File: api_core.rst

package info (click to toggle)
nanobind 2.9.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,060 kB
  • sloc: cpp: 11,838; python: 5,862; ansic: 4,820; makefile: 22; sh: 15
file content (3275 lines) | stat: -rw-r--r-- 125,573 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
.. _api:

.. cpp:namespace:: nanobind

C++ API Reference (Core)
========================

Macros
------

.. c:macro:: NB_MODULE(name, variable)

   This macro creates the entry point that will be invoked when the Python
   interpreter imports an extension module. The module name is given as the
   first argument and it should not be in quotes. It **must** match the module
   name given to the :cmake:command:`nanobind_add_module()` function in the
   CMake build system.

   The second macro argument defines a variable of type :cpp:class:`module_`.
   The body of the declaration typically contains a sequence of operations
   that populate the module variable with contents.

   .. code-block:: cpp

       NB_MODULE(example, m) {
           m.doc() = "Example module";

           // Add bindings here
           m.def("add", []() {
               return "Hello, World!";
           });
       }

.. c:macro:: NB_MAKE_OPAQUE(T)

   The macro registers a partial template specialization pattern for the type
   `T` that marks it as *opaque*, meaning that nanobind won't try to run its
   type casting template machinery on it.

   This is useful when trying to register a binding for `T` that is simultaneously
   also covered by an existing type caster.

   This macro should be used at the top level (outside of namespaces and
   program code).

Python object API
-----------------

Nanobind ships with a wide range of Python wrapper classes like
:cpp:class:`object`, :cpp:class:`list`, etc. Besides class-specific operations
(e.g., :cpp:func:`list::append`), these classes also implement core operations
that can be performed on *any* Python object. Since it would be tedious to
implement this functionality over and over again, it is realized by the
following mixin class that lives in the ``nanobind::detail`` namespace.

.. cpp:namespace:: nanobind::detail

.. cpp:class:: template <typename Derived> api

   This mixin class adds common functionality to various nanobind types using
   the `curiously recurring template pattern
   <https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_
   (CRTP). The only requirement for the `Derived` template parameter is that it
   implements the member function ``PyObject *ptr() const`` that gives access
   to the underlying Python object pointer.

   .. cpp:function:: Derived &derived()

      Obtain a mutable reference to the derived class.

   .. cpp:function:: const Derived &derived() const

      Obtain a const reference to the derived class.

   .. cpp:function:: handle inc_ref() const

      Increases the reference count and returns a reference to the Python object.

   .. cpp:function:: handle dec_ref() const

      Decreases the reference count and returns a reference to the Python object.

   .. cpp:function:: iterator begin() const

      Return a forward iterator analogous to ``iter()`` in Python. The object
      must be a collection that supports the iteration protocol. This interface
      provides a generic iterator that works any type of Python object. The
      :cpp:class:`tuple`, :cpp:class:`list`, and :cpp:class:`dict` wrappers
      provide more efficient specialized alternatives.

   .. cpp:function:: iterator end() const

      Return a sentinel that ends the iteration.

   .. cpp:function:: handle type() const

      Return a :cpp:class:`handle` to the underlying Python type object.

   .. cpp:function:: operator handle() const

      Return a :cpp:class:`handle` wrapping the underlying ``PyObject*`` pointer.

   .. cpp:function:: detail::accessor<obj_attr> attr(handle key) const

      Analogous to ``self.key`` in Python, where ``key`` is a Python object.
      The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so
      that it can be read and written.

   .. cpp:function:: detail::accessor<str_attr> attr(const char * key) const

      Analogous to ``self.key`` in Python, where ``key`` is a C-style string.
      The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so
      that it can be read and written.

   .. cpp:function:: detail::accessor<str_attr> doc() const

       Analogous to ``self.__doc__``. The result is wrapped in an
       :cpp:class:`accessor <detail::accessor>` so that it can be read and
       written.

   .. cpp:function:: detail::accessor<obj_item> operator[](handle key) const

      Analogous to ``self[key]`` in Python, where ``key`` is a Python object.
      The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so that it can be read and
      written.

   .. cpp:function:: detail::accessor<str_item> operator[](const char * key) const

      Analogous to ``self[key]`` in Python, where ``key`` is a C-style string.
      The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so that it can be read and
      written.

   .. cpp:function:: template <typename T, enable_if_t<std::is_arithmetic_v<T>> = 1> detail::accessor<num_item> operator[](T key) const

      Analogous to ``self[key]`` in Python, where ``key`` is an arithmetic
      type (e.g., an integer). The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so
      that it can be read and written.

   .. cpp:function:: template <rv_policy policy = rv_policy::automatic_reference, typename... Args> object operator()(Args &&...args) const

      Assuming the Python object is a function or implements the ``__call__``
      protocol, `operator()` invokes the underlying function, passing an
      arbitrary set of parameters, while expanding any detected variable length
      argument and keyword argument packs. The result is returned as an
      :cpp:class:`object` and may need to be converted back into a Python
      object using :cpp:func:`cast()`.

      Type conversion is performed using the return value policy `policy`

      When type conversion of arguments or return value fails, the function
      raises a :cpp:type:`cast_error`. When the Python function call fails, it
      instead raises a :cpp:class:`python_error`.

   .. cpp:function:: args_proxy operator*() const

      Given a a tuple or list, this helper function performs variable argument
      list unpacking in function calls resembling the ``*`` operator in Python.
      Applying `operator*()` twice yields ``**`` keyword argument
      unpacking for dictionaries.

   .. cpp:function:: bool is(handle value) const

      Analogous to ``self is value`` in Python.

   .. cpp:function:: bool is_none() const

      Analogous to ``self is None`` in Python.

   .. cpp:function:: bool is_type() const

      Analogous to ``isinstance(self, type)`` in Python.

   .. cpp:function:: bool is_valid() const

      Checks if this wrapper contains a valid Python object (in the sense that
      the ``PyObject *`` pointer is non-null).

   .. cpp:function:: template <typename T> bool equal(const api<T> &other)

      Equivalent to ``self == other`` in Python.

   .. cpp:function:: template <typename T> bool not_equal(const api<T> &other)

      Equivalent to ``self != other`` in Python.

   .. cpp:function:: template <typename T> bool operator<(const api<T> &other)

      Equivalent to ``self < other`` in Python.

   .. cpp:function:: template <typename T> bool operator<=(const api<T> &other)

      Equivalent to ``self <= other`` in Python.

   .. cpp:function:: template <typename T> bool operator>(const api<T> &other)

      Equivalent to ``self > other`` in Python.

   .. cpp:function:: template <typename T> bool operator>=(const api<T> &other)

      Equivalent to ``self >= other`` in Python.

   .. cpp:function:: object operator-()

      Equivalent to ``-self`` in Python.

   .. cpp:function:: object operator~()

      Equivalent to ``~self`` in Python.

   .. cpp:function:: template <typename T> object operator+(const api<T> &other)

      Equivalent to ``self + other`` in Python.

   .. cpp:function:: template <typename T> object operator-(const api<T> &other)

      Equivalent to ``self - other`` in Python.

   .. cpp:function:: template <typename T> object operator*(const api<T> &other)

      Equivalent to ``self * other`` in Python.

   .. cpp:function:: template <typename T> object operator/(const api<T> &other)

      Equivalent to ``self / other`` in Python.

   .. cpp:function:: template <typename T> object floor_div(const api<T> &other)

      Equivalent to ``self // other`` in Python.

   .. cpp:function:: template <typename T> object operator|(const api<T> &other)

      Equivalent to ``self | other`` in Python.

   .. cpp:function:: template <typename T> object operator&(const api<T> &other)

      Equivalent to ``self & other`` in Python.

   .. cpp:function:: template <typename T> object operator^(const api<T> &other)

      Equivalent to ``self ^ other`` in Python.

   .. cpp:function:: template <typename T> object operator<<(const api<T> &other)

      Equivalent to ``self << other`` in Python.

   .. cpp:function:: template <typename T> object operator>>(const api<T> &other)

      Equivalent to ``self >> other`` in Python.

   .. cpp:function:: template <typename T> object operator+=(const api<T> &other)

      Equivalent to ``self += other`` in Python. Note that the `api<T>` version
      of the in-place operator does not update the ``self`` reference, which
      may lead to unexpected results when working with immutable types that
      return their result instead of updating ``self``.

      The :cpp:class:`object` class and subclasses override the in-place
      operators to achieve more intuitive behavior.

   .. cpp:function:: template <typename T> object operator-=(const api<T> &other)

       Equivalent to ``self -= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator*=(const api<T> &other)

       Equivalent to ``self *= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator/=(const api<T> &other)

       Equivalent to ``self /= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator|=(const api<T> &other)

       Equivalent to ``self |= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator&=(const api<T> &other)

       Equivalent to ``self &= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator^=(const api<T> &other)

       Equivalent to ``self ^= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator<<=(const api<T> &other)

       Equivalent to ``self <<= other`` in Python. See :cpp:func:`operator+=` for limitations.

   .. cpp:function:: template <typename T> object operator>>=(const api<T> &other)

       Equivalent to ``self >>= other`` in Python. See :cpp:func:`operator+=` for limitations.

.. cpp:class:: template <typename Impl> accessor

   This helper class facilitates attribute and item access. Casting an
   :cpp:class:`accessor` to a :cpp:class:`handle` or :cpp:class:`object`
   subclass causes a corresponding call to ``__getitem__`` or ``__getattr__``
   depending on the template argument `Impl`. Assigning a
   :cpp:class:`handle` or :cpp:class:`object` subclass causes a call to
   ``__setitem__`` or ``__setattr__``.

.. cpp:namespace:: nanobind

Handles and objects
-------------------

nanobind provides two styles of Python object wrappers: classes without
reference counting deriving from :cpp:class:`handle`, and reference-counted
wrappers deriving from :cpp:class:`object`. Reference counting bugs can be
really tricky to track down, hence it is recommended that you always prefer
:cpp:class:`object`-style wrappers unless there are specific reasons that
warrant the use of raw handles.

Without reference counting
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. cpp:class:: handle: public detail::api<handle>

   This class provides a thin wrapper around a raw ``PyObject *`` pointer. Its
   main purpose is to intercept various C++ operations and convert them into
   Python C API calls. It does *not* do any reference counting and can be
   somewhat unsafe to use.

   .. cpp:function:: handle() = default

      Default constructor. Creates an invalid handle wrapping a null pointer.
      (:cpp:func:`detail::api::is_valid()` is ``false``)

   .. cpp:function:: handle(const handle &) = default

      Default copy constructor.

   .. cpp:function:: handle(handle &&) = default

      Default move constructor.

   .. cpp:function:: handle(const PyObject * o)

      Initialize a handle from a Python object pointer. Does not change the reference count of `o`.

   .. cpp:function:: handle(const PyTypeObject * o)

      Initialize a handle from a Python type object pointer. Does not change the reference count of `o`.

   .. cpp:function:: handle &operator=(const handle &) = default

      Default copy assignment operator.

   .. cpp:function:: handle &operator=(handle &&) = default

      Default move assignment operator.

   .. cpp:function:: explicit operator bool() const

      Check if the handle refers to a valid Python object. Equivalent to
      :cpp:func:`detail::api::is_valid()`

   .. cpp:function:: handle inc_ref() const noexcept

      Increases the reference count and returns a reference to the Python object.
      Never raises an exception.

   .. cpp:function:: handle dec_ref() const noexcept

      Decreases the reference count and returns a reference to the Python object.
      Never raises an exception.

   .. cpp:function:: PyObject * ptr() const

      Return the underlying ``PyObject*`` pointer.

With reference counting
^^^^^^^^^^^^^^^^^^^^^^^

.. cpp:class:: object: public handle

   This class provides a convenient `RAII
   <https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization>`_
   wrapper around a ``PyObject*`` pointer. Like :cpp:class:`handle`, it
   intercepts various C++ operations and converts them into Python C API calls.

   The main difference to :cpp:class:`handle` is that it uses reference
   counting to keep the underlying Python object alive.

   Use the :cpp:func:`borrow()` and :cpp:func:`steal()` functions to create an
   :cpp:class:`object` from a :cpp:class:`handle` or ``PyObject*`` pointer.

   .. cpp:function:: object() = default

      Default constructor. Creates an invalid object wrapping a null pointer.
      (:cpp:func:`detail::api::is_valid()` is ``false``)

   .. cpp:function:: object(object &&o)

      Move constructor. Steals the object from `o` without
      changing its reference count.

   .. cpp:function:: object(const object &o)

      Copy constructor. Acquires a new reference to `o` (if valid).

   .. cpp:function:: ~object()

      Decrease the reference count of the referenced Python object (if valid).

   .. cpp:function:: object& operator=(object &&o)

      Move assignment operator. Decreases the reference count of the currently
      held object (if valid) and steals the object from `o` without
      changing its reference count.

   .. cpp:function:: object& operator=(const object &o)

      Copy assignment operator. Decreases the reference count of the currently
      held object (if valid) and acquires a new reference to the object
      `o` (if valid).

   .. cpp:function:: void reset()

      Decreases the reference count of the currently held object (if valid) and
      resets the internal pointer to ``nullptr``.

   .. cpp:function:: handle release()

      Resets the internal pointer to ``nullptr`` and returns its previous
      contents as a :cpp:class:`handle`. This operation does not change
      the object's reference count and should be used carefully.

