1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#include "midi_device.h"
#include <alsa/asoundlib.h>
#include <sys/eventfd.h>
#include <unistd.h>
#include <thread>
#include <utility>
using namespace std;
MIDIDevice::MIDIDevice(MIDIReceiver *receiver)
: receiver(receiver)
{
should_quit_fd = eventfd(/*initval=*/0, /*flags=*/0);
assert(should_quit_fd != -1);
}
MIDIDevice::~MIDIDevice()
{
should_quit = true;
const uint64_t one = 1;
if (write(should_quit_fd, &one, sizeof(one)) != sizeof(one)) {
perror("write(should_quit_fd)");
abort();
}
midi_thread.join();
close(should_quit_fd);
}
void MIDIDevice::start_thread()
{
midi_thread = thread(&MIDIDevice::thread_func, this);
}
#define RETURN_ON_ERROR(msg, expr) do { \
int err = (expr); \
if (err < 0) { \
fprintf(stderr, msg ": %s\n", snd_strerror(err)); \
return; \
} \
} while (false)
#define WARN_ON_ERROR(msg, expr) do { \
int err = (expr); \
if (err < 0) { \
fprintf(stderr, msg ": %s\n", snd_strerror(err)); \
} \
} while (false)
void MIDIDevice::thread_func()
{
pthread_setname_np(pthread_self(), "MIDIDevice");
snd_seq_t *seq;
int err;
RETURN_ON_ERROR("snd_seq_open", snd_seq_open(&seq, "default", SND_SEQ_OPEN_DUPLEX, 0));
RETURN_ON_ERROR("snd_seq_nonblock", snd_seq_nonblock(seq, 1));
RETURN_ON_ERROR("snd_seq_client_name", snd_seq_set_client_name(seq, "nageru"));
RETURN_ON_ERROR("snd_seq_create_simple_port",
snd_seq_create_simple_port(seq, "nageru",
SND_SEQ_PORT_CAP_READ |
SND_SEQ_PORT_CAP_SUBS_READ |
SND_SEQ_PORT_CAP_WRITE |
SND_SEQ_PORT_CAP_SUBS_WRITE,
SND_SEQ_PORT_TYPE_MIDI_GENERIC |
SND_SEQ_PORT_TYPE_APPLICATION));
int queue_id = snd_seq_alloc_queue(seq);
RETURN_ON_ERROR("snd_seq_create_queue", queue_id);
RETURN_ON_ERROR("snd_seq_start_queue", snd_seq_start_queue(seq, queue_id, nullptr));
// The sequencer object is now ready to be used from other threads.
{
lock_guard<recursive_mutex> lock(mu);
alsa_seq = seq;
alsa_queue_id = queue_id;
}
// Listen to the announce port (0:1), which will tell us about new ports.
RETURN_ON_ERROR("snd_seq_connect_from", snd_seq_connect_from(seq, 0, /*client=*/0, /*port=*/1));
// Now go through all ports and subscribe to them.
snd_seq_client_info_t *cinfo;
snd_seq_client_info_alloca(&cinfo);
snd_seq_client_info_set_client(cinfo, -1);
while (snd_seq_query_next_client(seq, cinfo) >= 0) {
int client = snd_seq_client_info_get_client(cinfo);
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca(&pinfo);
snd_seq_port_info_set_client(pinfo, client);
snd_seq_port_info_set_port(pinfo, -1);
while (snd_seq_query_next_port(seq, pinfo) >= 0) {
constexpr int mask = SND_SEQ_PORT_CAP_READ | SND_SEQ_PORT_CAP_SUBS_READ;
if ((snd_seq_port_info_get_capability(pinfo) & mask) == mask) {
lock_guard<recursive_mutex> lock(mu);
subscribe_to_port_lock_held(seq, *snd_seq_port_info_get_addr(pinfo));
}
}
}
int num_alsa_fds = snd_seq_poll_descriptors_count(seq, POLLIN);
unique_ptr<pollfd[]> fds(new pollfd[num_alsa_fds + 1]);
while (!should_quit) {
snd_seq_poll_descriptors(seq, fds.get(), num_alsa_fds, POLLIN);
fds[num_alsa_fds].fd = should_quit_fd;
fds[num_alsa_fds].events = POLLIN;
fds[num_alsa_fds].revents = 0;
err = poll(fds.get(), num_alsa_fds + 1, -1);
if (err == 0 || (err == -1 && errno == EINTR)) {
continue;
}
if (err == -1) {
perror("poll");
break;
}
if (fds[num_alsa_fds].revents) {
// Activity on should_quit_fd.
break;
}
// Seemingly we can get multiple events in a single poll,
// and if we don't handle them all, poll will _not_ alert us!
while (!should_quit) {
snd_seq_event_t *event;
err = snd_seq_event_input(seq, &event);
if (err < 0) {
if (err == -EINTR) continue;
if (err == -EAGAIN) break;
if (err == -ENOSPC) {
fprintf(stderr, "snd_seq_event_input: Some events were lost.\n");
continue;
}
fprintf(stderr, "snd_seq_event_input: %s\n", snd_strerror(err));
return;
}
if (event) {
handle_event(seq, event);
}
}
}
}
void MIDIDevice::handle_event(snd_seq_t *seq, snd_seq_event_t *event)
{
if (event->source.client == snd_seq_client_id(seq)) {
// Ignore events we sent out ourselves.
