_frag_data, _binary_blend_frag_size);
	if (split_ycbcr_output) {
		// Insert after the first #version line.
		size_t offset = frag_shader.find('\n');
		assert(offset != string::npos);
		frag_shader = frag_shader.substr(0, offset + 1) + "#define SPLIT_YCBCR_OUTPUT 1\n" + frag_shader.substr(offset + 1);
	}

	blend_vs_obj = compile_shader(read_file("vs.vert", _binary_vs_vert_data, _binary_vs_vert_size), GL_VERTEX_SHADER);
	blend_fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
	blend_program = link_program(blend_vs_obj, blend_fs_obj);

	uniform_image_tex = glGetUniformLocation(blend_program, "image_tex");
	uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
	uniform_alpha = glGetUniformLocation(blend_program, "alpha");
	uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
}

void Blend::exec(GLuint image_tex, GLuint flow_tex, GLuint output_tex, GLuint output2_tex, int level_width, int level_height, float alpha)
{
	glUseProgram(blend_program);
	bind_sampler(blend_program, uniform_image_tex, 0, image_tex, linear_sampler);
	bind_sampler(blend_program, uniform_flow_tex, 1, flow_tex, linear_sampler);  // May be upsampled.
	glProgramUniform1f(blend_program, uniform_alpha, alpha);

	glViewport(0, 0, level_width, level_height);
	if (split_ycbcr_output) {
		fbos_split.render_to(output_tex, output2_tex);
	} else {
		fbos.render_to(output_tex);
	}
	glDisable(GL_BLEND);  // A bit ironic, perhaps.
	glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}

Interpolate::Interpolate(const OperatingPoint &op, bool split_ycbcr_output)
	: flow_level(op.finest_level),
	  split_ycbcr_output(split_ycbcr_output),
	  splat(op),
	  blend(split_ycbcr_output)
{
	// Set up the vertex data that will be shared between all passes.
	float vertices[] = {
		0.0f, 1.0f,
		0.0f, 0.0f,
		1.0f, 1.0f,
		1.0f, 0.0f,
	};
	glCreateBuffers(1, &vertex_vbo);
	glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);

	glCreateVertexArrays(1, &vao);
	glBindVertexArray(vao);
	glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);

	GLint position_attrib = 0;  // Hard-coded in every vertex shader.
	glEnableVertexArrayAttrib(vao, position_attrib);
	glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
}

pair<GLuint, GLuint> Interpolate::exec(GLuint image_tex, GLuint gray_tex, GLuint bidirectional_flow_tex, GLuint width, GLuint height, float alpha)
{
	GPUTimers timers;

	ScopedTimer total_timer("Interpolate", &timers);

	glBindVertexArray(vao);
	glDisable(GL_DITHER);

	// Pick out the right level to test splatting results on.
	GLuint tex_view;
	glGenTextures(1, &tex_view);
	glTextureView(tex_view, GL_TEXTURE_2D_ARRAY, gray_tex, GL_R8, flow_level, 1, 0, 2);

	int flow_width = width >> flow_level;
	int flow_height = height >> flow_level;

	GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
	GLuint depth_rb = pool.get_renderbuffer(GL_DEPTH_COMPONENT16, flow_width, flow_height);  // Used for ranking flows.

	{
		ScopedTimer timer("Splat", &total_timer);
		splat.exec(tex_view, bidirectional_flow_tex, flow_tex, depth_rb, flow_width, flow_height, alpha);
	}
	glDeleteTextures(1, &tex_view);

	GLuint temp_tex[3];
	temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
	temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
	temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);

	{
		ScopedTimer timer("Fill holes", &total_timer);
		hole_fill.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
		hole_blend.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
	}

	pool.release_texture(temp_tex[0]);
	pool.release_texture(temp_tex[1]);
	pool.release_texture(temp_tex[2]);
	pool.release_renderbuffer(depth_rb);

	GLuint output_tex, output2_tex = 0;
	if (split_ycbcr_output) {
		output_tex = pool.get_texture(GL_R8, width, height);
		output2_tex = pool.get_texture(GL_RG8, width, height);
		{
			ScopedTimer timer("Blend", &total_timer);
			blend.exec(image_tex, flow_tex, output_tex, output2_tex, width, height, alpha);
		}
	} else {
		output_tex = pool.get_texture(GL_RGBA8, width, height);
		{
			ScopedTimer timer("Blend", &total_timer);
			blend.exec(image_tex, flow_tex, output_tex, 0, width, height, alpha);
		}
	}
	pool.release_texture(flow_tex);
	total_timer.end();
	if (!in_warmup) {
		timers.print();
	}

	return make_pair(output_tex, output2_tex);
}

GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height, GLuint num_layers)
{
	{
		lock_guard<mutex> lock(mu);
		for (Texture &tex : textures) {
			if (!tex.in_use && !tex.is_renderbuffer && tex.format == format &&
			    tex.width == width && tex.height == height && tex.num_layers == num_layers) {
				tex.in_use = true;
				return tex.tex_num;
			}
		}
	}

	Texture tex;
	if (num_layers == 0) {
		glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
		glTextureStorage2D(tex.tex_num, 1, format, width, height);
	} else {
		glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &tex.tex_num);
		glTextureStorage3D(tex.tex_num, 1, format, width, height, num_layers);
	}
	tex.format = format;
	tex.width = width;
	tex.height = height;
	tex.num_layers = num_layers;
	tex.in_use = true;
	tex.is_renderbuffer = false;
	{
		lock_guard<mutex> lock(mu);
		textures.push_back(tex);
	}
	return tex.tex_num;
}

GLuint TexturePool::get_renderbuffer(GLenum format, GLuint width, GLuint height)
{
	{
		lock_guard<mutex> lock(mu);
		for (Texture &tex : textures) {
			if (!tex.in_use && tex.is_renderbuffer && tex.format == format &&
			    tex.width == width && tex.height == height) {
				tex.in_use = true;
				return tex.tex_num;
			}
		}
	}

	Texture tex;
	glCreateRenderbuffers(1, &tex.tex_num);
	glNamedRenderbufferStorage(tex.tex_num, format, width, height);

	tex.format = format;
	tex.width = width;
	tex.height = height;
	tex.in_use = true;
	tex.is_renderbuffer = true;
	{
		lock_guard<mutex> lock(mu);
		textures.push_back(tex);
	}
	return tex.tex_num;
}

void TexturePool::release_texture(GLuint tex_num)
{
	lock_guard<mutex> lock(mu);
	for (Texture &tex : textures) {
		if (!tex.is_renderbuffer && tex.tex_num == tex_num) {
			assert(tex.in_use);
			tex.in_use = false;
			return;
		}
	}
	assert(false);
}

void TexturePool::release_renderbuffer(GLuint tex_num)
{
	lock_guard<mutex> lock(mu);
	for (Texture &tex : textures) {
		if (tex.is_renderbuffer && tex.tex_num == tex_num) {
			assert(tex.in_use);
			tex.in_use = false;
			return;
		}
	}
	//assert(false);
}