1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
|
.. _classes:
.. cpp:namespace:: nanobind
Classes
=======
The material below builds on the section on :ref:`binding custom types
<binding_types>` and reviews advanced scenarios involving object-oriented code.
Frequently used
---------------
Click on the following :cpp:class:`nb::class_\<..\>::def_* <class_>` members for
examples on how to bind various different kinds of methods, fields, etc.
.. list-table::
:widths: 40 60
:header-rows: 1
* - Type
- method
* - Methods & constructors
- :cpp:func:`.def() <class_::def>`
* - Fields
- :cpp:func:`.def_ro() <class_::def_ro>`,
:cpp:func:`.def_rw() <class_::def_rw>`
* - Properties
- :cpp:func:`.def_prop_ro() <class_::def_prop_ro>`,
:cpp:func:`.def_prop_rw() <class_::def_prop_rw>`
* - Static methods
- :cpp:func:`.def_static() <class_::def_static>`
* - Static fields
- :cpp:func:`.def_ro_static() <class_::def_ro_static>`,
:cpp:func:`.def_rw_static() <class_::def_rw_static>`
* - Static properties
- :cpp:func:`.def_prop_ro_static() <class_::def_prop_ro_static>`,
:cpp:func:`.def_prop_rw_static() <class_::def_prop_rw_static>`
.. _inheritance:
Subclasses
----------
Consider the following two data structures with an inheritance relationship:
.. code-block:: cpp
struct Pet {
std::string name;
};
struct Dog : Pet {
std::string bark() const { return name + ": woof!"; }
};
To indicate the inheritance relationship to nanobind, specify the C++ base
class as an extra template parameter of :cpp:class:`nb::class_\<..\> <class_>`:
.. code-block:: cpp
:emphasize-lines: 8
#include <nanobind/stl/string.h>
NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet")
.def(nb::init<const std::string &>())
.def_rw("name", &Pet::name);
nb::class_<Dog, Pet /* <- C++ parent type */>(m, "Dog")
.def(nb::init<const std::string &>())
.def("bark", &Dog::bark);
}
Alternatively, you can also pass the type object as an ordinary parameter.
.. code-block:: cpp
:emphasize-lines: 5
auto pet = nb::class_<Pet>(m, "Pet")
.def(nb::init<const std::string &>())
.def_rw("name", &Pet::name);
nb::class_<Dog>(m, "Dog", pet /* <- Parent type object */)
.def(nb::init<const std::string &>())
.def("bark", &Dog::bark);
Instances expose fields and methods of both types as expected:
.. code-block:: pycon
>>> d = my_ext.Dog("Molly")
>>> d.name
'Molly'
>>> d.bark()
'Molly: woof!'
.. _automatic_downcasting:
Automatic downcasting
---------------------
nanobind obeys signatures when returning regular non-polymorphic C++ objects
from functions: building on the :ref:`previous example <inheritance>`, consider
the following function that returns a ``Dog`` object as a ``Pet`` base pointer.
.. code-block:: cpp
m.def("pet_store", []() { return (Pet *) new Dog{"Molly"}; });
nanobind cannot safely determine that this is in fact an instance of the
``Dog`` subclass. Consequently, only fields and methods of the base type remain
accessible:
.. code-block:: pycon
>>> p = my_ext.pet_store()
>>> type(p)
<class 'my_ext.Pet'>
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'
In C++, a type is only considered `polymorphic
<https://en.wikipedia.org/wiki/Dynamic_dispatch>`_ if it (or one of its base
classes) has at least one *virtual function*. Let's add a virtual default
destructor to make ``Pet`` and its subtypes polymorphic.
.. code-block:: cpp
struct Pet {
virtual ~Pet() = default;
std::string name;
};
With this change, nanobind is able to inspect the returned C++ instance's
`virtual table <https://en.wikipedia.org/wiki/Virtual_method_table>`_ and infer
that it can be represented by a more specialized Python object of type
``my_ext.Dog``.
.. code-block:: pycon
>>> p = my_ext.pet_store()
>>> type(p)
<class 'my_ext.Dog'>
>>> p.bark()
'Molly: woof!'
.. note::
Automatic downcasting of polymorphic instances is only supported when the
subtype has been registered using :cpp:class:`nb::class_\<..\> <class_>`.