   .. cpp:function:: template <typename T> object& operator+=(const api<T> &other)

      Equivalent to ``self += other`` in Python.

   .. cpp:function:: template <typename T> object& operator-=(const api<T> &other)

       Equivalent to ``self -= other`` in Python.

   .. cpp:function:: template <typename T> object& operator*=(const api<T> &other)

       Equivalent to ``self *= other`` in Python.

   .. cpp:function:: template <typename T> object& operator/=(const api<T> &other)

       Equivalent to ``self /= other`` in Python.

   .. cpp:function:: template <typename T> object& operator|=(const api<T> &other)

       Equivalent to ``self |= other`` in Python.

   .. cpp:function:: template <typename T> object& operator&=(const api<T> &other)

       Equivalent to ``self &= other`` in Python.

   .. cpp:function:: template <typename T> object& operator^=(const api<T> &other)

       Equivalent to ``self ^= other`` in Python.

   .. cpp:function:: template <typename T> object& operator<<=(const api<T> &other)

       Equivalent to ``self <<= other`` in Python.

   .. cpp:function:: template <typename T> object& operator>>=(const api<T> &other)

       Equivalent to ``self >>= other`` in Python.


.. cpp:function:: template <typename T = object> T borrow(handle h)

   Create a reference-counted Python object wrapper of type `T` from a raw
   handle or ``PyObject *`` pointer. The target type `T` must be
   :cpp:class:`object` (the default) or one of its derived classes. The
   function does not perform any conversions or checks---it is up to the user
   to make sure that the target type is correct.

   The function *borrows* a reference, which means that it will increase the
   reference count while constructing ``T``.

   For example, consider the Python C API function `PyList_GetItem()
   <https://docs.python.org/3/c-api/list.html#c.PyList_GetItem>`_, whose
   documentation states that it returns a borrowed reference. An interface
   between this API and nanobind could look as follows:

   .. code-block:: cpp

       PyObject* list = ...;
       Py_ssize_t index = ...;
       nb::object o = nb::borrow(PyList_GetItem(list, index));

   Using :cpp:func:`steal()` in this setting is incorrect and would lead to a
   reference underflow.

.. cpp:function:: template <typename T = object> T steal(handle h)

   Create a reference-counted Python object wrapper of type `T` from a raw
   handle or ``PyObject *`` pointer. The target type `T` must be
   :cpp:class:`object` (the default) or one of its derived classes. The
   function does not perform any conversions or checks---it is up to the user
   to make sure that the target type is correct.

   The function *steals* a reference, which means that constructing ``T``
   leaves the object's reference count unchanged.

   For example, consider the Python C API function `PyObject_Str()
   <https://docs.python.org/3/c-api/object.html#c.PyObject_Str>`_, whose
   documentation states that it returns a *new reference*. An interface
   between this API and nanobind could look as follows:

   .. code-block:: cpp

       PyObject* value = ...;
       nb::object o = nb::steal(PyObject_Str(value));

   Using :cpp:func:`borrow()` in this setting is incorrect and would lead to a
   reference leak.


Attribute access
----------------

.. cpp:function:: bool hasattr(handle h, const char * key) noexcept

   Check if the given object has an attribute string ``key``. The function never
   raises an exception and returns ``false`` in case of an internal error.

   Equivalent to ``hasattr(h, key)`` in Python.

.. cpp:function:: bool hasattr(handle h, handle key) noexcept

   Check if the given object has a attribute represented by the Python object
   ``key``. The function never raises an exception and returns ``false`` in
   case of an internal error.

   Equivalent to ``hasattr(h, key)`` in Python.

.. cpp:function:: object getattr(handle h, const char * key)

   Equivalent to ``h.key`` and ``getattr(h, key)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: object getattr(handle h, handle key)

   Equivalent to ``h.key`` and ``getattr(h, key)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: object getattr(handle h, const char * key, handle def) noexcept

   Equivalent to ``getattr(h, key, def)`` in Python. Never raises an
   exception and returns ``def`` when the operation fails, or when the desired
   attribute could not be found.

.. cpp:function:: object getattr(handle h, handle key, handle def) noexcept

   Equivalent to ``getattr(h, key, def)`` in Python. Never raises an
   exception and returns ``def`` when the operation fails, or when the desired
   attribute could not be found.

.. cpp:function:: void setattr(handle h, const char * key, handle value)

   Equivalent to ``h.key = value`` and ``setattr(h, key, value)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: void setattr(handle h, handle key, handle value)

   Equivalent to ``h.key = value`` and ``setattr(h, key, value)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: void delattr(handle h, const char * key)

   Equivalent to ``del h.key`` and ``delattr(h, key)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: void delattr(handle h, handle key)

   Equivalent to ``del h.key`` and ``delattr(h, key)`` in Python.
   Raises :cpp:class:`python_error` if the operation fails.

.. cpp:function:: template <typename T> void del(detail::accessor<T> &)

   Remove an element from a sequence or mapping. The C++ statement

   .. code-block:: cpp

      nb::del(o[key]);

   is equivalent to ``del o[key]`` in Python.

   When the element cannot be removed, the function will raise
   :cpp:class:`python_error` wrapping either a Python ``IndexError`` (for
   sequence types) or a ``KeyError`` (for mapping types).

.. cpp:function:: template <typename T> void del(detail::accessor<T> &&)

   Rvalue equivalent of the above expression.

Size queries
------------

.. cpp:function:: size_t len(handle h)

   Equivalent to ``len(h)`` in Python. Raises :cpp:class:`python_error` if the
   operation fails.

.. cpp:function:: size_t len(const tuple &t)

   Equivalent to ``len(t)`` in Python. Optimized variant for tuples.

.. cpp:function:: size_t len(const list &l)

   Equivalent to ``len(l)`` in Python. Optimized variant for lists.

.. cpp:function:: size_t len(const dict &d)

   Equivalent to ``len(d)`` in Python. Optimized variant for dictionaries.

.. cpp:function:: size_t len(const set &d)

   Equivalent to ``len(d)`` in Python. Optimized variant for sets.

.. cpp:function:: size_t len_hint(handle h)

   Equivalent to ``operator.length_hint(h)`` in Python. Raises
   :cpp:class:`python_error` if the operation fails.

Type queries
------------

.. cpp:function:: template <typename T> isinstance(handle h)

   Checks if the Python object `h` represents a valid instance of the C++ type
   `T`. This works for bound C++ classes, basic types (``int``, ``bool``,
   etc.), and Python type wrappers ( :cpp:class:`list`, :cpp:class:`dict`,
   :cpp:class:`module_`, etc.).

   *Note*: the check even works when `T` involves a type caster (e.g., an STL
   types like ``std::vector<float>``). However, this involve a wasteful attempt
   to convert the object to C++. It may be more efficient to just perform the
   conversion using :cpp:func:`cast` and catch potential raised exceptions.

.. cpp:function:: isinstance(handle inst, handle cls)

   Checks if the Python object `inst` is an instance of the Python type `cls`.

.. cpp:function:: template <typename T> handle type() noexcept

   Returns the Python type object associated with the C++ type `T`. When the
   type not been bound via nanobind, the function returns an invalid handle
   (:cpp:func:`detail::api::is_valid()` is ``false``).

   *Note*: in contrast to the :cpp:func:`isinstance()` function above, builtin
   types, type wrappers, and types handled using type casters, are *not*
   supported.

Wrapper classes
---------------

.. cpp:class:: tuple: public object

   Wrapper class representing Python ``tuple`` instances.

   Use the standard ``operator[]`` C++ operator with an integer argument to
   read tuple elements.
   Once created, the tuple is immutable and its elements cannot be replaced.

   Use the :py:func:`make_tuple` function to create new tuples.

   .. cpp:function:: tuple()

      Create an empty tuple

   .. cpp:function:: tuple(handle h)

      Attempt to convert a given Python object into a tuple. Analogous to the
      expression ``tuple(h)`` in Python.

   .. cpp:function:: size_t size() const

      Return the number of tuple elements.

   .. cpp:function:: bool empty() const

      Check whether the tuple is empty.

   .. cpp:function:: detail::fast_iterator begin() const

      Return a forward iterator analogous to ``iter()`` in Python. The function
      overrides a generic version in :cpp:class:`detail::api` and is more
      efficient for tuples.

   .. cpp:function:: detail::fast_iterator end() const

      Return a sentinel that ends the iteration.

   .. cpp:function:: template <typename T, enable_if_t<std::is_arithmetic_v<T>> = 1> detail::accessor<num_item_tuple> operator[](T key) const

      Analogous to ``self[key]`` in Python, where ``key`` is an arithmetic
      type (e.g., an integer). The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so
      that it can be read and converted. Write access is not possible.

      The function overrides the generic version in :cpp:class:`detail::api`
      and is more efficient for tuples.


.. cpp:class:: list : public object

   Wrapper class representing Python ``list`` instances.

   Use the standard ``operator[]`` C++ operator with an integer argument to
   read and write list elements.

   Use the :cpp:func:`nb::del <del>` function to remove elements.

   .. cpp:function:: list()

      Create an empty list

   .. cpp:function:: list(handle h)

      Attempt to convert a given Python object into a list. Analogous to the
      expression ``list(h)`` in Python.

   .. cpp:function:: size_t size() const

      Return the number of list elements.

   .. cpp:function:: bool empty() const

      Check whether the list is empty.

   .. cpp:function:: template <typename T> void append(T&& value)

      Append an element to the list. When `T` does not already represent a
      wrapped Python object, the function performs a cast.

   .. cpp:function:: template <typename T> void insert(Py_ssize_t index, T&& value)

      Insert an element to the list (at index ``index``, which may also be
      negative). When `T` does not already represent a wrapped Python object,
      the function performs a cast.

   .. cpp:function:: void clear()

      Clear the list entries.

   .. cpp:function:: void extend(handle h)

      Analogous to the ``.extend(h)`` method of ``list`` in Python.

   .. cpp:function:: void sort()

      Analogous to the ``.sort()`` method of ``list`` in Python.

   .. cpp:function:: void reverse()

      Analogous to the ``.reverse()`` method of ``list`` in Python.

   .. cpp:function:: template <typename T, enable_if_t<std::is_arithmetic_v<T>> = 1> detail::accessor<num_item_list> operator[](T key) const

      Analogous to ``self[key]`` in Python, where ``key`` is an arithmetic
      type (e.g., an integer). The result is wrapped in an :cpp:class:`accessor <detail::accessor>` so
      that it can be read and written.

      The function overrides the generic version in :cpp:class:`detail::api`
      and is more efficient for lists.

   .. cpp:function:: detail::fast_iterator begin() const

      Return a forward iterator analogous to ``iter()`` in Python. The operator
      provided here overrides the generic version in :cpp:class:`detail::api`
      and is more efficient for lists.

   .. cpp:function:: detail::fast_iterator end() const

      Return a sentinel that ends the iteration.


.. cpp:class:: dict: public object

   Wrapper class representing Python ``dict`` instances.

   Use the standard ``operator[]`` C++ operator to read and write dictionary
   elements (the bindings for this operator are provided by the parent class
   and not listed here).

   Use the :cpp:func:`nb::del <del>` function to remove elements.

   .. cpp:function:: dict()

      Create an empty dictionary

   .. cpp:function:: size_t size() const

      Return the number of dictionary elements.

   .. cpp:function:: bool empty() const

      Check whether the dictionary is empty.

   .. cpp:function:: template <typename T> bool contains(T&& key) const

      Check whether the dictionary contains a particular key. When `T` does not
      already represent a wrapped Python object, the function performs a cast.

   .. cpp:function:: detail::dict_iterator begin() const

      Return an item iterator that returns ``std::pair<handle, handle>``
      key-value pairs analogous to ``iter(dict.items())`` in Python.

      In free-threaded Python, the :cpp:class:``detail::dict_iterator`` class
      acquires a lock to the underlying dictionary to enable the use of the
      efficient but thread-unsafe ``PyDict_Next()`` Python C traversal routine.

   .. cpp:function:: detail::dict_iterator end() const

      Return a sentinel that ends the iteration.

   .. cpp:function:: list keys() const

      Return a list containing all dictionary keys.

   .. cpp:function:: list values() const

      Return a list containing all dictionary values.

   .. cpp:function:: list items() const

      Return a list containing all dictionary items as ``(key, value)`` pairs.

   .. cpp:function:: void clear()

      Clear the contents of the dictionary.

   .. cpp:function:: void update(handle h)

      Analogous to the ``.update(h)`` method of ``dict`` in Python.

   .. cpp:function:: object get(handle key, handle def)

      Analogous to ``.get(key, def)`` method of ``dict`` in Python with a
      fallback value ``def``. This is more efficient than checking the presence
      of ``.contains(key)`` first, or using ``operator[]`` and catching a
      potential exceptions.

   .. cpp:function:: object get(const char * key, handle def)

      Overload of the above method that takes a C-string as key.

.. cpp:class:: set: public object

   Wrapper class representing Python ``set`` instances.

   .. cpp:function:: set()

      Create an empty set

   .. cpp:function:: set(handle h)

      Attempt to convert a given Python object into a set. Analogous to the
      expression ``set(h)`` in Python.

   .. cpp:function:: size_t size() const

      Return the number of set elements.

   .. cpp:function:: bool empty() const

      Check whether the set is empty.

