File: flow_main.cpp

package info (click to toggle)
nageru 2.3.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 3,120 kB
  • sloc: cpp: 39,131; perl: 94; sh: 18; makefile: 4
file content (495 lines) | stat: -rw-r--r-- 16,753 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#define NO_SDL_GLEXT 1

#include "flow.h"
#include "gpu_timers.h"
#include "util.h"

#include <SDL2/SDL.h>
#include <SDL2/SDL_error.h>
#include <SDL2/SDL_events.h>
#include <SDL2/SDL_image.h>
#include <SDL2/SDL_keyboard.h>
#include <SDL2/SDL_mouse.h>
#include <SDL2/SDL_video.h>
#include <algorithm>
#include <assert.h>
#include <deque>
#include <epoxy/gl.h>
#include <getopt.h>
#include <map>
#include <memory>
#include <stack>
#include <stdio.h>
#include <unistd.h>
#include <vector>

#define BUFFER_OFFSET(i) ((char *)nullptr + (i))

using namespace std;

SDL_Window *window;

bool enable_warmup = false;
bool enable_variational_refinement = true;  // Just for debugging.
bool enable_interpolation = false;

extern float vr_alpha, vr_delta, vr_gamma;

// Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
struct ReadInProgress {
	GLuint pbo;
	string filename0, filename1;
	string flow_filename, ppm_filename;  // Either may be empty for no write.
};
stack<GLuint> spare_pbos;
deque<ReadInProgress> reads_in_progress;

enum MipmapPolicy {
	WITHOUT_MIPMAPS,
	WITH_MIPMAPS
};

GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
{
	SDL_Surface *surf = IMG_Load(filename);
	if (surf == nullptr) {
		fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
		abort();
	}

	// For whatever reason, SDL doesn't support converting to YUV surfaces
	// nor grayscale, so we'll do it ourselves.
	SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
	if (rgb_surf == nullptr) {
		fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
		abort();
	}

	SDL_FreeSurface(surf);

	unsigned width = rgb_surf->w, height = rgb_surf->h;
	const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
	unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);

	// Extract the Y component, and convert to bottom-left origin.
	for (unsigned y = 0; y < height; ++y) {
		unsigned y2 = height - 1 - y;
		memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
	}
	SDL_FreeSurface(rgb_surf);

	int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;

	GLuint tex;
	glCreateTextures(GL_TEXTURE_2D, 1, &tex);
	glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
	glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());

	if (mipmaps == WITH_MIPMAPS) {
		glGenerateTextureMipmap(tex);
	}

	*width_ret = width;
	*height_ret = height;

	return tex;
}

// OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
{
	for (unsigned i = 0; i < width * height; ++i) {
		dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
	}
}

// Not relevant for RGB.
void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
{
}

void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
{
	FILE *flowfp = fopen(filename, "wb");
	fprintf(flowfp, "FEIH");
	fwrite(&width, 4, 1, flowfp);
	fwrite(&height, 4, 1, flowfp);
	for (unsigned y = 0; y < height; ++y) {
		int yy = height - y - 1;
		fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
	}
	fclose(flowfp);
}

// Not relevant for RGB.
void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
{
	assert(false);
}

void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
{
	FILE *fp = fopen(filename, "wb");
	fprintf(fp, "P6\n%d %d\n255\n", width, height);
	for (unsigned y = 0; y < unsigned(height); ++y) {
		int yy = height - y - 1;
		for (unsigned x = 0; x < unsigned(width); ++x) {
			float du = dense_flow[(yy * width + x) * 2 + 0];
			float dv = dense_flow[(yy * width + x) * 2 + 1];

			uint8_t r, g, b;
			flow2rgb(du, dv, &r, &g, &b);
			putc(r, fp);
			putc(g, fp);
			putc(b, fp);
		}
	}
	fclose(fp);
}

void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
{
	unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);

	FILE *fp = fopen(filename, "wb");
	fprintf(fp, "P6\n%d %d\n255\n", width, height);
	for (unsigned y = 0; y < height; ++y) {
		unsigned y2 = height - 1 - y;
		for (size_t x = 0; x < width; ++x) {
			memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
		}
		fwrite(rgb_line.get(), width * 3, 1, fp);
	}
	fclose(fp);
}

struct FlowType {
	using type = float;
	static constexpr GLenum gl_format = GL_RG;
	static constexpr GLenum gl_type = GL_FLOAT;
	static constexpr int num_channels = 2;
};

struct RGBAType {
	using type = uint8_t;
	static constexpr GLenum gl_format = GL_RGBA;
	static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
	static constexpr int num_channels = 4;
};