Otherwise, the return type listed in the function signature takes
precedence.
.. _overloaded_methods:
Overloaded methods
------------------
Sometimes there are several overloaded C++ methods with the same name taking
different kinds of input arguments:
.. code-block:: cpp
struct Pet {
Pet(const std::string &name, int age) : name(name), age(age) { }
void set(int age_) { age = age_; }
void set(const std::string &name_) { name = name_; }
std::string name;
int age;
};
Attempting to bind ``Pet::set`` will cause an error since the compiler does not
know which method the user intended to select. We can disambiguate by casting
them to function pointers. Binding multiple functions to the same Python name
automatically creates a chain of function overloads that will be tried in
sequence.
.. code-block:: cpp
nb::class_<Pet>(m, "Pet")
.def(nb::init<const std::string &, int>())
.def("set", nb::overload_cast<int>(&Pet::set), "Set the pet's age")
.def("set", nb::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
Here, :cpp:func:`nb::overload_cast <overload_cast>` only requires the parameter
types to be specified, and it deduces the return type.
.. note::
In cases where a function overloads by ``const``-ness, an additional
``nb::const_`` parameter is needed to select the right overload, e.g.,
``nb::overload_cast<int>(&Pet::get, nb::const_)``.
To define overloaded constructors, simply declare one after the other using
the normal :cpp:class:`.def(nb::init\<...\>()) <init>` syntax.
The overload signatures are also visible in the method's docstring:
.. code-block:: pycon
>>> help(my_ext.Pet)
class Pet(builtins.object)
| Methods defined here:
|
| __init__(...)
| __init__(self, arg0: str, arg1: int, /) -> None
|
| set(...)
| set(self, arg: int, /) -> None
| set(self, arg: str, /) -> None
|
| Overloaded function.
|
| 1. ``set(self, arg: int, /) -> None``
|
| Set the pet's age
|
| 2. ``set(self, arg: str, /) -> None``
|
| Set the pet's name
The format of the docstring with a leading overload list followed by a repeated
list with details is designed to be compatible with the `Sphinx
<https://www.sphinx-doc.org/en/master/>`_ documentation generator.
.. _enumerations_and_internal:
Enumerations and internal types
-------------------------------
Let's now suppose that the example class contains internal types like enumerations, e.g.:
.. code-block:: cpp
struct Pet {
enum Kind {
Dog = 0,
Cat
};
struct Attributes {
float age = 0;
};
Pet(const std::string &name, Kind type) : name(name), type(type) { }
std::string name;
Kind type;
Attributes attr;
};
The binding code for this example looks as follows:
.. code-block:: cpp
nb::class_<Pet> pet(m, "Pet");
pet.def(nb::init<const std::string &, Pet::Kind>())
.def_rw("name", &Pet::name)
.def_rw("type", &Pet::type)
.def_rw("attr", &Pet::attr);
nb::enum_<Pet::Kind>(pet, "Kind")
.value("Dog", Pet::Kind::Dog)
.value("Cat", Pet::Kind::Cat)
.export_values();
nb::class_<Pet::Attributes>(pet, "Attributes")
.def(nb::init<>())
.def_rw("age", &Pet::Attributes::age);
To ensure that the nested types ``Kind`` and ``Attributes`` are created within
the scope of ``Pet``, the ``pet`` type object is passed as the ``scope``
argument of the subsequent :cpp:class:`nb::enum_\<T\> <enum_>` and
:cpp:class:`nb::class_\<T\> <class_>` binding declarations. The
:cpp:func:`.export_values() <enum_::export_values>` function exports the
enumeration entries into the parent scope, which should be skipped for newer
C++11-style strongly typed enumerations.
.. code-block:: pycon
>>> from my_ext import Pet
>>> p = Pet("Lucy", Pet.Cat)
>>> p.attr.age = 3
>>> p.type
my_ext.Kind.Cat
>>> p.type.__name__
'Cat'
>>> int(p.type)
1
.. note::
When the annotation :cpp:class:`nb::is_arithmetic() <is_arithmetic>` is
passed to :cpp:class:`nb::enum_\<T\> <enum_>`, the resulting Python type
will support arithmetic and bit-level operations (and, or,
xor, negation). The operands of these operations may be either enumerators.
