File: functions.rst

package info (click to toggle)
nanobind 2.9.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,060 kB
  • sloc: cpp: 11,838; python: 5,862; ansic: 4,820; makefile: 22; sh: 15
file content (609 lines) | stat: -rw-r--r-- 20,082 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
.. _functions:

.. cpp:namespace:: nanobind

Functions
=========

Binding annotations
-------------------

Besides :ref:`keyword and default arguments <keyword_and_default_args>`,
:ref:`docstrings <docstrings>`, and :ref:`return value policies <rvp>`, other
function binding annotations can be specified to achieve different goals as
described below.

Default arguments revisited
---------------------------

A noteworthy point about the previously discussed way of specifying
:ref:`default arguments <keyword_and_default_args>` is that nanobind
immediately converts them into Python objects. Consider the following example:

.. code-block:: cpp

   nb::class_<MyClass>(m, "MyClass")
       .def("f", &MyClass::f, "value"_a = SomeType(123));

nanobind must be set up to deal with values of the type ``SomeType`` (via a
prior instantiation of ``nb::class_<SomeType>``), or an exception will be
thrown.

The "preview" of the default argument in the function signature is generated
using the object's ``__str__`` method. If not available, the signature may not
be very helpful, e.g.:

.. code-block:: pycon

   >> help(my_ext.MyClass)

   class MyClass(builtins.object)
    |  Methods defined here:
    ....
    |  f(...)
    |      f(self, value: my_ext.SomeType = <my_ext.SomeType object at 0x1004d7230>) -> None


In such cases, you can either refine the implementation of the type in question
or manually override how nanobind renders the default value using the
:cpp:func:`.sig("string") method <arg::sig>`:

.. code-block:: cpp

   nb::class_<MyClass>(m, "MyClass")
       .def("f", &MyClass::f, "value"_a.sig("SomeType(123)") = SomeType(123));


.. _noconvert:

Implicit conversions, and how to suppress them
----------------------------------------------

Consider the following function taking a floating point value as input:

.. code-block:: cpp

   m.def("double", [](float x) { return 2.f * x; });

We can call this function using a Python ``float``, but an ``int`` works just
as well:

.. code-block:: pycon

   >>> my_ext.double(2)
   4.0

nanobind performed a so-called *implicit conversion* for convenience. The same
mechanism generalizes to custom types defining a
:cpp:class:`nb::init_implicit\<T\>() <init_implicit>`-style constructor:

.. code-block:: cpp

   nb::class_<A>(m, "A")
       // Following this line, nanobind will automatically convert 'B' -> 'A' if needed
       .def(nb::init_implicit<B>());

This behavior is not always desirable---sometimes, it is better to give up or
try another function overload. To achieve this behavior, use the
:cpp:func:`.noconvert() <arg::noconvert>` method of the :cpp:class:`nb::arg
<arg>` annotation to mark the argument as *non-converting*. An example:

.. code-block:: cpp

   m.def("double", [](float x) { return 2.f * x; }, nb::arg("x").noconvert());

The same experiment now fails with a ``TypeError``:

.. code-block:: pycon

   >>> my_ext.double(2)
   TypeError: double(): incompatible function arguments. The following ↵
   argument types are supported:
       1. double(x: float) -> float

   Invoked with types: int

You may, of course, combine this with the ``_a`` shorthand notation (see the
section on :ref:`keyword arguments <keyword_and_default_args>`) or specify
*unnamed* non-converting arguments using :cpp:func:`nb::arg().noconvert()
<arg::noconvert>`.

.. note::

   The number of :cpp:class:`nb::arg <arg>` annotations must match the argument
   count of the function. To enable no-convert behaviour for just one of
   several arguments, you will need to specify :cpp:func:`nb::arg().noconvert()
   <arg::noconvert>` for that argument, and :cpp:class:`nb::arg() <arg>` for
   the remaining ones.

.. _none_arguments:

None arguments
--------------

A common design pattern in C/C++ entails passing ``nullptr`` to pointer-typed
arguments to indicate a missing value. Since nanobind cannot know whether a
function uses such a convention, it refuses conversions from ``None`` to
``nullptr`` by default. For example, consider the following binding code:

.. code-block:: cpp

   struct Dog { };
   const char *bark(Dog *dog) {
       return dog != nullptr ? "woof!" : "(no dog)";
   }

   NB_MODULE(my_ext, m) {
       nb::class_<Dog>(m, "Dog")
           .def(nb::init<>());
       m.def("bark", &bark);
   }

Calling the function with ``None`` raises an exception:

.. code-block:: pycon

   >>> my_ext.bark(my_ext.Dog())
   'woof!'
   >>> my_ext.bark(None)
   TypeError: bark(): incompatible function arguments. The following ↵
   argument types are supported:
       1. bark(arg: my_ext.Dog, /) -> str

To switch to a more permissive behavior, call the :cpp:func:`.none()
<arg::none>` method of the :cpp:class:`nb::arg <arg>` annotation:

.. code-block:: cpp

   m.def("bark", &bark, nb::arg("dog").none());

With this change, the function accepts ``None``, and its signature also changes
to reflect this fact.