template<class Type>
void finish_one_read(GLuint width, GLuint height)
{
	using T = typename Type::type;
	constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);

	assert(!reads_in_progress.empty());
	ReadInProgress read = reads_in_progress.front();
	reads_in_progress.pop_front();

	unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
	void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
	memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
	glUnmapNamedBuffer(read.pbo);
	spare_pbos.push(read.pbo);

	flip_coordinate_system(flow.get(), width, height);
	if (!read.flow_filename.empty()) {
		write_flow(read.flow_filename.c_str(), flow.get(), width, height);
		fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
	}
	if (!read.ppm_filename.empty()) {
		write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
	}
}

template<class Type>
void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
{
	using T = typename Type::type;
	constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);

	if (spare_pbos.empty()) {
		finish_one_read<Type>(width, height);
	}
	assert(!spare_pbos.empty());
	reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
	glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
	spare_pbos.pop();
	glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
	glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
}

void compute_flow_only(int argc, char **argv, int optind)
{
	const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
	const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
	const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";

	// Load pictures.
	unsigned width1, height1, width2, height2;
	GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
	GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);

	if (width1 != width2 || height1 != height2) {
		fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
		        width1, height1, width2, height2);
		abort();
	}

	// Move them into an array texture, since that's how the rest of the code
	// would like them.
	GLuint image_tex;
	glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &image_tex);
	glTextureStorage3D(image_tex, 1, GL_RGBA8, width1, height1, 2);
	glCopyImageSubData(tex0, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, width1, height1, 1);
	glCopyImageSubData(tex1, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 1, width1, height1, 1);
	glDeleteTextures(1, &tex0);
	glDeleteTextures(1, &tex1);

	// Set up some PBOs to do asynchronous readback.
	GLuint pbos[5];
	glCreateBuffers(5, pbos);
	for (int i = 0; i < 5; ++i) {
		glNamedBufferData(pbos[i], width1 * height1 * 2 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
		spare_pbos.push(pbos[i]);
	}

	int levels = find_num_levels(width1, height1);

	GLuint tex_gray;
	glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &tex_gray);
	glTextureStorage3D(tex_gray, levels, GL_R8, width1, height1, 2);

	OperatingPoint op = operating_point3;
	if (!enable_variational_refinement) {
		op.variational_refinement = false;
	}

	DISComputeFlow compute_flow(width1, height1, op);  // Must be initialized before gray.
	GrayscaleConversion gray;
	gray.exec(image_tex, tex_gray, width1, height1, /*num_layers=*/2);
	glGenerateTextureMipmap(tex_gray);

	if (enable_warmup) {
		in_warmup = true;
		for (int i = 0; i < 10; ++i) {
			GLuint final_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
			compute_flow.release_texture(final_tex);
		}
		in_warmup = false;
	}

	GLuint final_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
	//GLuint final_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD_AND_BACKWARD, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);

	schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
	compute_flow.release_texture(final_tex);

	// See if there are more flows on the command line (ie., more than three arguments),
	// and if so, process them.
	int num_flows = (argc - optind) / 3;
	for (int i = 1; i < num_flows; ++i) {
		const char *filename0 = argv[optind + i * 3 + 0];
		const char *filename1 = argv[optind + i * 3 + 1];
		const char *flow_filename = argv[optind + i * 3 + 2];
		GLuint width, height;
		GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
		if (width != width1 || height != height1) {
			fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
			        filename0, width, height, width1, height1);
			abort();
		}
		glCopyImageSubData(tex0, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, width1, height1, 1);
		glDeleteTextures(1, &tex0);

		GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
		if (width != width1 || height != height1) {
			fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
			        filename1, width, height, width1, height1);
			abort();
		}
		glCopyImageSubData(tex1, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 1, width1, height1, 1);
		glDeleteTextures(1, &tex1);

		gray.exec(image_tex, tex_gray, width1, height1, /*num_layers=*/2);
		glGenerateTextureMipmap(tex_gray);

		GLuint final_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);

		schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
		compute_flow.release_texture(final_tex);
	}
	glDeleteTextures(1, &tex_gray);

	while (!reads_in_progress.empty()) {
		finish_one_read<FlowType>(width1, height1);
	}
}

// Interpolate images based on
//
//   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
//   Using Optical Flow”
//
// or at least a reasonable subset thereof. Unfinished.
void interpolate_image(int argc, char **argv, int optind)
{
	const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
	const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
	//const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";

	// Load pictures.
	unsigned width1, height1, width2, height2;
	GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
	GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);

	if (width1 != width2 || height1 != height2) {
		fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
		        width1, height1, width2, height2);
		abort();
	}