When the annotation :cpp:class:`nb::is_flag() <is_flag>` is passed to
:cpp:class:`nb::enum_\<T\> <enum_>`, the resulting Python type will be a class
derived from ``enum.Flag``, meaning its enumerators can be combined using bit-wise
operators in a type-safe way: the result will have the same enumeration type
as the operands, and only enumerators of the same type can be combined.
When passing both ``is_arithmetic`` and ``is_flag``, the resulting Python type
will be ``enum.IntFlag``, supporting both arithmetic and bit-wise operations.
.. code-block:: cpp
nb::enum_<Pet::Kind>(pet, "Kind", nb::is_arithmetic())
...
By default, these are omitted.
.. _dynamic_attributes:
Dynamic attributes
------------------
Native Python classes can pick up new attributes dynamically:
.. code-block:: pycon
>>> class Pet:
... name = "Molly"
...
>>> p = Pet()
>>> p.name = "Charly" # overwrite existing
>>> p.age = 2 # dynamically add a new attribute
By default, classes exported from C++ do not support this and the only writable
attributes are the ones explicitly defined using :func:`class_::def_rw`
or :func:`class_::def_prop_rw`.
.. code-block:: cpp
nb::class_<Pet>(m, "Pet")
.def(nb::init<>())
.def_rw("name", &Pet::name);
Trying to set any other attribute results in an error:
.. code-block:: pycon
>>> p = my_ext.Pet()
>>> p.name = "Charly" # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'
To enable dynamic attributes for C++ classes, the :class:`nb::dynamic_attr
<dynamic_attr>` tag must be added to the :class:`nb::class_ <class_>`
constructor:
.. code-block:: cpp
nb::class_<Pet>(m, "Pet", nb::dynamic_attr())
.def(nb::init<>())
.def_rw("name", &Pet::name);
Now everything works as expected:
.. code-block:: pycon
>>> p = my_ext.Pet()
>>> p.name = "Charly" # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute
Note that there is a small runtime cost for a class with dynamic attributes.
Not only because of the addition of an instance dictionary, but also because of
more expensive garbage collection tracking which must be activated to resolve
possible circular references. Native Python classes incur this same cost by
default, so this is not anything to worry about. By default, nanobind classes
are more efficient than native Python classes. Enabling dynamic attributes just
brings them on par.
.. _weak_refs:
Weak references
---------------
By default, nanobind instances cannot be referenced via Python's ``weakref``
class, and attempting to do so will raise an exception.
To support this, add the :class:`nb::is_weak_referenceable
<is_weak_referenceable>` tag to the :class:`nb::class_ <class_>` constructor.
Note that this will increase the size of every instance by ``sizeof(void*)``
due to the need to store a weak reference list.
.. code-block:: cpp
nb::class_<Pet>(m, "Pet", nb::is_weak_referenceable());
.. _inheriting_in_python:
Extending C++ classes in Python
-------------------------------
Bound C++ types can be extended within Python, which is helpful to dynamically
extend compiled code with further fields and other functionality. Bind classes
with the :cpp:class:`is_final` annotation to forbid subclassing.
Consider the following example bindings of a ``Dog`` and ``DogHouse`` class.
.. code-block:: cpp
#include <nanobind/stl/string.h>
namespace nb = nanobind;
struct Dog {
std::string name;
std::string bark() const { return name + ": woof!"; }
};
struct DogHouse {
Dog dog;
};
NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")
.def(nb::init<const std::string &>())
.def("bark", &Dog::bark)
.def_rw("name", &Dog::name);
nb::class_<DogHouse>(m, "DogHouse")
.def(nb::init<Dog>())
.def_rw("dog", &DogHouse::dog);
}
The following Python snippet creates a new ``GuardDog`` type that extends
``Dog`` with an ``.alarm()`` method.
.. code-block:: pycon
>>> import my_ext
>>> class GuardDog(my_ext.Dog):
... def alarm(self, count = 3):
... for i in range(count):
... print(self.bark())
...
>>> gd = GuardDog("Max")
>>> gd.alarm()
Max: woof!
Max: woof!
Max: woof!
This Python subclass is best thought of as a "rich wrapper" around an existing
C++ base object. By default, that wrapper will disappear when nanobind makes a
copy or transfers ownership to C++.