   .. cpp:function:: template <typename T> void add(T&& key)

      Add a key to the set. When `T` does not already represent a wrapped
      Python object, the function performs a cast.

   .. cpp:function:: template <typename T> bool contains(T&& key) const

      Check whether the set contains a particular key. When `T` does not
      already represent a wrapped Python object, the function performs a cast.

   .. cpp:function:: void clear()

      Clear the contents of the set.

   .. cpp:function:: template <typename T> bool discard(T&& key)

      Analogous to the ``.discard(h)`` method of the ``set`` type in Python.
      Returns ``true`` if the item was deleted successfully, and ``false`` if
      the value was not present. When `T` does not already represent a wrapped
      Python object, the function performs a cast.

.. cpp:class:: frozenset: public object

   Wrapper class representing Python ``frozenset`` instances.

   .. cpp:function:: frozenset()

      Create an empty frozenset.

   .. cpp:function:: frozenset(handle h)

      Attempt to convert a given Python object into a ``frozenset``. Analogous
      to the expression ``frozenset(h)`` in Python.

   .. cpp:function:: size_t size() const

      Return the number of set elements.

   .. cpp:function:: bool empty() const

      Check whether the set is empty.

   .. cpp:function:: template <typename T> bool contains(T&& key) const

      Check whether the set contains a particular key. When `T` does not
      already represent a wrapped Python object, the function performs a cast.

.. cpp:class:: module_: public object

   Wrapper class representing Python ``module`` instances. The underscore at
   the end disambiguates the class name from the C++20 ``module`` declaration.

   .. cpp:function:: template <typename Func, typename... Extra> module_ &def(const char * name, Func &&f, const Extra &...extra)

      Bind the function `f` to the identifier `name` within the module. Returns
      a reference to ``*this`` so that longer sequences of binding declarations
      can be chained, as in ``m.def(...).def(...);``. The variable length
      `extra` parameter can be used to pass docstrings and other :ref:`function
      binding annotations <function_binding_annotations>`.

      Example syntax:

      .. code-block:: cpp

         void test() { printf("Hello world!"); }

         NB_MODULE(example, m) {
             // here, "m" is variable of type 'module_'.
             m.def("test", &test, "A test function")
              .def(...); // more binding declarations
         }


   .. cpp:function:: module_ import_(const char * name)

      Import the Python module with the specified name and return a reference
      to it. The underscore at the end disambiguates the function name from the
      C++20 ``import`` statement.

      Example usage:

      .. code-block:: cpp

         nb::module_ np = nb::module_::import_("numpy");
         nb::object np_array = np.attr("array");

   .. cpp:function:: module_ import_(handle name)

      Import the Python module with the specified name and return a reference
      to it. In contrast to the version above, this function expects a Python
      object as key.

   .. cpp:function:: module_ def_submodule(const char * name, const char * doc = nullptr)

      Create a Python submodule within an existing module and return a
      reference to it. Can be chained recursively.

      Example usage:

      .. code-block:: cpp

         NB_MODULE(example, m) {
             nb::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
             nb::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
         }

.. cpp:class:: capsule: public object

   Capsules are small opaque Python objects that wrap a C or C++ pointer and a cleanup routine.

   .. cpp:function:: capsule(const void * ptr, void (* cleanup)(void*) noexcept = nullptr)

      Construct an *unnamed* capsule wrapping the pointer `p`. When the
      capsule is garbage collected, Python will call the destructor `cleanup`
      (if provided) with the value of `p`.

   .. cpp:function:: capsule(const void * ptr, const char * name, void (* cleanup)(void*) noexcept = nullptr)

      Construct a *named* capsule with name `name` wrapping the pointer `p`.
      When the capsule is garbage collected, Python will call the destructor
      `cleanup` (if provided) with the value of `p`.

   .. cpp:function:: const char * name() const

      Return the capsule name (or ``nullptr`` when the capsule is unnamed)

   .. cpp:function:: void * data() const

      Return the pointer wrapped by the capsule.

   .. cpp:function:: void * data(const char *name) const

      Return the pointer wrapped by the capsule. Check that the
      capsule name matches the specified value, or raise an exception.


.. cpp:class:: bool_: public object

   This wrapper class represents Python ``bool`` instances.

   .. cpp:function:: bool_(handle h)

      Performs a boolean cast within Python. This is equivalent to the Python
      expression ``bool(h)``.

   .. cpp:function:: explicit bool_(bool value)

      Convert an C++ boolean instance into a Python ``bool``.

   .. cpp:function:: explicit operator bool() const

      Extract the boolean value underlying this object.


.. cpp:class:: int_: public object

   This wrapper class represents Python ``int`` instances. It can handle large
   numbers requiring more than 64 bits of storage.

   .. cpp:function:: int_(handle h)

      Performs an integer cast within Python. This is equivalent to the Python
      expression ``int(h)``.

   .. cpp:function:: template <typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0> explicit int_(T value)

      Convert an C++ arithmetic type into a Python integer.

   .. cpp:function:: template <typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0> explicit operator T() const

      Convert a Python integer into a C++ arithmetic type.


.. cpp:class:: float_: public object

   This wrapper class represents Python ``float`` instances.

   .. cpp:function:: float_(handle h)

      Performs an floating point cast within Python. This is equivalent to the
      Python expression ``float(h)``.

   .. cpp:function:: explicit float_(double value)

      Convert an C++ double value into a Python float objecct

   .. cpp:function:: explicit operator double() const

      Convert a Python float object into a C++ double value


.. cpp:class:: str: public object

   This wrapper class represents Python unicode ``str`` instances.

   .. cpp:function:: str(handle h)

      Performs a string cast within Python. This is equivalent equivalent to
      the Python expression ``str(h)``.

   .. cpp:function:: str(const char * s)

      Convert a null-terminated C-style string in UTF-8 encoding into a Python string.

   .. cpp:function:: str(const char * s, size_t n)

      Convert a C-style string in UTF-8 encoding of length ``n`` bytes into a Python string.

      There is a user-defined string literal ``_s`` accessible in the
      ``nanobind::literals`` namespace::

            using namespace nanobind::literals;
            auto s = "Hello world!"_s; // equivalent to str("Hello world!")

   .. cpp:function:: const char * c_str() const

      Convert a Python string into a null-terminated C-style string with UTF-8
      encoding.

      *Note*: The C string will be deleted when the `str` instance is garbage
      collected.

   .. cpp:function:: template <typename... Args> str format(Args&&... args) const

      C++ analog of the Python routine ``str.format``. Can be called with
      positional and keyword arguments.


.. cpp:class:: bytes: public object

   This wrapper class represents Python unicode ``bytes`` instances.

   .. cpp:function:: bytes(handle h)

      Performs a cast within Python. This is equivalent to
      the Python expression ``bytes(h)``.

   .. cpp:function:: bytes(const char * s)

      Convert a null-terminated C-style string encoding into a Python ``bytes`` object.

   .. cpp:function:: bytes(const void * buf, size_t n)

      Convert a byte buffer ``buf`` of length ``n`` bytes into a Python ``bytes`` object.  The buffer can contain embedded null bytes.

   .. cpp:function:: const char * c_str() const

      Convert a Python bytes object into a null-terminated C-style string.

   .. cpp:function:: size_t size() const

      Return the size in bytes.

   .. cpp:function:: const void * data() const

      Convert a Python ``bytes`` object into a byte buffer of length :cpp:func:`bytes::size()` bytes.


.. cpp:class:: bytearray: public object

   This wrapper class represents Python ``bytearray`` instances.

   .. cpp:function:: bytearray()

      Create an empty ``bytearray``.

   .. cpp:function:: bytearray(handle h)

      Performs a cast within Python. This is equivalent to
      the Python expression ``bytearray(h)``.

   .. cpp:function:: bytearray(const void * buf, size_t n)

      Convert a byte buffer ``buf`` of length ``n`` bytes into a Python ``bytearray`` object.  The buffer can contain embedded null bytes.

   .. cpp:function:: const char * c_str() const

      Convert a Python ``bytearray`` object into a null-terminated C-style string.

   .. cpp:function:: size_t size() const

      Return the size in bytes.

   .. cpp:function:: void * data()

      Convert a Python ``bytearray`` object into a byte buffer of length :cpp:func:`bytearray::size()` bytes.

   .. cpp:function:: const void * data() const

      Convert a Python ``bytearray`` object into a byte buffer of length :cpp:func:`bytearray::size()` bytes.

   .. cpp:function:: void resize(size_t n)

      Resize the internal buffer of a Python ``bytearray`` object to ``n``. Any
      space added by this method, which calls `PyByteArray_Resize`, will not be
      initialized and may contain random data.


.. cpp:class:: type_object: public object

   Wrapper class representing Python ``type`` instances.

.. cpp:class:: sequence: public object

   Wrapper class representing arbitrary Python sequence types.

.. cpp:class:: mapping : public object

   Wrapper class representing arbitrary Python mapping types.

   .. cpp:function:: template <typename T> bool contains(T&& key) const

      Check whether the map contains a particular key. When `T` does not
      already represent a wrapped Python object, the function performs a cast.

   .. cpp:function:: list keys() const

      Return a list containing all of the map's keys.

   .. cpp:function:: list values() const

      Return a list containing all of the map's values.

   .. cpp:function:: list items() const

      Return a list containing all of the map's items as ``(key, value)`` pairs.

.. cpp:class:: iterator : public object

   Wrapper class representing a Python iterator.

   .. cpp:function:: iterator& operator++()

      Advance to the next element (pre-increment form).

   .. cpp:function:: iterator& operator++(int)

      Advance to the next element (post-increment form).

   .. cpp:function:: handle operator*() const

      Return the item at the current position.

   .. cpp:function:: handle operator->() const

      Convenience routine for pointer-style access.

   .. static iterator sentinel();

      Return a sentinel that ends the iteration.

   .. cpp:function:: friend bool operator==(const iterator &a, const iterator &b);

      Iterator equality comparison operator.

   .. cpp:function:: friend bool operator!=(const iterator &a, const iterator &b);

      Iterator inequality comparison operator.

.. cpp:class:: iterable : public object

   Wrapper class representing an object that can be iterated upon (in the sense
   that calling :cpp:func:`iter()` is valid).

.. cpp:class:: slice : public object

   Wrapper class representing a Python slice object.

   .. cpp:function:: slice(handle start, handle stop, handle step)

      Create the slice object given by ``slice(start, stop, step)`` in Python.

   .. cpp:function:: template <typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0> slice(T stop)

      Create the slice object ``slice(stop)``, where `stop` is represented by a
      C++ integer type.

   .. cpp:function:: template <typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0> slice(T start, T stop)

      Create the slice object ``slice(start, stop)``, where `start` and `stop`
      are represented by a C++ integer type.

   .. cpp:function:: template <typename T, detail::enable_if_t<std::is_arithmetic_v<T>> = 0> slice(T start, T stop, T step)

      Create the slice object ``slice(start, stop, step)``, where `start`,
      `stop`, and `step` are represented by a C++ integer type.

   .. cpp:function:: detail::tuple<Py_ssize_t, Py_ssize_t, Py_ssize_t, size_t> compute(size_t size) const

      Compute a slice adjusted to the `size` value of a given container.
      Returns a tuple containing ``(start, stop, step, slice_length)``.
      The elements of the tuple can be obtained using a structured binding or
      by using the templated ``get`` member function of ``nb::detail::tuple``.
      For example:

      .. code-block:: cpp

          m.def("func", [](nb::slice slc) {
              auto [start, stop, step, slice_length] = slc.compute(17);
              // Or, if only the computed slice_length is needed:
              auto tpl = slc.compute(42);
              std::size_t adjusted_slice_length = tpl.get<3>();
              // Now do something ...
          });

.. cpp:class:: ellipsis: public object

   Wrapper class representing a Python ellipsis (``...``) object.

   .. cpp:function:: ellipsis()

      Create a wrapper referencing the unique Python ``Ellipsis`` object.

.. cpp:class:: not_implemented: public object

   Wrapper class representing a Python ``NotImplemented`` object.

   .. cpp:function:: not_implemented()

      Create a wrapper referencing the unique Python ``NotImplemented`` object.

.. cpp:class:: callable: public object

   Wrapper class representing a callable Python object.

.. cpp:class:: weakref: public object

   Wrapper class representing a Python weak reference object.

   .. cpp:function:: explicit weakref(handle obj, handle callback = { })

      Construct a new weak reference that points to `obj`. If provided,
      Python will invoke the callable `callback` when `obj` expires.

.. cpp:class:: args : public tuple

   Variable argument keyword list for use in function argument declarations.

.. cpp:class:: kwargs : public dict

   Variable keyword argument keyword list for use in function argument declarations.

.. cpp:class:: any : public object

   This wrapper class represents Python ``typing.Any``-typed values. On the C++
   end, this type is interchangeable with :py:class:`object`. The only
   difference is the type signature when used in function arguments and return
   values.

.. cpp:class:: fallback : public object

   Instances of this wrapper class behave just like :cpp:class:`handle`. When
   used to pass arguments in function bindings, the associated arguments
   *require* implicit conversion (which, however, adds no runtime cost).