	// Move them into an array texture, since that's how the rest of the code
	// would like them.
	int levels = find_num_levels(width1, height1);
	GLuint image_tex;
	glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &image_tex);
	glTextureStorage3D(image_tex, levels, GL_RGBA8, width1, height1, 2);
	glCopyImageSubData(tex0, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, width1, height1, 1);
	glCopyImageSubData(tex1, GL_TEXTURE_2D, 0, 0, 0, 0, image_tex, GL_TEXTURE_2D_ARRAY, 0, 0, 0, 1, width1, height1, 1);
	glDeleteTextures(1, &tex0);
	glDeleteTextures(1, &tex1);
	glGenerateTextureMipmap(image_tex);

	// Set up some PBOs to do asynchronous readback.
	GLuint pbos[5];
	glCreateBuffers(5, pbos);
	for (int i = 0; i < 5; ++i) {
		glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
		spare_pbos.push(pbos[i]);
	}

	OperatingPoint op = operating_point3;
	if (!enable_variational_refinement) {
		op.variational_refinement = false;
	}
	DISComputeFlow compute_flow(width1, height1, op);
	GrayscaleConversion gray;
	Interpolate interpolate(op, /*split_ycbcr_output=*/false);

	GLuint tex_gray;
	glCreateTextures(GL_TEXTURE_2D_ARRAY, 1, &tex_gray);
	glTextureStorage3D(tex_gray, levels, GL_R8, width1, height1, 2);
	gray.exec(image_tex, tex_gray, width1, height1, /*num_layers=*/2);
	glGenerateTextureMipmap(tex_gray);

	if (enable_warmup) {
		in_warmup = true;
		for (int i = 0; i < 10; ++i) {
			GLuint bidirectional_flow_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD_AND_BACKWARD, DISComputeFlow::DO_NOT_RESIZE_FLOW);
			GLuint interpolated_tex = interpolate.exec(image_tex, tex_gray, bidirectional_flow_tex, width1, height1, 0.5f).first;
			compute_flow.release_texture(bidirectional_flow_tex);
			interpolate.release_texture(interpolated_tex);
		}
		in_warmup = false;
	}

	GLuint bidirectional_flow_tex = compute_flow.exec(tex_gray, DISComputeFlow::FORWARD_AND_BACKWARD, DISComputeFlow::DO_NOT_RESIZE_FLOW);

	for (int frameno = 1; frameno < 60; ++frameno) {
		char ppm_filename[256];
		snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);

		float alpha = frameno / 60.0f;
		GLuint interpolated_tex = interpolate.exec(image_tex, tex_gray, bidirectional_flow_tex, width1, height1, alpha).first;

		schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
		interpolate.release_texture(interpolated_tex);
	}

	while (!reads_in_progress.empty()) {
		finish_one_read<RGBAType>(width1, height1);
	}
}

int main(int argc, char **argv)
{
	static const option long_options[] = {
		{ "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
		{ "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
		{ "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
		{ "disable-timing", no_argument, 0, 1000 },
		{ "detailed-timing", no_argument, 0, 1003 },
		{ "disable-variational-refinement", no_argument, 0, 1001 },
		{ "interpolate", no_argument, 0, 1002 },
		{ "warmup", no_argument, 0, 1004 }
	};

	enable_timing = true;

	for (;;) {
		int option_index = 0;
		int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);

		if (c == -1) {
			break;
		}
		switch (c) {
		case 's':
			vr_alpha = atof(optarg);
			break;
		case 'i':
			vr_delta = atof(optarg);
			break;
		case 'g':
			vr_gamma = atof(optarg);
			break;
		case 1000:
			enable_timing = false;
			break;
		case 1001:
			enable_variational_refinement = false;
			break;
		case 1002:
			enable_interpolation = true;
			break;
		case 1003:
			detailed_timing = true;
			break;
		case 1004:
			enable_warmup = true;
			break;
		default:
			fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
			abort();
		};
	}

	if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
		fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
		abort();
	}
	SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
	SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
	SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
	SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

	SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
	// SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
	window = SDL_CreateWindow("OpenGL window",
	                          SDL_WINDOWPOS_UNDEFINED,
	                          SDL_WINDOWPOS_UNDEFINED,
	                          64, 64,
	                          SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
	SDL_GLContext context = SDL_GL_CreateContext(window);
	assert(context != nullptr);

	if (enable_interpolation) {
		interpolate_image(argc, argv, optind);
	} else {
		compute_flow_only(argc, argv, optind);
	}
}