.. code-block:: pycon
>>> d = my_ext.DogHouse()
>>> d.dog = gd
>>> d.dog.alarm()
AttributeError: 'Dog' object has no attribute 'alarm'
To preserve it, adopt a shared ownership model using :ref:`shared pointers
<shared_ptr>` or :ref:`intrusive reference counting <intrusive_intro>`. For
example, updating the code as follows fixes the problem:
.. code-block:: cpp
#include <nanobind/stl/shared_ptr.h>
struct DogHouse {
std::shared_ptr<Dog> dog;
};
.. code-block:: pycon
>>> d = my_ext.DogHouse()
>>> d.dog = gd
>>> d.dog.alarm()
Max: woof!
Max: woof!
Max: woof!
.. _trampolines:
Overriding virtual functions in Python
--------------------------------------
Building on the previous example on :ref:`inheriting C++ types in Python
<inheriting_in_python>`, let's investigate how a C++ *virtual function* can be
overridden in Python. In the code below, the virtual method ``bark()`` is
called by a global ``alarm()`` function (now written in C++).
.. code-block:: cpp
:emphasize-lines: 6
#include <iostream>
struct Dog {
std::string name;
Dog(const std::string &name) : name(name) { }
virtual std::string bark() const { return name + ": woof!"; }
};
void alarm(Dog *dog, size_t count = 3) {
for (size_t i = 0; i < count; ++i)
std::cout << dog->bark() << std::endl;
}
Normally, the binding code would look as follows:
.. code-block:: cpp
#include <nanobind/stl/string.h>
namespace nb = nanobind;
using namespace nb::literals;
NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")
.def(nb::init<const std::string &>())
.def("bark", &Dog::bark)
.def_rw("name", &Dog::name);
m.def("alarm", &alarm, "dog"_a, "count"_a = 3);
}
However, this don't work as expected. We can subclass and override without
problems, but virtual function calls originating from C++ aren't being
propagated to Python:
.. code-block:: pycon
>>> class ShihTzu(my_ext.Dog):
... def bark(self):
... return self.name + ": yip!"
...
>>> dog = ShihTzu("Mr. Fluffles")
>>> dog.bark()
Mr. Fluffles: yip!
>>> my_ext.alarm(dog)
Mr. Fluffles: woof! # <-- oops, alarm() is calling the base implementation
Mr. Fluffles: woof!
Mr. Fluffles: woof!
To fix this behavior, you must implement a *trampoline class*. A trampoline has
the sole purpose of capturing virtual function calls in C++ and forwarding them
to Python.
.. code-block:: cpp
#include <nanobind/trampoline.h>
struct PyDog : Dog {
NB_TRAMPOLINE(Dog, 1);
std::string bark() const override {
NB_OVERRIDE(bark);
}
};
This involves an additional include directive and the line
:c:macro:`NB_TRAMPOLINE(Dog, 1) <NB_TRAMPOLINE>` to mark the class as a
trampoline for the ``Dog`` base type. The count (``1``) denotes to the total
number of virtual method slots that can be overridden within Python.
.. note::
The number of virtual method slots is used to preallocate memory.
Trampoline declarations with an insufficient size may eventually trigger a
Python ``RuntimeError`` exception with a descriptive label, e.g.:
.. code-block:: text
nanobind::detail::get_trampoline('PyDog::bark()'): the trampoline ran out of
slots (you will need to increase the value provided to the NB_TRAMPOLINE() macro)
The macro :c:macro:`NB_OVERRIDE(bark) <NB_OVERRIDE>` intercepts the virtual
function call, checks if a Python override exists, and forwards the call in
that case. If no override was found, it falls back to the base class
implementation. You will need to replicate this pattern for every method that
should support overriding in Python.
The macro accepts an variable argument list to pass additional parameters. For
example, suppose that the virtual function ``bark()`` had an additional ``int
volume`` parameter---in that case, the syntax would need to be adapted as follows:
.. code-block:: cpp
std::string bark(int volume) const override {
NB_OVERRIDE(bark, volume);
}
The macro :c:macro:`NB_OVERRIDE_PURE() <NB_OVERRIDE_PURE>` should be used for
pure virtual functions, and :c:macro:`NB_OVERRIDE() <NB_OVERRIDE>` should be
used for functions which have a default implementation. There are also two
alternate macros :c:macro:`NB_OVERRIDE_PURE_NAME() <NB_OVERRIDE_PURE_NAME>` and
:c:macro:`NB_OVERRIDE_NAME() <NB_OVERRIDE_NAME>` which take a string as first
argument to specify the name of function in Python. This is useful when the C++
and Python versions of the function have different names (e.g., ``operator+``
vs ``__add__``).