   The type is convenient in overload chains where a generic fallback should
   accept any Python object, e.g.,

   .. code-block:: cpp

      m.def("func", [](MyClass &arg) { ... });
      m.def("func", [](nb::fallback arg) { ... });

   If :cpp:class:`handle` or :cpp:class:`object` were used instead on the
   second line, they would always match and prevent potential implicit
   conversion of arguments to `MyClass`.

Parameterized wrapper classes
-----------------------------

.. cpp:class:: template <typename T> handle_t : public handle

   Wrapper class representing a handle to a subclass of the C++ type `T`. It
   can be used to bind functions that take the associated Python object in its
   wrapped form, while rejecting objects with a different type (i.e., it is
   more discerning than :cpp:class:`handle`, which accepts *any* Python object).

   .. code-block:: cpp

      // Bind the class A
      class A { int value; };
      nb::class_<A>(m, "A");

      // Bind a function that takes a Python object representing a 'A' instance
      m.def("process_a", [](nb::handle_t<A> h) {
         PyObject * a_py = h.ptr();   // PyObject* pointer to wrapper
         A &a_cpp = nb::cast<A &>(h); // Reference to C++ instance
      });

.. cpp:class:: template <typename T> type_object_t : public type_object

   Wrapper class representing a Python type object that is a subtype of the C++
   type `T`. It can be used to bind functions that only accept type objects
   satisfying this criterion (i.e., it is more discerning than
   :cpp:class:`type_object`, which accepts *any* Python type object).

Error management
----------------

nanobind provides a range of functionality to convert C++ exceptions into
equivalent Python exceptions and raise captured Python error state in C++. The
:cpp:class:`exception` class is also relevant in this context, but is listed in
the reference section on :ref:`class binding <class_binding>`.

.. cpp:struct:: error_scope

   RAII helper class that temporarily stashes any existing Python error status.
   This is important when running Python code in the context of an existing
   failure that must be processed (e.g., to generate an error message).

   .. cpp:function:: error_scope()

      Stash the current error status (if any)

   .. cpp:function:: ~error_scope()

      Restore the stashed error status (if any)

.. cpp:struct:: python_error : public std::exception

   Exception that represents a detected Python error status.

   .. cpp:function:: python_error()

      This constructor may only be called when a Python error has occurred
      (``PyErr_Occurred()`` must be ``true``). It creates a C++ exception
      object that represents this error and clears the Python error status.

   .. cpp:function:: python_error(const python_error &)

      Copy constructor

   .. cpp:function:: python_error(python_error &&) noexcept

      Move constructor

   .. cpp:function:: const char * what() noexcept

      Return a stringified version of the exception. nanobind internally
      normalizes the exception and generates a traceback that is included
      as part of this string. This can be a relatively costly operation
      and should only be used if all of this detail is actually needed.

   .. cpp:function:: bool matches(handle exc) noexcept

      Checks whether the exception has the same type as `exc`.

      The argument to this function is usually one of the `Standard Exceptions
      <https://docs.python.org/3/c-api/exceptions.html#standard-exceptions>`_.

   .. cpp:function:: void restore() noexcept

      Restore the error status in Python and clear the `python_error`
      contents. This may only be called once, and you should not
      reraise the `python_error` in C++ afterward.

   .. cpp:function:: void discard_as_unraisable(handle context) noexcept

      Pass the error to Python's :py:func:`sys.unraisablehook`, which
      prints a traceback to :py:data:`sys.stderr` by default but may
      be overridden.  Like :cpp:func:`restore`, this consumes the
      error and you should not reraise the exception in C++ afterward.

      The *context* argument should be some object whose ``repr()``
      helps identify the location of the error. The default
      :py:func:`sys.unraisablehook` prints a traceback that begins
      with the text ``Exception ignored in:`` followed by
      the result of ``repr(context)``.

      Example use case: handling a Python error that occurs in a C++
      destructor where you cannot raise a C++ exception.

   .. cpp:function:: void discard_as_unraisable(const char * context) noexcept

      Convenience wrapper around the above function, which takes a C-style
      string for the ``context`` argument.

   .. cpp:function:: handle type() const

      Returns a handle to the exception type

   .. cpp:function:: handle value() const

      Returns a handle to the exception value

   .. cpp:function:: object traceback() const

      Returns a handle to the exception's traceback object

.. cpp:class:: cast_error

   The function :cpp:func:`cast` raises this exception to indicate that a cast
   was unsuccessful.

   .. cpp:function:: cast_error()

      Constructor

.. cpp:class:: next_overload

   Raising this special exception from a bound function informs nanobind that
   the function overload detected incompatible inputs. nanobind will then try
   other overloads before reporting a ``TypeError``.

   This feature is useful when a multiple overloads of a function accept
   overlapping or identical input types (e.g. :cpp:class:`object`) and must run
   code at runtime to select the right overload.

   You should probably write a thorough docstring that explicitly mentions the
   expected inputs in this case, since the behavior won't be obvious from the
   auto-generated function signature. It can be frustrating when a function
   call fails with an error message stating that the provided arguments aren't
   compatible with any overload, when the associated error message suggests
   otherwise.

   .. cpp:function:: next_overload()

      Constructor

.. cpp:class:: builtin_exception : public std::runtime_error

   General-purpose class to propagate builtin Python exceptions from C++. A
   number of convenience functions (see below) instantiate it.

.. cpp:function:: builtin_exception stop_iteration(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``StopIteration`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception index_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``IndexError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception key_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``KeyError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception value_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``ValueError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception type_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``TypeError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception buffer_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``BufferError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception import_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``ImportError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: builtin_exception attribute_error(const char * what = nullptr)

   Convenience wrapper to create a :cpp:class:`builtin_exception` C++ exception
   instance that nanobind will re-raise as a Python ``AttributeError`` exception
   when it crosses the C++ ↔ Python interface.

.. cpp:function:: void register_exception_translator(void (* exception_translator)(const std::exception_ptr &, void*), void * payload = nullptr)

   Install an exception translator callback that will be invoked whenever
   nanobind's function call dispatcher catches a previously unknown C++
   exception. This exception translator should follow a standard structure of
   re-throwing an exception, catching a specific type, and converting this into
   a Python error status upon "success".

   Here is an example for a hypothetical ``ZeroDivisionException``.

   .. code-block:: cpp

      register_exception_translator(
          [](const std::exception_ptr &p, void * /*payload*/) {
              try {
                  std::rethrow_exception(p);
              } catch (const ZeroDivisionException &e) {
                  PyErr_SetString(PyExc_ZeroDivisionError, e.what());
              }
          }, nullptr /*payload*/);

   Generally, you will want to use the more convenient exception binding
   interface provided by :cpp:class:`exception` class. This function provides
   an escape hatch for more specialized use cases.

.. cpp:function:: void chain_error(handle type, const char * fmt, ...) noexcept

   Raise a Python error of type ``type`` using the format string ``fmt``
   interpreted by ``PyErr_FormatV``.

   If a Python error state was already set prior to calling this method, then
   the new error is *chained* on top of the existing one. Otherwise, the
   function creates a new error without initializing its ``__cause__`` field.

.. cpp:function:: void raise_from(python_error &e, handle type, const char * fmt, ...)

   Convenience wrapper around :cpp:func:`chain_error <chain_error>`. It takes
   an existing Python error (e.g. caught in a ``catch`` block) and creates an
   additional Python exception with the current error as cause. It then
   re-raises :cpp:class:`python_error`. The argument ``fmt`` is a
   ``printf``-style format string interpreted by ``PyErr_FormatV``.

   Usage of this function is explained in the documentation section on
   :ref:`exception chaining <exception_chaining>`.

.. cpp:function:: void raise(const char * fmt, ...)

   This function takes a ``printf``-style format string with arguments and then
   raises a ``std::runtime_error`` with the formatted string. The function has
   no dependence on Python, and nanobind merely includes it for convenience.

.. cpp:function:: void raise_type_error(const char * fmt, ...)

   This function is analogous to :cpp:func:`raise`, except that it raises a
   :cpp:class:`builtin_exception` that will convert into a Python ``TypeError``
   when crossing the language interface.

.. cpp:function:: void raise_python_error()

   This function should only be called if a Python error status was set by a
   prior operation, which should now be raised as a C++ exception. The function
   is analogous to the statement ``throw python_error();`` but compiles into
   more compact code.

Casting
-------

.. cpp:function:: template <typename T, typename Derived> T cast(const detail::api<Derived> &value, bool convert = true)

   Convert the Python object `value` (typically a :cpp:class:`handle` or a
   :cpp:class:`object` subclass) into a C++ object of type `T`.

   When the `convert` argument is set to ``true`` (the default), the
   implementation may also attempt *implicit conversions* to perform the cast.

   The function raises an exception when the conversion fails.
   If the type caster uses the CPython error API (e.g., ``PyErr_SetString()``
   or ``PyErr_Format()``) to report a failure, then :cpp:class:`python_error`
   is raised.  Otherwise, :cpp:type:`cast_error` is raised.
   See :cpp:func:`try_cast()` for an alternative that never raises.

.. cpp:function:: template <typename T, typename Derived> bool try_cast(const detail::api<Derived> &value, T &out, bool convert = true) noexcept

   Convert the Python object `value` (typically a :cpp:class:`handle` or a
   :cpp:class:`object` subclass) into a C++ object of type `T`, and store it
   in the output parameter `out`.

   When the `convert` argument is set to ``true`` (the default), the
   implementation may also attempt *implicit conversions* to perform the cast.

   The function returns ``false`` when the conversion fails. In this case, the
   `out` parameter is left untouched. See :cpp:func:`cast()` for an alternative
   that instead raises an exception in this case.

.. cpp:function:: template <typename T> object cast(T &&value, rv_policy policy = rv_policy::automatic_reference)

   Convert the C++ object ``value`` into a Python object. The return value
   policy `policy` is used to handle ownership-related questions when a new
   Python object must be created.

   The function raises an exception when the conversion fails.
   If the type caster uses the CPython error API (e.g., ``PyErr_SetString()``
   or ``PyErr_Format()``) to report a failure, then :cpp:class:`python_error`
   is raised.  Otherwise, :cpp:type:`cast_error` is raised.

.. cpp:function:: template <typename T> object cast(T &&value, rv_policy policy, handle parent)

   Convert the C++ object ``value`` into a Python object. The return value
   policy `policy` is used to handle ownership-related questions when a new
   Python object must be created. A valid `parent` object is required when
   specifying a `reference_internal` return value policy.

   The function raises an exception when the conversion fails.
   If the type caster uses the CPython error API (e.g., ``PyErr_SetString()``
   or ``PyErr_Format()``) to report a failure, then :cpp:class:`python_error`
   is raised.  Otherwise, :cpp:type:`cast_error` is raised.

.. cpp:function:: template <typename T> object find(const T &value) noexcept

   Return the Python object associated with the C++ instance `value`. When no
   such object can be found, the function it returns an invalid object
   (:cpp:func:`detail::api::is_valid()` is ``false``).

.. cpp:function:: template <rv_policy policy = rv_policy::automatic, typename... Args> tuple make_tuple(Args&&... args)

   Create a Python tuple from a sequence of C++ objects ``args...``. The return
   value policy `policy` is used to handle ownership-related questions when a
   new Python objects must be created.

   The function raises an exception when the conversion fails.
   If the type caster uses the CPython error API (e.g., ``PyErr_SetString()``
   or ``PyErr_Format()``) to report a failure, then :cpp:class:`python_error`
   is raised.  Otherwise, :cpp:type:`cast_error` is raised.

Common binding annotations
--------------------------

The following annotations can be specified in both function and class bindings.

.. cpp:struct:: scope

   .. cpp:function:: scope(handle value)

      Captures the Python scope (e.g., a :cpp:class:`module_` or
      :cpp:class:`type_object`) in which the function or class should be
      registered.

.. _function_binding_annotations:

Function binding annotations
----------------------------

The following annotations can be specified using the variable-length ``Extra``
parameter of :cpp:func:`module_::def`, :cpp:func:`class_::def`,
:cpp:func:`cpp_function`, etc.

.. cpp:struct:: name

   .. cpp:function:: name(const char * value)

      Specify this annotation to override the name of the function.

      nanobind will internally copy the string when creating a function
      binding, hence dynamically generated arguments with a limited lifetime
      are legal.

.. cpp:struct:: arg

   Function argument annotation to enable keyword-based calling, default
   arguments, passing ``None``, and implicit conversion hints. Note that when a
   function argument should be annotated, you *must* specify annotations for all
   arguments of that function.

   Example use:

   .. code-block:: cpp

       m.def("add", [](int a, int b) { return a + b; }, nb::arg("a"), nb::arg("b"));

   It is usually convenient to add the following ``using`` declaration to your binding code.

   .. code-block:: cpp

       using namespace nb::literals;

   In this case, the argument annotations can be shortened:

   .. code-block:: cpp

       m.def("add", [](int a, int b) { return a + b; }, "a"_a, "b"_a);

   .. cpp:function:: explicit arg(const char * name = nullptr)

      Create a function argument annotation. The name is optional.

   .. cpp:function:: template <typename T> arg_v operator=(T &&value) const

      Return an argument annotation that is like this one but also assigns a
      default value to the argument. The default will be converted into a Python
      object immediately, so its bindings must have already been defined.