.. code-block:: pycon

   >>> my_ext.bark(None)
   '(no dog)'

   >>> my_ext.bark.__doc__
   'bark(dog: Optional[my_ext.Dog]) -> str'

You may also specify a ``None`` default argument value, in which case the
annotation can be omitted:

.. code-block:: cpp

   m.def("bark", &bark, nb::arg("dog") = nb::none());

Note that passing values *by pointer* (including null pointers) is only
supported for :ref:`bound <bindings>` types. :ref:`Type casters <type_casters>`
and :ref:`wrappers <wrappers>` cannot be used in such cases and will produce
compile-time errors.

Alternatively, you can also use ``std::optional<T>`` to pass an optional
argument *by value*. To use it, you must include the header file associated
needed by its type caster:

.. code-block:: cpp

   #include <nanobind/stl/optional.h>

   NB_MODULE(my_ext, m) {
       m.def("bark", [](std::optional<Dog> d) { ... }, nb::arg("dog") = nb::none());
   }


.. _overload_resolution:

Overload resolution order
-------------------------

nanobind relies on a two-pass scheme to determine the right implementation when
a bound function or method with multiple overloads is called from Python.

The first pass attempts to call each overload while disabling implicit argument
conversion---it's as if every argument had a matching
:cpp:func:`nb::arg().noconvert() <arg::noconvert>` annotation as described
:ref:`above <noconvert>`. The process terminates successfully when nanobind
finds an overload that is compatible with the provided arguments.

If the first pass fails, a second pass retries all overloads while enabling
implicit argument conversion. If the second pass also fails, the function
dispatcher raises a ``TypeError``.

Within each pass, nanobind tries overloads in the order in which they were
registered. Consequently, it prefers an overload that does not require implicit
conversion to one that does, but otherwise prefers earlier-defined overloads to
later-defined ones. Within the second pass, the precise number of implicit
conversions needed does not influence the order.

The special exception :cpp:class:`nb::next_overload <next_overload>` can also
influence overload resolution. Raising this exception from an overloaded
function causes it to be skipped, and overload resolution resumes. This can be
helpful in complex situations where the value of a parameter must be inspected
to see if a particular overload is eligible.

.. _args_kwargs_1:

Accepting \*args and \*\*kwargs
-------------------------------

Python supports functions that accept an arbitrary number of positional and
keyword arguments:

.. code-block:: python

   def generic(*args, **kwargs):
       ...  # do something with args and kwargs

Such functions can also be created using nanobind:

.. code-block:: cpp

   void generic(nb::args args, nb::kwargs kwargs) {
       for (auto v: args)
           nb::print(nb::str("Positional: {}").format(v));
       for (auto kv: kwargs)
           nb::print(nb::str("Keyword: {} -> {}").format(kv.first, kv.second));
   }

   // Binding code
   m.def("generic", &generic);

The class :cpp:class:`nb::args <args>` derives from :cpp:class:`nb::tuple
<tuple>` and :cpp:class:`nb::kwargs <kwargs>` derives from :cpp:class:`nb::dict
<dict>`.

You may also use them individually or even combine them with ordinary
parameters. Note that :cpp:class:`nb::kwargs <kwargs>` must be the last
parameter if it is specified, and any parameters after
:cpp:class:`nb::args <args>` are implicitly :ref:`keyword-only <kw_only>`,
just like in regular Python.

.. _args_kwargs_2:

Expanding \*args and \*\*kwargs
-------------------------------

Conversely, nanobind can also expand standard containers to add positional and
keyword arguments to a Python call. The example below shows how to do this
using the wrapper types :cpp:class:`nb::object <object>`,
:cpp:class:`nb::callable <callable>`, :cpp:class:`nb::list <list>`,
:cpp:class:`nb::dict <dict>`

.. code-block:: cpp

   nb::object my_call(nb::callable callable) {
       nb::list list;
       nb::dict dict;

       list.append("positional");
       dict["keyword"] = "value";

       return callable(1, *list, **dict);
   }

   NB_MODULE(my_ext, m) {
       m.def("my_call", &my_call);
   }

Here is an example use of the above extension in Python:

.. code-block:: pycon

   >>> def x(*args, **kwargs):
   ...     print(args)
   ...     print(kwargs)
   ...
   >>> import my_ext
   >>> my_ext.my_call(x)
   (1, 'positional')
   {'keyword': 'value'}


.. _kw_only:

Keyword-only parameters
-----------------------

Python supports keyword-only parameters; these can't be filled positionally,
thus requiring the caller to specify their name. They can be used
to enforce more clarity at call sites if a function has
multiple paramaters that could be confused with each other, or to accept
named options alongside variadic ``*args``.