The binding code needs a tiny adaptation (highlighted) to inform nanobind of
the trampoline that will be used whenever Python code extends the C++ class.
.. code-block:: cpp
nb::class_<Dog, PyDog /* <-- trampoline */>(m, "Dog")
If the :cpp:class:`nb::class_\<..\> <class_>` declaration also specifies a base
class, you may specify it and the trampoline in either order. Also, note that
binding declarations should be made against the actual class, not the
trampoline:
.. code-block:: cpp
nb::class_<Dog, PyDog>(m, "Dog")
.def(nb::init<const std::string &>())
.def("bark", &PyDog::bark); /* <--- THIS IS WRONG, use &Dog::bark */
With the trampoline in place, our example works as expected:
.. code-block:: pycon
>>> my_ext.alarm(dog)
Mr. Fluffles: yip!
Mr. Fluffles: yip!
Mr. Fluffles: yip!
The following special case needs to be mentioned: you *may not* implement a
Python trampoline for a method that returns a reference or pointer to a
type requiring :ref:`type casting <type_casters>`. For example, attempting to
expose a hypothetical virtual method ``const std::string &get_name() const``
as follows
.. code-block:: cpp
const std::string &get_name() const override {
NB_OVERRIDE(get_name);
}
will fail with a static assertion failure:
.. code-block:: text
include/nanobind/nb_cast.h:352:13: error: static_assert failed due to requirement '...'
"nanobind::cast(): cannot return a reference to a temporary."
This is not a fluke. The Python would return a ``str`` object that nanobind can
easily type-cast into a temporary ``std::string`` instance. However, when the
virtual function call returns on the C++ side, that temporary will already have
expired. There isn't a good solution to this problem, and nanobind therefore
simply refuses to do it. You will need to change your approach by either using
:ref:`bindings <bindings>` instead of :ref:`type casters <type_casters>` or
changing your virtual method interfaces to return by value.
.. _operator_overloading:
Operator overloading
--------------------
Suppose that we're given the following ``Vector2`` class with a vector addition
and scalar multiplication operation, all implemented using overloaded operators
in C++.
.. code-block:: cpp
class Vector2 {
public:
Vector2(float x, float y) : x(x), y(y) { }
Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
Vector2 operator-() const { return Vector2(-x, -y); }
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
friend Vector2 operator*(float f, const Vector2 &v) {
return Vector2(f * v.x, f * v.y);
}
std::string to_string() const {
return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
}
private:
float x, y;
};
The following snippet shows how the above operators can be conveniently exposed
to Python.
.. code-block:: cpp
#include <nanobind/operators.h>
NB_MODULE(my_ext, m) {
nb::class_<Vector2>(m, "Vector2")
.def(nb::init<float, float>())
.def(nb::self + nb::self)
.def(nb::self += nb::self)
.def(nb::self *= float())
.def(float() * nb::self)
.def(nb::self * float())
.def(-nb::self)
.def("__repr__", &Vector2::to_string);
}
Note that a line involving :cpp:var:`nb::self <self>` like
.. code-block:: cpp
.def(nb::self * float())
is really just short hand notation for
.. code-block:: cpp
.def("__mul__", [](const Vector2 &a, float b) {
return a * b;
}, nb::is_operator())
This can be useful for exposing additional operators that don't exist on the
C++ side, or to perform other types of customization. The
:cpp:class:`nb::is_operator() <is_operator>` flag marker is needed to inform
nanobind that this is an operator, which returns ``NotImplemented`` when
invoked with incompatible arguments rather than throwing a type error.
When binding *in-place* operators such as ``operator+=``, and when their
implementation is guaranteed to end with ``return *this``, it is recommended
that you set a return value policy of :cpp:enumerator:`rv_policy::none`, i.e.,
.. code-block:: cpp
.def(nb::self += nb::self, nb::rv_policy::none)
Otherwise, the function binding will return a new copy of the object, which is
usually not desired.