   .. cpp:function:: arg &none(bool value = true)

      Set a flag noting that the function argument accepts ``None``. Can only
      be used for python wrapper types (e.g. :cpp:class:`handle`,
      :cpp:class:`int_`) and types that have been bound using
      :cpp:class:`class_`. You cannot use this to implement functions that
      accept null pointers to builtin C++ types like ``int *i = nullptr``.

   .. cpp:function:: arg &noconvert(bool value = true)

      Set a flag noting that implicit conversion should never be performed for
      this function argument.

   .. cpp:function:: arg &sig(const char * sig)

      Override the signature of the default argument value. This is useful when
      the argument value is unusually complex so that the default method to
      explain it in docstrings and stubs (``str(value)``) does not produce
      acceptable output.

   .. cpp:function:: arg_locked lock()

      Return an argument annotation that is like this one but also requests that
      this argument be locked when dispatching a function call in free-threaded
      Python extensions. It does nothing in regular GIL-protected extensions.

.. cpp:struct:: is_method

   Indicate that the bound function is a method.

.. cpp:struct:: is_operator

   Indicate that the bound operator represents a special double underscore
   method (``__add__``, ``__radd__``, etc.) that implements an arithmetic
   operation.

   When a bound functions with this annotation is called with incompatible
   arguments, it will return ``NotImplemented`` rather than raising a
   ``TypeError``.

.. cpp:struct:: is_implicit

   Indicate that the bound constructor can be used to perform implicit conversions.

.. cpp:struct:: lock_self

   Indicate that the implicit ``self`` argument of a method should be locked
   when dispatching a call in a free-threaded extension. This annotation does
   nothing in regular GIL-protected extensions.

.. cpp:struct:: template <typename... Ts> call_guard

   Invoke the call guard(s) `Ts` when the bound function executes. The RAII
   helper :cpp:struct:`gil_scoped_release` is often combined with this feature.

.. cpp:struct:: template <size_t Nurse, size_t Patient> keep_alive

   Following evaluation of the bound function, keep the object referenced by
   index ``Patient`` alive *as long as* the object with index ``Nurse`` exists.
   This uses the following indexing convention:

   - Index ``0`` refers to the return value of methods. It should not be used
     in constructors or functions that do not return a result.

   - Index ``1`` refers to the first argument. In methods and constructors,
     index ``1`` refers to the implicit ``this`` pointer, while regular
     arguments begin at index ``2``.

   The annotation has the following runtime characteristics:

   - It does nothing when the nurse or patient object are ``None``.

   - It raises an exception when the nurse object is neither
     weak-referenceable nor an instance of a binding created via
     :cpp:class:`nb::class_\<..\> <class_>`.

   Two additional caveats regarding :cpp:class:`keep_alive <keep_alive>` are
   noteworthy:

   - It *usually* doesn't make sense to specify a ``Nurse`` or ``Patient`` for an
     argument or return value handled by a :ref:`type caster <type_casters>`
     (e.g., a STL vector handled via the include directive ``#include
     <nanobind/stl/vector.h>``). That's because type casters copy-convert the
     Python object into an equivalent C++ object, whose lifetime is decoupled
     from the original Python object. However, the :cpp:class:`keep_alive
     <keep_alive>` annotation *only* affects the lifetime of Python objects
     *and not their C++ copy*.

   - Dispatching a Python → C++ function call may require the :ref:`implicit
     conversion <noconvert>` of function arguments. In this case, the objects
     passed to the C++ function differ from the originally specified arguments.
     The ``Nurse`` and ``Patient`` annotation always refer to the *final* object
     following implicit conversion.

.. cpp:struct:: sig

   .. cpp:function:: sig(const char * value)

      This is *both* a class and a function binding annotation.

      1. When used in functions bindings, it provides complete control over
         the function's type signature by replacing the automatically generated
         version with ``value``. You can use it to add or change arguments and
         return values, tweak how default values are rendered, and add custom
         decorators.

         Here is an example:

         .. code-block:: cpp

            nb::def("function_name", &function_name,
                    nb::sig(
                        "@decorator(decorator_args..)\n
                        "def function_name(arg_1: type_1 = def_1, ...) -> ret"
                    ));


      2. When used in class bindings, the annotation enables complete control
         over how the class is rendered by nanobind's ``stubgen`` program. You
         can use it add decorators, specify ``typing.TypeVar``-parameterized
         base classes, metaclasses, etc.

         Here is an example:

         .. code-block:: cpp

            nb::class_<Class>(m, "Class",
                              nb::sig(
                                  "@decorator(decorator_args..)\n"
                                  "class Class(Base1[T], Base2, meta=Meta)"
                              ));

      Deviating significantly from the nanobind-generated signature likely
      means that the class or function declaration is a *lie*, but such lies
      can be useful to type-check complex binding projects.

      Specifying decorators isn't required---the above are just examples to
      show that this is possible.

      nanobind will internally copy the signature during function/type
      creation, hence dynamically generated strings with a limited lifetime are
      legal.

      The provided string should be valid Python signature, but *without* a
      trailing colon (``":"``) or trailing newline. Furthermore, nanobind
      analyzes the string and expects to find the name of the function or class
      on the *last line* between the ``"def"`` / ``"class"`` prefix and the
      opening parenthesis.

      For function bindings, this name must match the specified function name
      in ``.def("name", ..)``-style binding declarations, and for class
      bindings, the specified name must match the ``name`` argument of
      :cpp:class:`nb::class_ <class_>`.

.. cpp:enum-class:: rv_policy

   A return value policy determines the question of *ownership* when a bound
   function returns a previously unknown C++ instance that must now be
   converted into a Python object.

   Return value policies apply to functions that return values handled using
   :ref:`class bindings <bindings>`, which means that their Python equivalent
   was registered using :cpp:class:`class_\<...\> <class_>`. They are ignored
   in most other cases. One exception are STL types handled using :ref:`type
   casters <type_casters>` (e.g. ``std::vector<T>``), which contain a nested
   type ``T`` handled using class bindings. In this case, the return value
   policy also applies recursively.

   A return value policy is unnecessary when the type itself clarifies
   ownership (e.g., ``std::unique_ptr<T>``, ``std::shared_ptr<T>``, a type with
   :ref:`intrusive reference counting <intrusive>`).

   The following policies are available (where `automatic` is the default).
   Please refer to the :ref:`return value policy section <rvp>` of the main
   documentation, which clarifies the list below using concrete examples.

   .. cpp:enumerator:: take_ownership

      Create a Python object that wraps the existing C++ instance and takes
      full ownership of it. No copies are made. Python will call the C++
      destructor and ``delete`` operator when the Python wrapper is garbage
      collected at some later point. The C++ side *must* relinquish ownership
      and is not allowed to destruct the instance, or undefined behavior will
      ensue.

   .. cpp:enumerator:: copy

      Copy-construct a new Python object from the C++ instance. The new copy
      will be owned by Python, while C++ retains ownership of the original.

   .. cpp:enumerator:: move

      Move-construct a new Python object from the C++ instance. The new object
      will be owned by Python, while C++ retains ownership of the original
      (whose contents were likely invalidated by the move operation).

   .. cpp:enumerator:: reference

      Create a Python object that wraps the existing C++ instance *without
      taking ownership* of it. No copies are made. Python will never call the
      destructor or ``delete`` operator, even when the Python wrapper is
      garbage collected.

   .. cpp:enumerator:: reference_internal

      A safe extension of the `reference` policy for methods that implement
      some form of attribute access. It creates a Python object that wraps the
      existing C++ instance *without taking ownership* of it. Additionally, it
      adjusts reference counts to keeps the method's implicit ``self`` argument
      alive until the newly created object has been garbage collected.

   .. cpp:enumerator:: none

      This is the most conservative policy: it simply refuses the cast unless
      the C++ instance already has a corresponding Python object, in which case
      the question of ownership becomes moot.

   .. cpp:enumerator:: automatic

      This is the default return value policy, which falls back to
      `take_ownership` when the return value is a pointer, `move`  when it is a
      rvalue reference, and `copy` when it is a lvalue reference.

   .. cpp:enumerator:: automatic_reference

      This policy matches `automatic` but falls back to `reference` when the
      return value is a pointer.

.. cpp:struct:: kw_only

   Indicate that all following function parameters are keyword-only. This
   may only be used if you supply an :cpp:struct:`arg` annotation for each
   parameters, because keyword-only parameters are useless if they don't have
   names. For example, if you write

   .. code-block:: cpp

      int some_func(int one, const char* two);

      m.def("some_func", &some_func,
            nb::arg("one"), nb::kw_only(), nb::arg("two"));

   then in Python you can write ``some_func(42, two="hi")``, or
   ``some_func(one=42, two="hi")``, but not ``some_func(42, "hi")``.

   Just like in Python, any parameters appearing after variadic
   :cpp:class:`*args <args>` are implicitly keyword-only. You don't
   need to include the :cpp:struct:`kw_only` annotation in this case,
   but if you do include it, it must be in the correct position:
   immediately after the :cpp:struct:`arg` annotation for the variadic
   :cpp:class:`*args <args>` parameter.

.. cpp:struct:: template <typename T> for_getter

   When defining a property with a getter and a setter, you can use this to
   only pass a function binding attribute to the getter part. An example is
   shown below.

   .. code-block:: cpp

      nb::class_<MyClass>(m, "MyClass")
        .def_prop_rw("value", &MyClass::value,
                nb::for_getter(nb::sig("def value(self, /) -> int")),
                nb::for_setter(nb::sig("def value(self, value: int, /) -> None")),
                nb::for_getter("docstring for getter"),
                nb::for_setter("docstring for setter"));

.. cpp:struct:: template <typename T> for_setter

   Analogous to :cpp:struct:`for_getter`, but for setters.

.. cpp:struct:: template <typename Policy> call_policy

   Request that custom logic be inserted around each call to the
   bound function, by calling ``Policy::precall(args, nargs, cleanup)`` before
   Python-to-C++ argument conversion, and ``Policy::postcall(args, nargs, ret)``
   after C++-to-Python return value conversion.

   If multiple call policy annotations are provided for the same function, then
   their precall and postcall hooks will both execute left-to-right according
   to the order in which the annotations were specified when binding the
   function.

   The :cpp:struct:`nb::call_guard\<T\>() <call_guard>` annotation
   should be preferred over ``call_policy`` unless the wrapper logic
   depends on the function arguments or return value.
   If both annotations are combined, then
   :cpp:struct:`nb::call_guard\<T\>() <call_guard>` always executes on
   the "inside" (closest to the bound function, after argument
   conversions and before return value conversion) regardless of its
   position in the function annotations list.

   Your ``Policy`` class must define two static member functions:

   .. cpp:function:: static void precall(PyObject **args, size_t nargs, detail::cleanup_list *cleanup);

      A hook that will be invoked before calling the bound function. More
      precisely, it is called after any :ref:`argument locks <argument-locks>`
      have been obtained, but before the Python arguments are converted to C++
      objects for the function call.

      This hook may access or modify the function arguments using the
      *args* array, which holds borrowed references in one-to-one
      correspondence with the C++ arguments of the bound function.  If
      the bound function is a method, then ``args[0]`` is its *self*
      argument. *nargs* is the number of function arguments. It is actually
      passed as ``std::integral_constant<size_t, N>()``, so you can
      match on that type if you want to do compile-time checks with it.

      The *cleanup* list may be used as it is used in type casters,
      to cause some Python object references to be released at some point
      after the bound function completes. (If the bound function is part
      of an overload set, the cleanup list isn't released until all overloads
      have been tried.)

      ``precall()`` may choose to throw a C++ exception. If it does,
      it will preempt execution of the bound function, and the
      exception will be treated as if the bound function had thrown it.

   .. cpp:function:: static void postcall(PyObject **args, size_t nargs, handle ret);

      A hook that will be invoked after calling the bound function and
      converting its return value to a Python object, but only if the
      bound function returned normally.

      *args* stores the Python object arguments, with the same semantics
      as in ``precall()``, except that arguments that participated in
      implicit conversions will have had their ``args[i]`` pointer updated
      to reflect the new Python object that the implicit conversion produced.
      *nargs* is the number of arguments, passed as a ``std::integral_constant``
      in the same way as for ``precall()``.

      *ret* is the bound function's return value. If the bound function returned
      normally but its C++ return value could not be converted to a Python
      object, then ``postcall()`` will execute with *ret* set to null,
      and the Python error indicator might or might not be set to explain why.

      If the bound function did not return normally -- either because its
      Python object arguments couldn't be converted to the appropriate C++
      types, or because the C++ function threw an exception -- then
      ``postcall()`` **will not execute**. If you need some cleanup logic to
      run even in such cases, your ``precall()`` can add a capsule object to the
      cleanup list; its destructor will run eventually, but with no promises
      as to when. A :cpp:struct:`nb::call_guard <call_guard>` might be a
      better choice.

      ``postcall()`` may choose to throw a C++ exception. If it does,
      the result of the wrapped function will be destroyed,
      and the exception will be raised in its place, as if the bound function
      had thrown it just before returning.

   Here is an example policy to demonstrate.
   ``nb::call_policy<returns_references_to<I>>()`` behaves like
   :cpp:class:`nb::keep_alive\<0, I\>() <keep_alive>`, except that the
   return value is a treated as a list of objects rather than a single one.