.. code-block:: python

    def example(val: int, *, check: bool) -> None:
        # val can be passed either way; check must be given as a keyword arg
        pass

    example(val=42, check=True)   # good
    example(check=False, val=5)   # good
    example(100, check=True)      # good
    example(200, False)           # TypeError:
        # example() takes 1 positional argument but 2 were given

    def munge(*args: int, invert: bool = False) -> int:
        return sum(args) * (-1 if invert else 1)

    munge(1, 2, 3)                # 6
    munge(4, 5, 6, invert=True)   # -15

nanobind provides a :cpp:struct:`nb::kw_only() <kw_only>` annotation
that allows you to produce bindings that behave like these
examples. It must be placed before the :cpp:struct:`nb::arg() <arg>`
annotation for the first keyword-only parameter; you can think of it
as equivalent to the bare ``*,`` in a Python function signature. For
example, the above examples could be written in C++ as:

.. code-block:: cpp

    void example(int val, bool check);
    int munge(nb::args args, bool invert);

    m.def("example", &example,
          nb::arg("val"), nb::kw_only(), nb::arg("check"));

    // Parameters after *args are implicitly keyword-only:
    m.def("munge", &munge,
          nb::arg("args"), nb::arg("invert"));

    // But you can be explicit about it too, as long as you put the
    // kw_only annotation in the correct position:
    m.def("munge", &munge,
          nb::arg("args"), nb::kw_only(), nb::arg("invert"));

.. note:: nanobind does *not* support the ``pos_only()`` argument annotation
   provided by pybind11, which marks the parameters before it as positional-only.
   However, a parameter can be made effectively positional-only by giving it
   no name (using an empty :cpp:struct:`nb::arg() <arg>` specifier).


.. _function_templates:

Function templates
------------------

Consider the following function signature with a *template parameter*:

.. code-block:: cpp

   template <typename T> void process(T t);

A template must be instantiated with concrete types to be usable, which is a
compile-time operation. The generic version version therefore cannot be used
in bindings:

.. code-block:: cpp

   m.def("process", &process); // <-- this will not compile

You must bind each instantiation separately, either as a single function
with overloads, or as separately named functions.

.. code-block:: cpp

   // Option 1:
   m.def("process", &process<int>);
   m.def("process", &process<std::string>);

   // Option 2:
   m.def("process_int", &process<int>);
   m.def("process_string", &process<std::string>);

.. _lifetime_annotations:

Lifetime annotations
--------------------

The :cpp:class:`nb::keep_alive\<Nurse, Patient\>() <keep_alive>` annotation
indicates that the argument with index ``Patient`` should be kept alive at least
until the argument with index ``Nurse`` is freed by the garbage collector.

The example below applies the annotation to a hypothetical operation that
appends an entry to a log data structure.

.. code-block:: cpp

    nb::class_<Log>(m, "Log")
        .def("append",
             [](Log &log, Entry *entry) -> void { ... },
             nb::keep_alive<1, 2>());

Here, ``Nurse = 1`` refers to the ``log`` argument, while ``Patient = 2``
refers to ``entry``. Setting ``Nurse/Patient = 0`` would select the function
return value (here, the function doesn't return anything, so ``0`` is not a
valid choice).

The example uses the annotation to tie the lifetime of the ``entry`` to that of
``log``. Without it, Python could potentially delete ``entry`` *before*
``log``, which would be problematic if the ``log.append()`` operation causes
``log`` to reference ``entry`` through a pointer address instead of making a
copy. Whether or not this is a good design is another question (for example,
shared ownership via ``std::shared_ptr<T>`` or intrusive reference counting
would avoid the problem altogether).

See the definition of :cpp:class:`nb::keep_alive <keep_alive>` for further
discussion and limitations of this method.