Binding protected member functions
----------------------------------
It's normally not possible to expose ``protected`` member functions to Python:
.. code-block:: cpp
class A {
protected:
int foo() const { return 42; }
};
nb::class_<A>(m, "A")
.def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
On one hand, this is good because non-``public`` members aren't meant to be
accessed from the outside. But we may want to make use of ``protected``
functions in derived Python classes.
The following pattern makes this possible:
.. code-block:: cpp
class A {
protected:
int foo() const { return 42; }
};
class Publicist : public A { // helper type for exposing protected functions
public:
using A::foo; // inherited with different access modifier
};
nb::class_<A>(m, "A") // bind the primary class
.def("foo", &Publicist::foo); // expose protected methods via the publicist
This works because ``&Publicist::foo`` is exactly the same function as
``&A::foo`` (same signature and address), just with a different access
modifier. The only purpose of the ``Publicist`` helper class is to make
the function name ``public``.
If the intent is to expose ``protected`` ``virtual`` functions which can be
overridden in Python, the publicist pattern can be combined with the previously
described trampoline:
.. code-block:: cpp
class A {
public:
virtual ~A() = default;
protected:
virtual int foo() const { return 42; }
};
class Trampoline : public A {
public:
NB_TRAMPOLINE(A, 1);
int foo() const override { NB_OVERRIDE(foo); }
};
class Publicist : public A {
public:
using A::foo;
};
nb::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
.def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
Binding classes with template parameters
----------------------------------------
nanobind can also wrap classes that have template parameters. Consider these classes:
.. code-block:: cpp
struct Cat {};
struct Dog {};
template <typename PetType> struct PetHouse {
PetHouse(PetType& pet);
PetType& get();
};
C++ templates may only be instantiated at compile time, so nanobind can only
wrap instantiated templated classes. You cannot wrap a non-instantiated template:
.. code-block:: cpp
// BROKEN (this will not compile)
nb::class_<PetHouse>(m, "PetHouse");
.def("get", &PetHouse::get);
You must explicitly specify each template/type combination that you want to
wrap separately.
.. code-block:: cpp
// ok
nb::class_<PetHouse<Cat>>(m, "CatHouse")
.def("get", &PetHouse<Cat>::get);
// ok
nb::class_<PetHouse<Dog>>(m, "DogHouse")
.def("get", &PetHouse<Dog>::get);
If your class methods have template parameters you can wrap those as well,
but once again each instantiation must be explicitly specified:
.. code-block:: cpp
typename <typename T> struct MyClass {
template <typename V> T fn(V v);
};
nb::class_<MyClass<int>>(m, "MyClassT")
.def("fn", &MyClass<int>::fn<std::string>);
.. _tag_based_polymorphism:
Tag-based polymorphism
----------------------
The section on :ref:`automatic downcasting <automatic_downcasting>` explained
how nanobind can infer the type of polymorphic C++ objects at runtime. It can
be desirable to extend this automatic downcasting behavior to non-polymorphic
classes, for example to support *tag-based polymorphism*. In this case,
instances expose a method or field to identify their type.
For example, consider the following class hierarchy where ``Pet::kind``
serves this purpose:
.. code-block:: cpp
#include <nanobind/nanobind.h>
namespace nb = nanobind;
enum class PetKind { Cat, Dog };
struct Pet { const PetKind kind; };
struct Dog : Pet { Dog() : Pet{PetKind::Dog} { } };
struct Cat : Pet { Cat() : Pet{PetKind::Cat} { } };
namespace nb = nanobind;
NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet");
nb::class_<Dog>(m, "Dog");
nb::class_<Cat>(m, "Cat");
nb::enum_<PetKind>(m, "PetKind")
.value("Cat", PetKind::Cat)
.value("Dog", PetKind::Dog);
m.def("make_pet", [](PetKind kind) -> Pet* {
switch (kind) {
case PetKind::Dog: return new Dog();
case PetKind::Cat: return new Cat();
}
});
}
This code initially doesn't work as expected (the ``make_pet`` function binding
always creates instances of the ``Pet`` base class).