   .. code-block:: cpp

      template <size_t I>
      struct returns_references_to {
          static void precall(PyObject **, size_t, nb::detail::cleanup_list *) {}

          template <size_t N>
          static void postcall(PyObject **args,
                               std::integral_constant<size_t, N>,
                               nb::handle ret) {
              static_assert(I > 0 && I <= N,
                            "I in returns_references_to<I> must be in the "
                            "range [1, number of C++ function arguments]");
              if (!nb::isinstance<nb::sequence>(ret)) {
                  throw std::runtime_error("return value should be a sequence");
              }
              for (nb::handle nurse : ret) {
                  nb::detail::keep_alive(nurse.ptr(), args[I - 1]);
              }
          }
      };

   For a more complex example (binding an object that uses trivially-copyable
   callbacks), see ``tests/test_callbacks.cpp`` in the nanobind source
   distribution.

.. _class_binding_annotations:

Class binding annotations
-------------------------

The following annotations can be specified using the variable-length ``Extra``
parameter of the constructor :cpp:func:`class_::class_`.

Besides the below options, also refer to the :cpp:class:`sig` which is
usable in both function and class bindings. It can be used to override class
declarations in generated :ref:`stubs <stubs>`,

.. cpp:struct:: is_final

   Indicate that a type cannot be subclassed.

.. cpp:struct:: dynamic_attr

   Indicate that instances of a type require a Python dictionary to support the dynamic addition of attributes.

.. cpp:struct:: is_weak_referenceable

   Indicate that instances of a type require a weak reference list so that they
   can be referenced by the Python ``weakref.*`` types.

.. cpp:struct:: is_generic

   If present, nanobind will add a ``__class_getitem__`` function to the newly
   created type that permits constructing *parameterized* versions (e.g.,
   ``MyType[int]``). The implementation of this function is equivalent to

   .. code-block:: python

      def __class_getitem__(cls, value):
          import types
          return types.GenericAlias(cls, value)

   See the section on :ref:`creating generic types <typing_generics_creating>`
   for an example.

   This feature is only supported on Python 3.9+. Nanobind will ignore
   the attribute in Python 3.8 builds.

.. cpp:struct:: template <typename T> supplement

   Indicate that ``sizeof(T)`` bytes of memory should be set aside to
   store supplemental data in the type object. See :ref:`Supplemental
   type data <supplement>` for more information.

.. cpp:struct:: type_slots

   .. cpp:function:: type_slots(PyType_Slot * value)

   nanobind uses the ``PyType_FromSpec`` Python C API interface to construct
   types. In certain advanced use cases, it may be helpful to append additional
   type slots during type construction. This class binding annotation can be
   used to accomplish this. The provided list should be followed by a
   zero-initialized ``PyType_Slot`` element. See :ref:`Customizing type creation
   <typeslots>` for more information about this feature.

.. cpp:struct:: template <typename T> intrusive_ptr

   nanobind provides a custom interface for intrusive reference-counted C++
   types that nicely integrate with Python reference counting. See the
   :ref:`separate section <intrusive>` on this topic. This annotation
   marks a type as compatible with this interface.

   .. cpp:function:: intrusive_ptr(void (* set_self_py)(T*, PyObject*) noexcept)

      Declares a callback that will be invoked when a C++ instance is first
      cast into a Python object.


.. _enum_binding_annotations:

Enum binding annotations
------------------------

The following annotations can be specified using the variable-length
``Extra`` parameter of the constructor :cpp:func:`enum_::enum_`.

.. cpp:struct:: is_arithmetic

   Indicate that the enumeration supports arithmetic operations.  This enables
   both unary (``-``, ``~``, ``abs()``) and binary (``+``, ``-``, ``*``,
   ``//``, ``&``, ``|``, ``^``, ``<<``, ``>>``) operations with operands of
   either enumeration or numeric types.

   The result will be as if the operands were first converted to integers. (So
   ``Shape(2) + Shape(1) == 3`` and ``Shape(2) * 1.5 == 3.0``.) It is
   unspecified whether operations on mixed enum types (such as ``Shape.Circle +
   Color.Red``) are permissible.

   Passing this annotation changes the Python enumeration parent class to
   either :py:class:`enum.IntEnum` or :py:class:`enum.IntFlag`, depending on
   whether or not the flag enumeration attribute is also specified (see
   :cpp:class:`is_flag`).

.. cpp:struct:: is_flag

   Indicate that the enumeration supports bit-wise operations.  This enables the
   operators (``|``, ``&``, ``^``, and ``~``) with two enumerators as operands.

   The result has the same type as the operands, i.e., ``Shape(2) | Shape(1)``
   will be equivalent to ``Shape(3)``.

   Passing this annotation changes the Python enumeration parent class to
   either :py:class:`enum.IntFlag` or :py:class:`enum.Flag`, depending on
   whether or not the enumeration is also marked to support arithmetic
   operations (see :cpp:class:`is_arithmetic`).

Function binding
----------------

.. cpp:function:: object cpp_function(Func &&f, const Extra&... extra)

   Convert the function `f` into a Python callable. This function has
   a few overloads (not shown here) to separately deal with function/method
   pointers and lambda functions.

   The variable length `extra` parameter can be used to pass a docstring and
   other :ref:`function binding annotations <function_binding_annotations>`.

.. _class_binding:

Class binding
-------------

.. cpp:class:: template <typename T, typename... Ts> class_ : public object

   Binding helper class to expose a custom C++ type `T` (declared using either
   the ``class`` or ``struct`` keyword) in Python.

   The variable length parameter `Ts` is optional and  can be used to specify
   the base class of `T` and/or an alias needed to realize :ref:`trampoline
   classes <trampolines>`.

   When the type ``T`` was previously already registered (either within the
   same extension or another extension), the ``class_<..>`` declaration is
   redundant. nanobind will print a warning message in this case:

   .. code-block:: text

      RuntimeWarning: nanobind: type 'MyType' was already registered!

   The ``class_<..>`` instance will subsequently wrap the original type object
   instead of creating a new one.

   .. cpp:function:: template <typename... Extra> class_(handle scope, const char * name, const Extra &... extra)

      Bind the type `T` to the identifier `name` within the scope `scope`. The
      variable length `extra` parameter can be used to pass a docstring and
      other :ref:`class binding annotations <class_binding_annotations>`.

   .. cpp:function:: template <typename Func, typename... Extra> class_ &def(const char * name, Func &&f, const Extra &... extra)

      Bind the function `f` and assign it to the class member `name`.
      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.

      This function has two overloads (listed just below) to handle constructor
      binding declarations.

      **Example**:

      .. code-block:: cpp

         struct A {
             void f() { /*...*/ }
         };

         nb::class_<A>(m, "A")
             .def(nb::init<>()) // Bind the default constructor
             .def("f", &A::f);  // Bind the method A::f

   .. cpp:function:: template <typename... Args, typename... Extra> class_ &def(init<Args...> arg, const Extra &... extra)

      Bind a constructor. The variable length `extra` parameter can be used to
      pass a docstring and other :ref:`function binding annotations
      <function_binding_annotations>`.

   .. cpp:function:: template <typename Arg, typename... Extra> class_ &def(init_implicit<Arg> arg, const Extra &... extra)

      Bind a constructor that may be used for implicit type conversions. The
      constructor must take a single argument of an unspecified type `Arg`.

      When nanobind later tries to dispatch a function call requiring an
      argument of type `T` while `Arg` was actually provided, it will run this
      constructor to perform the necessary conversion.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.

      This constructor generates more compact code than a separate call to
      :cpp:func:`implicitly_convertible`, but is otherwise equivalent.

   .. cpp:function:: template <typename Func, typename... Extra> class_ &def(new_<Func> arg, const Extra &... extra)

      Bind a C++ factory function as a Python object constructor (``__new__``).
      This is an advanced feature; prefer :cpp:struct:`nb::init\<..\> <init>`
      where possible. See the discussion of :ref:`customizing object creation
      <custom_new>` for more details.

   .. cpp:function:: template <typename Visitor, typename... Extra> class_ &def(def_visitor<Visitor> arg, const Extra &... extra)

      Dispatch to custom user-provided binding logic implemented by the type
      ``Visitor``, passing it the binding annotations ``extra...``.
      See the documentation of :cpp:struct:`nb::def_visitor\<..\> <def_visitor>`
      for details.

   .. cpp:function:: template <typename C, typename D, typename... Extra> class_ &def_rw(const char * name, D C::* p, const Extra &...extra)

      Bind the field `p` and assign it to the class member `name`. nanobind
      constructs a ``property`` object with *read-write* access (hence the
      ``rw`` suffix) to do so.

      Every access from Python will read from or write to the C++ field while
      performing a suitable conversion (using :ref:`type casters
      <type_casters>`, :ref:`bindings <bindings>`, or :ref:`wrappers
      <wrappers>`) as determined by its type.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`
      that are forwarded to the anonymous functions used to construct the
      property.
      Use the :cpp:struct:`nb::for_getter <for_getter>` and
      :cpp:struct:`nb::for_setter <for_setter>` to pass annotations
      specifically to the setter or getter part.

      **Example**:

      .. code-block:: cpp

         struct A { int value; };

         nb::class_<A>(m, "A")
             .def_rw("value", &A::value); // Enable mutable access to the field A::value

   .. cpp:function:: template <typename C, typename D, typename... Extra> class_ &def_ro(const char * name, D C::* p, const Extra &...extra)

      Bind the field `p` and assign it to the class member `name`. nanobind
      constructs a ``property`` object with *read only* access (hence the
      ``ro`` suffix) to do so.

      Every access from Python will read the C++ field while performing a
      suitable conversion (using :ref:`type casters <type_casters>`,
      :ref:`bindings <bindings>`, or :ref:`wrappers <wrappers>`) as determined
      by its type.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`
      that are forwarded to the anonymous functions used to construct the
      property.

      **Example**:

      .. code-block:: cpp

         struct A { int value; };

         nb::class_<A>(m, "A")
             .def_ro("value", &A::value);  // Enable read-only access to the field A::value

   .. cpp:function:: template <typename Getter, typename Setter, typename... Extra> class_ &def_prop_rw(const char * name, Getter &&getter, Setter &&setter, const Extra &...extra)

      Construct a *mutable* (hence the ``rw`` suffix) Python ``property`` and
      assign it to the class member `name`. Every read access will call the
      function ``getter``  with the `T` instance, and every write access will
      call the ``setter`` with the `T` instance and value to be assigned.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.
      Use the :cpp:struct:`nb::for_getter <for_getter>` and
      :cpp:struct:`nb::for_setter <for_setter>` to pass annotations
      specifically to the setter or getter part.

      Note that this function implicitly assigns the
      :cpp:enumerator:`rv_policy::reference_internal` return value policy to
      `getter` (as opposed to the usual
      :cpp:enumerator:`rv_policy::automatic`). Provide an explicit return value
      policy as part of the `extra` argument to override this.

      **Example**: the example below uses `def_prop_rw` to expose a C++
      setter/getter pair as a more "Pythonic" property:

      .. code-block:: cpp

          class A {
          public:
              A(int value) : m_value(value) { }
              void set_value(int value) { m_value = value; }
              int value() const { return m_value; }
          private:
              int m_value;
          };

          nb::class_<A>(m, "A")
              .def(nb::init<int>())
              .def_prop_rw("value",
                  [](A &t) { return t.value() ; },
                  [](A &t, int value) { t.set_value(value); });

   .. cpp:function:: template <typename Getter, typename... Extra> class_ &def_prop_ro(const char * name, Getter &&getter, const Extra &...extra)

      Construct a *read-only* (hence the ``ro`` suffix) Python ``property`` and
      assign it to the class member `name`. Every read access will call the
      function ``getter``  with the `T` instance.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.

      Note that this function implicitly assigns the
      :cpp:enumerator:`rv_policy::reference_internal` return value policy to
      `getter` (as opposed to the usual
      :cpp:enumerator:`rv_policy::automatic`). Provide an explicit return value
      policy as part of the `extra` argument to override this.

      **Example**: the example below uses `def_prop_ro` to expose a C++ getter
      as a more "Pythonic" property:

      .. code-block:: cpp

          class A {
          public:
              A(int value) : m_value(value) { }
              int value() const { return m_value; }
          private:
              int m_value;
          };

          nb::class_<A>(m, "A")
              .def(nb::init<int>())
              .def_prop_ro("value",
                  [](A &t) { return t.value() ; });

   .. cpp:function:: template <typename Func, typename... Extra> class_ &def_static(const char * name, Func &&f, const Extra &... extra)

      Bind the *static* function `f` and assign it to the class member `name`.
      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.

      **Example**:

      .. code-block:: cpp

         struct A {
             static void f() { /*...*/ }
         };

         nb::class_<A>(m, "A")
             .def_static("f", &A::f);  // Bind the static method A::f

   .. cpp:function:: template <typename D, typename... Extra> class_ &def_rw_static(const char * name, D* p, const Extra &...extra)

      Bind the *static* field `p` and assign it to the class member `name`. nanobind
      constructs a class ``property`` object with *read-write* access (hence the
      ``rw`` suffix) to do so.

      Every access from Python will read from or write to the static C++ field
      while performing a suitable conversion (using :ref:`type casters
      <type_casters>`, :ref:`bindings <bindings>`, or :ref:`wrappers
      <wrappers>`) as determined by its type.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`
      that are forwarded to the anonymous functions used to construct the
      property
      Use the :cpp:struct:`nb::for_getter <for_getter>` and
      :cpp:struct:`nb::for_setter <for_setter>` to pass annotations
      specifically to the setter or getter part.