return;
}
switch (event->type) {
case SND_SEQ_EVENT_CONTROLLER: {
receiver->controller_received(event->data.control.param, event->data.control.value);
break;
}
case SND_SEQ_EVENT_PITCHBEND: {
// Note, -8192 to 8191 instead of 0 to 127.
receiver->controller_received(MIDIReceiver::PITCH_BEND_CONTROLLER, event->data.control.value);
break;
}
case SND_SEQ_EVENT_NOTEON: {
receiver->note_on_received(event->data.note.note);
break;
}
case SND_SEQ_EVENT_PORT_START: {
lock_guard<recursive_mutex> lock(mu);
subscribe_to_port_lock_held(seq, event->data.addr);
break;
}
case SND_SEQ_EVENT_PORT_EXIT:
printf("MIDI port %d:%d went away.\n", event->data.addr.client, event->data.addr.port);
break;
case SND_SEQ_EVENT_PORT_SUBSCRIBED:
if (event->data.connect.sender.client != 0 && // Ignore system senders.
event->data.connect.sender.client != snd_seq_client_id(seq) &&
event->data.connect.dest.client == snd_seq_client_id(seq)) {
receiver->update_num_subscribers(++num_subscribed_ports);
}
break;
case SND_SEQ_EVENT_PORT_UNSUBSCRIBED:
if (event->data.connect.sender.client != 0 && // Ignore system senders.
event->data.connect.sender.client != snd_seq_client_id(seq) &&
event->data.connect.dest.client == snd_seq_client_id(seq)) {
receiver->update_num_subscribers(--num_subscribed_ports);
}
break;
case SND_SEQ_EVENT_NOTEOFF:
case SND_SEQ_EVENT_CLIENT_START:
case SND_SEQ_EVENT_CLIENT_EXIT:
case SND_SEQ_EVENT_CLIENT_CHANGE:
case SND_SEQ_EVENT_PORT_CHANGE:
break;
default:
printf("Ignoring MIDI event of unknown type %d.\n", event->type);
}
}
void MIDIDevice::subscribe_to_port_lock_held(snd_seq_t *seq, const snd_seq_addr_t &addr)
{
// Client 0 (SNDRV_SEQ_CLIENT_SYSTEM) is basically the system; ignore it.
// MIDI through (SNDRV_SEQ_CLIENT_DUMMY) echoes back what we give it, so ignore that, too.
if (addr.client == 0 || addr.client == 14) {
return;
}
// Don't listen to ourselves.
if (addr.client == snd_seq_client_id(seq)) {
return;
}
int err = snd_seq_connect_from(seq, 0, addr.client, addr.port);
if (err < 0) {
// Just print out a warning (i.e., don't die); it could
// very well just be e.g. another application.
printf("Couldn't subscribe to MIDI port %d:%d (%s).\n",
addr.client, addr.port, snd_strerror(err));
} else {
printf("Subscribed to MIDI port %d:%d.\n", addr.client, addr.port);
}
// For sending data back.
err = snd_seq_connect_to(seq, 0, addr.client, addr.port);
if (err < 0) {
printf("Couldn't subscribe MIDI port %d:%d (%s) to us.\n",
addr.client, addr.port, snd_strerror(err));
} else {
printf("Subscribed MIDI port %d:%d to us.\n", addr.client, addr.port);
}
// The current status of the device is unknown, so refresh it.
map<LightKey, uint8_t> active_lights = move(current_light_status);
current_light_status.clear();
update_lights_lock_held(active_lights);
}
void MIDIDevice::update_lights_lock_held(const map<LightKey, uint8_t> &active_lights)
{
if (alsa_seq == nullptr) {
return;
}
unsigned num_events = 0;
for (auto type : { LightKey::NOTE, LightKey::CONTROLLER }) {
for (unsigned num = 1; num <= 127; ++num) { // Note: Pitch bend is ignored.
LightKey key{type, num};
const auto it = active_lights.find(key);
uint8_t value; // Velocity for notes, controller value for controllers.
// Notes have a natural “off”, while controllers don't really.
// For some reason, not all devices respond to note off.
// Use note-on with value of 0 (which is equivalent) instead.
if (it == active_lights.end()) {
// Notes have a natural “off”, while controllers don't really,
// so just skip them if we have no set value.
if (type == LightKey::CONTROLLER) continue;
// For some reason, not all devices respond to note off.
// Use note-on with value of 0 (which is equivalent) instead.
value = 0;
} else {
value = it->second;
}
if (current_light_status.count(key) &&
current_light_status[key] == value) {
// Already known to be in the desired state.
continue;
}
snd_seq_event_t ev;
snd_seq_ev_clear(&ev);
// Some devices drop events if we throw them onto them
// too quickly. Add a 1 ms delay for each.
snd_seq_real_time_t tm{0, num_events++ * 1000000};
snd_seq_ev_schedule_real(&ev, alsa_queue_id, true, &tm);
snd_seq_ev_set_source(&ev, 0);
snd_seq_ev_set_subs(&ev);
if (type == LightKey::NOTE) {
snd_seq_ev_set_noteon(&ev, /*channel=*/0, num, value);
current_light_status[key] = value;
} else {
snd_seq_ev_set_controller(&ev, /*channel=*/0, num, value);
current_light_status[key] = value;
}
WARN_ON_ERROR("snd_seq_event_output", snd_seq_event_output(alsa_seq, &ev));
}
}
WARN_ON_ERROR("snd_seq_drain_output", snd_seq_drain_output(alsa_seq));
}
|