.. code-block:: pycon
>>> my_ext.make_pet(my_ext.PetKind.Cat)
<my_ext.Pet object at 0x10305ee10>
>>> my_ext.make_pet(my_ext.PetKind.Dog)
<my_ext.Pet object at 0x10328e530>
To fix this, partially specialize the ``type_hook`` class to provide the
``type_hook<T>::get()`` method:
.. code-block:: cpp
namespace nanobind::detail {
template <> struct type_hook<Pet> {
static const std::type_info *get(Pet *p) {
if (p) {
switch (p->kind) {
case PetKind::Dog: return &typeid(Dog);
case PetKind::Cat: return &typeid(Cat);
}
}
return &typeid(Pet);
}
};
} // namespace nanobind::detail
The method will be invoked whenever nanobind needs to convert a C++ pointer of
type ``T*`` to a Python object. It should inspect the instance and return a
pointer to a suitable RTTI record. With this override, downcasting works as
expected:
.. code-block:: pycon
>>> my_ext.make_pet(my_ext.PetKind.Cat)
<my_ext.Cat object at 0x104da6e10>
>>> my_ext.make_pet(my_ext.PetKind.Dog)
<my_ext.Dog object at 0x104da6ef0>
Binding unions
--------------
:cpp:class:`nb::class_\<..\> <class_>` can also be used to provide bindings
for `unions <https://en.cppreference.com/w/cpp/language/union>`__.
A basic and useless example:
.. code-block:: cpp
union Example {
int ival;
double dval;
std::string to_string(size_t active_idx) const {
return active_idx == 1 ? std::to_string(dval) : std::to_string(ival);
}
};
static_assert(sizeof(Example) == sizeof(double));
nb::class_<Example>(m, "Example")
.def_rw("ival", &Example::ival)
.def_rw("dval", &Example::dval)
.def("to_string", &Example::to_string);
.. code-block:: pycon
>>> u = my_ext.Example()
>>> u.ival = 42
>>> u.to_string(0)
'42'
>>> u.dval = 1.25
>>> u.to_string(1)
'1.250000'
Direct binding of union variant members is only safe if all members of the
union are trivially copyable types (as in this example), but more complex
unions can also be supported by binding lambdas or member functions that
enforce the necessary invariants.
This is a low-level feature and should be used with care; even when all
members are trivially copyable, reading from a union member
other than the most recently written one produces undefined behavior
in C++. Unless you need to bind an existing API that uses union types,
you're probably better off using ``std::variant<..>``, which knows what
member is active and can thus enforce all the ncessary invariants for you.
Pickling
--------
To pickle and unpickle objects bound using nanobind, expose the
``__getstate__`` and ``__setstate__`` methods. They should return and retrieve
the internal instance state using representations that themselves support
pickling. The example below, e.g., does this using a tuple.
The ``__setstate__`` method should construct the object in-place analogous to
custom ``__init__``-style constructors.
.. code-block:: cpp
#include <nanobind/stl/tuple.h>
struct Pet {
std::string name;
int age;
Pet(const std::string &name, int age) : name(name), age(age) { }
};
NB_MODULE(my_ext, m) {
nb::class_<Pet>(m, "Pet")
// ...
.def("__getstate__", [](const Pet &pet) { return std::make_tuple(pet.name, pet.age); })
.def("__setstate__", [](Pet &pet, const std::tuple<std::string, int> &state) {
new (&pet) Pet(
std::get<0>(state),
std::get<1>(state)
);
});
}
.. _custom_new:
Customizing Python object creation
----------------------------------
Sometimes you might need to bind a class that can't be constructed in the
usual way:
.. code-block:: cpp
class Pet {
private:
Pet(/* ... */);
public:
static std::unique_ptr<Pet> make(std::string name, int age);
void speak();
};
You can use :cpp:func:`.def_static() <class_::def_static>` to
produce bindings that let you write ``Pet.make("Fido", 2)`` in Python,
just like you would write ``Pet::make("Fido", 2)`` in C++. But sometimes it's
nice to provide a more Pythonic interface than that, like ``Pet("Fido", 2)``.
To do that, nanobind lets you override ``__new__``.
Since this is a rarely-used feature in Python, let's recap. Object
initialization in Python occurs in two phases:
* the *constructor*, ``__new__``, allocates memory for the object;
* the *initializer*, ``__init__``, sets up the object's initial state.
So far, all the ways we've seen of binding C++ constructors
(:cpp:struct:`nb::init\<..\>() <init>`, ``.def("__init__", ...)``)
produce Python object *initializers*. nanobind augments these with its own
Python object constructor, which allocates a Python object that has
space in its memory layout for the C++ object to slot in.