      **Example**:

      .. code-block:: cpp

         struct A { inline static int value = 5; };

         nb::class_<A>(m, "A")
             // Enable mutable access to the static field A::value
             .def_rw_static("value", &A::value);

   .. cpp:function:: template <typename D, typename... Extra> class_ &def_ro_static(const char * name, D* p, const Extra &...extra)

      Bind the *static* field `p` and assign it to the class member `name`.
      nanobind constructs a class ``property`` object with *read-only* access
      (hence the ``ro`` suffix) to do so.

      Every access from Python will read the static C++ field while performing
      a suitable conversion (using :ref:`type casters <type_casters>`,
      :ref:`bindings <bindings>`, or :ref:`wrappers <wrappers>`) as determined
      by its type.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`
      that are forwarded to the anonymous functions used to construct the
      property

      **Example**:

      .. code-block:: cpp

         struct A { inline static int value = 5; };

         nb::class_<A>(m, "A")
             // Enable read-only access to the static field A::value
             .def_ro_static("value", &A::value);

   .. cpp:function:: template <typename Getter, typename Setter, typename... Extra> class_ &def_prop_rw_static(const char * name, Getter &&getter, Setter &&setter, const Extra &...extra)

      Construct a *mutable* (hence the ``rw`` suffix) Python ``property`` and
      assign it to the class member `name`. Every read access will call the
      function ``getter``  with `T`'s Python type object, and every write access will
      call the ``setter`` with `T`'s Python type object and value to be assigned.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.
      Use the :cpp:struct:`nb::for_getter <for_getter>` and
      :cpp:struct:`nb::for_setter <for_setter>` to pass annotations
      specifically to the setter or getter part.

      Note that this function implicitly assigns the
      :cpp:enumerator:`rv_policy::reference` return value policy to
      `getter` (as opposed to the usual
      :cpp:enumerator:`rv_policy::automatic`). Provide an explicit return value
      policy as part of the `extra` argument to override this.

      **Example**: the example below uses `def_prop_rw_static` to expose a
      static C++ setter/getter pair as a more "Pythonic" property:

      .. code-block:: cpp

         class A {
         public:
            static void set_value(int value) { s_value = value; }
            static int value() { return s_value; }
         private:
            inline static int s_value = 5;
         };

         nb::class_<A>(m, "A")
             .def_prop_rw_static("value",
                 [](nb::handle /*unused*/) { return A::value() ; },
                 [](nb::handle /*unused*/, int value) { A::set_value(value); });

   .. cpp:function:: template <typename Getter, typename... Extra> class_ &def_prop_ro_static(const char * name, Getter &&getter, const Extra &...extra)

      Construct a *read-only* (hence the ``ro`` suffix) Python ``property`` and
      assign it to the class member `name`. Every read access will call the
      function ``getter``  with `T`'s Python type object.

      The variable length `extra` parameter can be used to pass a docstring and
      other :ref:`function binding annotations <function_binding_annotations>`.

      Note that this function implicitly assigns the
      :cpp:enumerator:`rv_policy::reference` return value policy to
      `getter` (as opposed to the usual
      :cpp:enumerator:`rv_policy::automatic`). Provide an explicit return value
      policy as part of the `extra` argument to override this.

      **Example**: the example below uses `def_prop_ro_static` to expose a
      static C++ getter as a more "Pythonic" property:

      .. code-block:: cpp

         class A {
         public:
            static int value() { return s_value; }
         private:
            inline static int s_value = 5;
         };

         nb::class_<A>(m, "A")
             .def_prop_ro_static("value",
                 [](nb::handle /*unused*/) { return A::value() ; });

   .. cpp:function:: template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra)

      This interface provides convenient syntax sugar to replace relatively
      lengthy method bindings with shorter operator bindings. To use it, you
      will need an extra include directive:

      .. code-block:: cpp

         #include <nanobind/operators.h>

      Below is an example type with three arithmetic operators in C++ (unary
      negation and 2 binary subtraction overloads) along with corresponding
      bindings.

      **Example**:

      .. code-block:: cpp

         struct A {
            float value;

            A operator-() const { return { -value }; }
            A operator-(const A &o) const { return { value - o.value }; }
            A operator-(float o) const { return { value - o }; }
         };

         nb::class_<A>(m, "A")
             .def(nb::init<float>())
             .def(-nb::self)
             .def(nb::self - nb::self)
             .def(nb::self - float());


      Bind an arithmetic or comparison operator expressed in short-hand form (e.g., ``.def(nb::self + nb::self)``).

   .. cpp:function:: template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> class_ &def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra)

      Like the above ``.def()`` variant, but furthermore cast the result of the operation back to `T`.


.. cpp:class:: template <typename T> enum_ : public class_<T>

   Class binding helper for scoped and unscoped C++ enumerations.

   .. cpp:function:: template <typename... Extra> NB_INLINE enum_(handle scope, const char * name, const Extra &...extra)

      Bind the enumeration of type `T` to the identifier `name` within the
      scope `scope`. The variable length `extra` parameter can be used to pass
      a docstring and other :ref:`enum binding annotations
      <enum_binding_annotations>` (currently, only :cpp:class:`is_arithmetic` is supported).

   .. cpp:function:: enum_ &value(const char * name, T value, const char * doc = nullptr)

      Add the entry `value` to the enumeration using the identifier `name`,
      potentially with a docstring provided via `doc` (optional).

   .. cpp:function:: enum_ &export_values()

      Export all entries of the enumeration into the parent scope.

.. cpp:class:: template <typename T> exception : public object

   Class binding helper for declaring new Python exception types

   .. cpp:function:: exception(handle scope, const char * name, handle base = PyExc_Exception)

      Create a new exception type identified by `name` that derives from
      `base`, and install it in `scope`. The constructor also calls
      :cpp:func:`register_exception_translator()` to register a new exception
      translator that converts caught C++ exceptions of type `T` into the
      newly created Python equivalent.

.. cpp:struct:: template <typename... Args> init

   nanobind uses this simple helper class to capture the signature of a
   constructor. It is only meant to be used in binding declarations done via
   :cpp:func:`class_::def()`.

   Sometimes, it is necessary to bind constructors that don't exist in the
   underlying C++ type (meaning that they are specific to the Python bindings).
   Because `init` only works for existing C++ constructors, this requires
   a manual workaround noting that

   .. code-block:: cpp

      nb::class_<MyType>(m, "MyType")
          .def(nb::init<const char*, int>());

   is syntax sugar for the following lower-level implementation using
   "`placement new <https://en.wikipedia.org/wiki/Placement_syntax>`_":

   .. code-block:: cpp

      nb::class_<MyType>(m, "MyType")
          .def("__init__",
               [](MyType* t, const char* arg0, int arg1) {
                   new (t) MyType(arg0, arg1);
               });

   The provided lambda function will be called with a pointer to uninitialized
   memory that has already been allocated (this memory region is co-located
   with the Python object for reasons of efficiency). The lambda function can
   then either run an in-place constructor and return normally (in which case
   the instance is assumed to be correctly constructed) or fail by raising an
   exception.

.. cpp:struct:: template <typename Arg> init_implicit

   See :cpp:class:`init` for detail on binding constructors. The main
   difference between :cpp:class:`init`  and `init_implicit` is that the latter
   only supports constructors taking a single argument `Arg`, and that it marks
   the constructor as usable for implicit conversions from `Arg`.

   Sometimes, it is necessary to bind implicit conversion-capable constructors
   that don't exist in the underlying C++ type (meaning that they are specific
   to the Python bindings). This can be done manually noting that

   .. code-block:: cpp

      nb::class_<MyType>(m, "MyType")
          .def(nb::init_implicit<const char*>());

   can be replaced by the lower-level code

   .. code-block:: cpp

       nb::class_<MyType>(m, "MyType")
           .def("__init__",
                [](MyType* t, const char* arg0) {
                    new (t) MyType(arg0);
                });

       nb::implicitly_convertible<const char*, MyType>();

.. cpp:struct:: template <typename Func> new_

   This is a small helper class that indicates to :cpp:func:`class_::def()`
   that a particular lambda or static method provides a Python object
   constructor (``__new__``) for the class being bound. Normally, you would
   use :cpp:class:`init` instead if possible, in order to cooperate with
   nanobind's usual object creation process. Using :cpp:class:`new_`
   replaces that process entirely. This is principally useful when some
   C++ type of interest can only provide pointers to its instances,
   rather than allowing them to be constructed directly.

   Like :cpp:class:`init`, the only use of a :cpp:class:`new_` object is
   as an argument to :cpp:func:`class_::def()`.

   Example use:

   .. code-block:: cpp

      class MyType {
      private:
          MyType();
      public:
          static std::shared_ptr<MyType> create();
          int value = 0;
      };

      nb::class_<MyType>(m, "MyType")
          .def(nb::new_(&MyType::create));

   Given this example code, writing ``MyType()`` in Python would
   produce a Python object wrapping the result of ``MyType::create()``
   in C++. If multiple calls to ``create()`` return pointers to the
   same C++ object, these will turn into references to the same Python
   object as well.

   See the discussion of :ref:`customizing Python object creation <custom_new>`
   for more information.

.. cpp:struct:: template <typename Visitor> def_visitor

   An empty base object which serves as a tag to allow :cpp:func:`class_::def()`
   to dispatch to custom logic implemented by the type ``Visitor``. This is the
   same mechanism used by :cpp:class:`init`, :cpp:class:`init_implicit`, and
   :cpp:class:`new_`; it's exposed publicly so that you can create your own
   reusable abstractions for binding logic.

   To define a ``def_visitor``, you would write something like:

   .. code-block:: cpp

      struct my_ops : nb::def_visitor<my_ops> {
          template <typename Class, typename... Extra>
          void execute(Class &cl, const Extra&... extra) {
              /* series of def() statements on `cl`, which is a nb::class_ */
          }
      };

   Then use it like:

   .. code-block:: cpp

      nb::class_<MyType>(m, "MyType")
          .def("some_method", &MyType::some_method)
          .def(my_ops())
          ... ;

   Any arguments to :cpp:func:`class_::def()` after the ``def_visitor`` object
   get passed through as the ``Extra...`` parameters to ``execute()``.
   As with any other C++ object, data needed by the ``def_visitor`` can be passed
   through template arguments or ordinary constructor arguments.
   The ``execute()`` method may be static if it doesn't need to access anything
   in ``*this``.


GIL Management
--------------

These two `RAII
<https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization>`_ helper
classes acquire and release the *Global Interpreter Lock* (GIL) in a given
scope. The :cpp:struct:`gil_scoped_release` helper is often combined with the
:cpp:struct:`call_guard`, as in

.. code-block:: cpp

    m.def("expensive", &expensive, nb::call_guard<nb::gil_scoped_release>());

This releases the interpreter lock while `expensive` is running, which permits
running it in parallel from multiple Python threads.

.. cpp:struct:: gil_scoped_acquire

   .. cpp:function:: gil_scoped_acquire()

      Acquire the GIL

   .. cpp:function:: ~gil_scoped_acquire()

      Release the GIL

.. cpp:struct:: gil_scoped_release

   .. cpp:function:: gil_scoped_release()

      Release the GIL (**must** be currently held)

      In :ref:`free-threaded extensions <free-threaded>`, this operation also
      temporarily releases all :ref:`argument locks <argument-locks>` held by
      the current thread.

   .. cpp:function:: ~gil_scoped_release()

      Reacquire the GIL

Free-threading
--------------

Nanobind provides abstractions to implement *additional* locking that is
needed to ensure the correctness of free-threaded Python extensions.

.. cpp:struct:: ft_mutex

   Object-oriented wrapper representing a `PyMutex
   <https://docs.python.org/3.13/c-api/init.html#c.PyMutex>`__. It can be
   slightly more efficient than OS/language-provided primitives (e.g.,
   ``std::thread``, ``pthread_mutex_t``) and should generally be preferred when
   adding critical sections to Python bindings.

   In Python builds *without* free-threading, this class does nothing. It has
   no attributes and the :cpp:func:`lock` and :cpp:func:`unlock` functions
   return immediately.

   .. cpp:function:: ft_mutex()

      Create a new (unlocked) mutex.

   .. cpp:function:: void lock()

      Acquire the mutex.

   .. cpp:function:: void unlock()

      Release the mutex.

.. cpp:struct:: ft_lock_guard

   This class provides a RAII lock guard analogous to ``std::lock_guard`` and
   ``std::unique_lock``.

   .. cpp:function:: ft_lock_guard(ft_mutex &mutex)

      Call :cpp:func:`mutex.lock() <ft_mutex::lock>` (no-op in non-free-threaded builds).

   .. cpp:function:: ~ft_lock_guard()

      Call :cpp:func:`mutex.unlock() <ft_mutex::unlock>` (no-op in non-free-threaded builds).

.. cpp:struct:: ft_object_guard

   This class provides a RAII guard that locks a single Python object within a
   local scope (in contrast to :cpp:class:`ft_lock_guard`, which locks a
   mutex).

   It is a thin wrapper around the Python `critical section API
   <https://docs.python.org/3.13/c-api/init.html#c.Py_BEGIN_CRITICAL_SECTION>`__.
   Please refer to the Python documentation for details on the semantics of
   this relaxed form of critical section (in particular, Python critical sections
   may release previously held locks).