The ``__init__`` method then fills in that space by calling a C++ constructor.
This split between ``__new__`` and ``__init__`` has a lot of benefits,
including a reduction in unnecessary allocations, but it does mean that
anything created from Python must be able to control where its
C++ innards are stored. Sometimes, as with the example of ``Pet`` above,
that's not feasible. In such cases, you can go down one level and override
``__new__`` directly:
.. code-block:: cpp
nb::class_<Pet>(m, "Pet")
.def(nb::new_(&Pet::make), "name"_a, "age"_a)
.def("speak", &Pet::speak);
Passing :cpp:struct:`nb::new_ <new_>` to :cpp:func:`.def() <class_::def>`
here creates two magic methods on ``Pet``:
* A ``__new__`` that uses the given function to produce a new ``Pet``.
It is converted to a Python object in the same way as the return value
of any other function you might write bindings for. In particular,
you can pass a :cpp:enum:`nb::rv_policy <rv_policy>` as an additional
argument to :cpp:func:`.def() <class_::def>` to control how this conversion
occurs.
* A ``__init__`` that takes the same arguments as ``__new__`` but
performs no operation. This is necessary because Python automatically
calls ``__init__`` on the object returned by ``__new__`` in most cases.
You can provide a lambda as the argument of :cpp:struct:`nb::new_ <new_>`.
This is most useful when the lambda returns a pointer or smart pointer;
if it's returning a value, then ``.def("__init__", ...)`` will have better
performance. Additionally, you can chain multiple calls to
``.def(nb::new_(...))`` in order to create an overload set.
The following example demonstrates both of these capabilities:
.. code-block:: cpp
nb::class_<Pet>(m, "Pet")
.def(nb::new_([]() { return Pet::make(getRandomName(), 0); }))
.def(nb::new_(&Pet::make), "name"_a, "age"_a)
.def("speak", &Pet::speak);
If you need even more control, perhaps because you need to access the
type object that Python passes as the first argument of ``__new__``
(which :cpp:struct:`nb::new_ <new_>` discards), you can write a
``.def_static("__new__", ...)`` and matching ``.def("__init__", ...)``
yourself.
Two limitations of :cpp:struct:`nb::new_ <new_>` are worth noting:
* The possibilities for Python-side inheritance from C++ classes that
are bound using :cpp:struct:`nb::new_ <new_>` constructors are substantially
reduced. Simple inheritance situations (``class PyPet(Pet): ...``) should
work OK, but you can't :ref:`override virtual functions <trampolines>`
in Python (because the C++ object returned by :cpp:struct:`new_ <new_>`
doesn't contain the Python trampoline glue), and if :cpp:struct:`new_ <new_>`
is used to implement a polymorphic factory (like if ``Pet::make()`` could
return an instance of ``Cat``) then Python-side inheritance won't work at all.
* A given C++ class must expose all of its constructors via ``__new__`` or
all via ``__init__``, rather than a mixture of the two.
The only case where a class should bind both of these methods is
if the ``__init__`` methods are all stubs that do nothing.
This is because nanobind internally optimizes object instantiation by
caching the method that should be used for constructing instances of each
given type, and that optimization doesn't support trying both methods.
If you really need to combine nontrivial ``__new__`` and nontrivial
``__init__`` in the same type, you can disable the optimization by
defining a :ref:`custom type slot <typeslots>` of ``Py_tp_new`` or
``Py_tp_init``.
.. note::
Unpickling an object of type ``Foo`` normally requires that
``Foo.__new__(Foo)`` produce something that ``__setstate__`` can be
called on. Any custom :cpp:struct:`nb::new_ <new_>` methods will
not satisfy this requirement, because they return a
fully-constructed object. In order to maintain pickle
compatibility, nanobind by default will add an additional
``__new__`` overload that takes no extra arguments and calls the nanobind
built-in :cpp:func:`inst_alloc`. This won't make your class constructible
with no arguments, because there's no corresponding ``__init__``; it
just helps unpickling work. If your first :cpp:struct:`nb::new_ <new_>`
method is one that takes no arguments, then nanobind won't add its own,
and you'll have to deal with unpickling some other way.
|