   In Python builds *without* free-threading, this class does nothing---the
   constructor and destructor return immediately.

   .. cpp:function:: ft_object_guard(handle h)

      Lock the object ``h`` (no-op in non-free-threaded builds)

   .. cpp:function:: ~ft_object_guard()

      Unlock the object ``h`` (no-op in non-free-threaded builds)

.. cpp:struct:: ft_object2_guard

   This class provides a RAII guard that locks *two* Python object within a
   local scope (in contrast to :cpp:class:`ft_lock_guard`, which locks a
   mutex).

   It is a thin wrapper around the Python `critical section API
   <https://docs.python.org/3.13/c-api/init.html#c.Py_BEGIN_CRITICAL_SECTION2>`__.
   Please refer to the Python documentation for details on the semantics of
   this relaxed form of critical section (in particular, Python critical sections
   may release previously held locks).

   In Python builds *without* free-threading, this class does nothing---the
   constructor and destructor return immediately.

   .. cpp:function:: ft_object2_guard(handle h1, handle h2)

      Lock the objects ``h1`` and ``h2`` (no-op in non-free-threaded builds)

   .. cpp:function:: ~ft_object2_guard()

      Unlock the objects ``h1`` and ``h2`` (no-op in non-free-threaded builds)

Low-level type and instance access
----------------------------------

nanobind exposes a low-level interface to provide fine-grained control over
the sequence of steps that instantiates a Python object wrapping a C++
instance. A thorough explanation of these features is provided in a
:ref:`separate section <lowlevel>`.

Type objects
^^^^^^^^^^^^

.. cpp:function:: bool type_check(handle h)

   Returns ``true`` if ``h`` is a type that was previously bound via
   :cpp:class:`class_`.

.. cpp:function:: size_t type_size(handle h)

   Assuming that `h` represents a bound type (see :cpp:func:`type_check`),
   return its size in bytes.

.. cpp:function:: size_t type_align(handle h)

   Assuming that `h` represents a bound type (see :cpp:func:`type_check`),
   return its alignment in bytes.

.. cpp:function:: const std::type_info& type_info(handle h)

   Assuming that `h` represents a bound type (see :cpp:func:`type_check`),
   return its C++ RTTI record.

.. cpp:function:: template <typename T> T &type_supplement(handle h)

   Return a reference to supplemental data stashed in a type object.
   The type ``T`` must exactly match the type specified in the
   :cpp:class:`nb::supplement\<T\> <supplement>` annotation used when
   creating the type; no type check is performed, and invalid supplement
   accesses may crash the interpreter. Also refer to
   :cpp:class:`nb::supplement\<T\> <supplement>`.

.. cpp:function:: str type_name(handle h)

   Return the full (module-qualified) name of a type object as a Python string.

.. cpp:function:: void * type_get_slot(handle h, int slot_id)

   On Python 3.10+, this function is a simple wrapper around the Python C API
   function ``PyType_GetSlot`` that provides stable API-compatible access to
   type object members. On Python 3.9 and earlier, the official function did
   not work on non-heap types. The nanobind version consistently works on heap
   and non-heap types across Python versions.

Instances
^^^^^^^^^

The documentation below refers to two per-instance flags with the following meaning:

- *ready*: is the instance fully constructed? nanobind will not permit passing
  the instance to a bound C++ function when this flag is unset.

- *destruct*: should nanobind call the C++ destructor when the instance is
  garbage-collected?

.. cpp:function:: bool inst_check(handle h)

   Returns ``true`` if `h` represents an instance of a type that was
   previously bound via :cpp:class:`class_`.

.. cpp:function:: template <typename T> T * inst_ptr(handle h)

   Assuming that `h` represents an instance of a type that was previously bound
   via :cpp:class:`class_`, return a pointer to the underlying C++ instance.

   The function *does not check* that `h` actually contains an instance with
   C++ type `T`.

.. cpp:function:: object inst_alloc(handle h)

   Assuming that `h` represents a type object that was previously created via
   :cpp:class:`class_` (see :cpp:func:`type_check`), allocate an unitialized
   object of type `h` and return it. The *ready* and *destruct* flags of the
   returned instance are both set to ``false``.

.. cpp:function:: object inst_alloc_zero(handle h)

   Assuming that `h` represents a type object that was previously created via
   :cpp:class:`class_` (see :cpp:func:`type_check`), allocate a zero-initialized
   object of type `h` and return it. The *ready* and *destruct* flags of the
   returned instance are both set to ``true``.

   This operation is equivalent to calling :cpp:func:`inst_alloc` followed by
   :cpp:func:`inst_zero`.

.. cpp:function:: object inst_reference(handle h, void * p, handle parent = handle())

   Assuming that `h` represents a type object that was previously created via
   :cpp:class:`class_` (see :cpp:func:`type_check`) create an object of type
   `h` that wraps an existing C++ instance `p`.

   The *ready* and *destruct* flags of the returned instance are respectively
   set to ``true`` and ``false``.

   This is analogous to casting a C++ object with return value policy
   :cpp:enumerator:`rv_policy::reference`.

   If a `parent` object is specified, the instance keeps this parent alive
   while the newly created object exists. This is analogous to casting a C++
   object with return value policy
   :cpp:enumerator:`rv_policy::reference_internal`.

.. cpp:function:: object inst_take_ownership(handle h, void * p)

   Assuming that `h` represents a type object that was previously created via
   :cpp:class:`class_` (see :cpp:func:`type_check`) create an object of type
   `h` that wraps an existing C++ instance `p`.

   The *ready* and *destruct* flags of the returned instance are both set to
   ``true``.

   This is analogous to casting a C++ object with return value policy
   :cpp:enumerator:`rv_policy::take_ownership`.

.. cpp:function:: void inst_zero(handle h)

   Zero-initialize the contents of `h`. Sets the *ready* and *destruct* flags
   to ``true``.

.. cpp:function:: bool inst_ready(handle h)

   Query the *ready* flag of the instance `h`.

.. cpp:function:: std::pair<bool, bool> inst_state(handle h)

   Separately query the *ready* and *destruct* flags of the instance `h`.

.. cpp:function:: void inst_mark_ready(handle h)

   Simultaneously set the *ready* and *destruct* flags of the instance `h` to ``true``.

.. cpp:function:: void inst_set_state(handle h, bool ready, bool destruct)

   Separately set the *ready* and *destruct* flags of the instance `h`.

.. cpp:function:: void inst_destruct(handle h)

   Destruct the instance `h`. This entails calling the C++ destructor if the
   *destruct* flag is set and then setting the *ready* and *destruct* fields to
   ``false``.

.. cpp:function:: void inst_copy(handle dst, handle src)

   Copy-construct the contents of `src` into `dst` and set the *ready* and
   *destruct* flags of `dst` to ``true``.

   `dst` should be an uninitialized instance of the same type. Note that
   setting the *destruct* flag may be problematic if `dst` is an offset into an
   existing object created using :cpp:func:`inst_reference` (the destructor
   will be called multiple times in this case). If so, you must use
   :cpp:func:`inst_set_state` to disable the flag following the call to
   :cpp:func:`inst_copy`.

   *New in nanobind v2.0.0*: The function is a no-op when ``src`` and ``dst``
   refer to the same object.

.. cpp:function:: void inst_move(handle dst, handle src)

   Analogous to :cpp:func:`inst_copy`, except that the move constructor
   is used instead of the copy constructor.

.. cpp:function:: void inst_replace_copy(handle dst, handle src)

   Destruct the contents of `dst` (even if the *destruct* flag is ``false``).
   Next, copy-construct the contents of `src` into `dst` and set the *ready*
   flag of ``dst``. The value of the *destruct* flag is subsequently set to its
   value prior to the call.

   This operation is useful to replace the contents of one instance with that
   of another regardless of whether `dst` has been created using
   :cpp:func:`inst_alloc`, :cpp:func:`inst_reference`, or
   :cpp:func:`inst_take_ownership`.

   *New in nanobind v2.0.0*: The function is a no-op when ``src`` and ``dst``
   refer to the same object.

.. cpp:function:: void inst_replace_move(handle dst, handle src)

   Analogous to :cpp:func:`inst_replace_copy`, except that the move constructor
   is used instead of the copy constructor.

.. cpp:function:: str inst_name(handle h)

   Return the full (module-qualified) name of the instance's type object as a
   Python string.

Global flags
------------

.. cpp:function:: bool leak_warnings() noexcept

   Returns whether nanobind warns if any nanobind instances, types, or
   functions are still alive when the Python interpreter shuts down.

.. cpp:function:: bool implicit_cast_warnings() noexcept

   Returns whether nanobind warns if an implicit conversion was not successful.

.. cpp:function:: void set_leak_warnings(bool value) noexcept

   By default, nanobind loudly complains when any nanobind instances, types, or
   functions are still alive when the Python interpreter shuts down. Call this
   function to disable or re-enable leak warnings.

.. cpp:function:: void set_implicit_cast_warnings(bool value) noexcept

   By default, nanobind loudly complains when it attempts to perform an
   implicit conversion, and when that conversion is not successful. Call this
   function to disable or re-enable the warnings.

.. cpp:function:: inline bool is_alive() noexcept

   The function returns ``true`` when nanobind is initialized and ready for
   use. It returns ``false`` when the Python interpreter has shut down, causing
   the destruction various nanobind-internal data structures. Having access to
   this liveness status can be useful to avoid operations that are illegal in
   the latter context.

Miscellaneous
-------------

.. cpp:function:: str repr(handle h)

   Return a stringified version of the provided Python object.
   Equivalent to ``repr(h)`` in Python.

.. cpp:function:: void print(handle value, handle end = handle(), handle file = handle())

   Invoke the Python ``print()`` function to print the object `value`. If desired,
   a line ending `end` and file handle `file` can be specified.

.. cpp:function:: void print(const char * str, handle end = handle(), handle file = handle())

   Invoke the Python ``print()`` function to print the null-terminated C-style
   string `str` that is encoded using UTF-8 encoding.  If desired, a line
   ending `end` and file handle `file` can be specified.

.. cpp:function:: iterator iter(handle h)

   Equivalent to ``iter(h)`` in Python.

.. cpp:function:: object none()

   Return an object representing the value ``None``.

.. cpp:function:: dict builtins()

   Return the ``__builtins__`` dictionary.

.. cpp:function:: dict globals()

   Return the ``globals()`` dictionary.

.. cpp:function:: Py_hash_t hash(handle h)

   Hash the given argument like ``hash()`` in pure Python. The type of the
   return value (``Py_hash_t``) is an implementation-specific signed integer
   type.

.. cpp:function:: template <typename Source, typename Target> void implicitly_convertible()

   Indicate that the type `Source` is implicitly convertible into `Target`
   (which must refer to a type that was previously bound via
   :cpp:class:`class_`).

   *Note*: the :cpp:struct:`init_implicit` interface generates more compact
   code and should be preferred, i.e., use

   .. code-block:: cpp

      nb::class_<Target>(m, "Target")
          .def(nb::init_implicit<Source>());

   instead of

   .. code-block:: cpp

      nb::class_<Target>(m, "Target")
          .def(nb::init<Source>());

      nb::implicitly_convertible<Source, Target>();

   The function is provided for reasons of compatibility with pybind11, and as
   an escape hatch to enable use cases where :cpp:struct:`init_implicit`
   is not available (e.g., for custom binding-specific constructors that don't
   exist in `Target` type).

.. cpp:class:: template <typename T, typename... Ts> typed

    This helper class provides an interface to parameterize generic types to
    improve generated Python function signatures (e.g., to turn ``list`` into
    ``list[MyType]``).

    Consider the following binding that iterates over a Python list.

    .. code-block:: cpp

       m.def("f", [](nb::list l) {
           for (handle h : l) {
               // ...
           }
       });

    Suppose that ``f`` expects a list of ``MyType`` objects, which is not clear
    from the signature. To make this explicit, use the ``nb::typed<T, Ts...>``
    wrapper to pass additional type parameters. This has no effect besides
    clarifying the signature---in particular, nanobind does *not* insert
    additional runtime checks! At runtime, a ``nb::typed<T, Ts...>`` behaves
    exactly like a ``T``.

    .. code-block:: cpp

       m.def("f", [](nb::typed<nb::list, MyType> l) {
           for (nb::handle h : l) {
               // ...
           }
       });

    ``nb::typed<nb::object, T>`` and ``nb::typed<nb::handle, T>`` are
    treated specially: they generate a signature that refers just to ``T``,
    rather than to the nonsensical ``object[T]`` that would otherwise
    be produced. This can be useful if you want to replace the type of
    a parameter instead of augmenting it. Note that at runtime these
    perform no checks at all, since ``nb::object`` and ``nb::handle``
    can refer to any Python object.

    To support callable types, you can specify a C++ function signature in
    ``nb::typed<nb::callable, Sig>`` and nanobind will attempt to convert
    it to a Python callable signature.
    ``nb::typed<nb::callable, int(float, std::string)>`` becomes
    ``Callable[[float, str], int]``, while
    ``nb::typed<nb::callable, int(...)>`` becomes ``Callable[..., int]``.
    Type checkers will verify that any callable passed for such an argument
    has a compatible signature. (At runtime, any sort of callable object
    will be accepted.)