.. _call_guards:

Call guards
-----------

The :cpp:class:`nb::call_guard\<T\>() <call_guard>` annotation allows any scope
guard ``T`` to be placed around the function call. For example, this
definition:

.. code-block:: cpp

   m.def("foo", foo, nb::call_guard<T>());

is equivalent to the following pseudocode:

.. code-block:: cpp

   m.def("foo", [](args...) {
       T scope_guard;
       return foo(args...); // forwarded arguments
   });

The only requirement is that ``T`` is default-constructible, but otherwise
any scope guard will work. This feature is often combined with
:cpp:class:`nb::gil_scoped_release <gil_scoped_release>` to release the
Python *global interpreter lock* (GIL) during a long-running C++ routine
to permit parallel execution.

Multiple guards should be specified as :cpp:class:`nb::call_guard\<T1, T2,
T3...\> <call_guard>`. Construction occurs left to right, while destruction
occurs in reverse.

If your wrapping needs are more complex than
:cpp:class:`nb::call_guard\<T\>() <call_guard>` can handle, it is also
possible to define a custom "call policy", which can observe or modify the
Python object arguments and observe the return value. See the documentation of
:cpp:class:`nb::call_policy\<Policy\> <call_policy>` for details.


.. _higher_order_adv:

Higher-order functions
----------------------

The C++11 standard introduced lambda functions and the generic polymorphic
function wrapper ``std::function<>``, which enable powerful new ways of working
with functions. Lambda functions come in two flavors: stateless lambda function
resemble classic function pointers that link to an anonymous piece of code,
while stateful lambda functions additionally depend on captured variables that
are stored in an anonymous *lambda closure object*.

Here is a simple example of a C++ function that takes an arbitrary function
(stateful or stateless) with signature ``int -> int`` as an argument and runs
it with the value 10.

.. code-block:: cpp

   int func_arg(const std::function<int(int)> &f) {
       return f(10);
   }

The example below is more involved: it takes a function of signature ``int -> int``
and returns another function of the same kind. The return value is a stateful
lambda function, which stores the value ``f`` in the capture object and adds 1 to
its return value upon execution.

.. code-block:: cpp

   std::function<int(int)> func_ret(const std::function<int(int)> &f) {
       return [f](int i) {
           return f(i) + 1;
       };
   }

This example demonstrates using python named parameters in C++ callbacks which
requires use of the :cpp:func:`nb::cpp_function <cpp_function>` conversion
function. Usage is similar to defining methods of classes:

.. code-block:: cpp

   nb::object func_cpp() {
       return nb::cpp_function([](int i) { return i+1; },
          nb::arg("number"));
   }

After including the extra header file :file:`nanobind/stl/function.h`, it is almost
trivial to generate binding code for all of these functions.

.. code-block:: cpp

   #include <nanobind/stl/function.h>

   NB_MODULE(my_ext, m) {
       m.def("func_arg", &func_arg);
       m.def("func_ret", &func_ret);
       m.def("func_cpp", &func_cpp);
   }

The following interactive session shows how to call them from Python.

.. code-block:: pycon

   Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin
   Type "help", "copyright", "credits" or "license" for more information.
   >>> import my_ext
   >>> def square(i):
   ...     return i*i
   ...
   >>> my_ext.func_arg(square)
   100
   >>> square_plus_1 = my_ext.func_ret(square)
   >>> square_plus_1(4)
   17
   >>> plus_1 = my_ext.func_cpp()
   >>> plus_1.__doc__
   '<anonymous>(number: int) -> int'
   >>> plus_1(number=43)
   44

.. note::

   This functionality is very useful when generating bindings for callbacks in
   C++ libraries (e.g. GUI libraries, asynchronous networking libraries,
   etc.).

.. _binding-overheads:

Minimizing binding overheads
----------------------------

The code that dispatches function calls from Python to C++ is in general
:ref:`highly optimized <benchmarks>`. When it is important to further reduce
binding overheads to an absolute minimum, consider removing annotations for
:ref:`keyword and default arguments <keyword_and_default_args>` along with
other advanced binding annotations.

In the snippet below, ``f1`` has lower binding overheads compared to ``f2``.

.. code-block:: cpp

   NB_MODULE(my_ext, m) {
       m.def("f1", [](int) { /* no-op */ });
       m.def("f2", [](int) { /* no-op */ }, "arg"_a);
   }

This is because ``f1``:

1. Does *not* use any of the following advanced argument annotations features:

   - **Named function arguments**, e.g., :cpp:class:`nb::arg("name") <arg>` or ``"name"_a``.

   - **Default argument values**, e.g., :cpp:func:`nb::arg() = 0 <arg::operator=>` or ``"name"_a = false``.

   - **Nullability** or **implicit conversion** flags, e.g.,
     :cpp:func:`nb::arg().none() <arg::none>` or :cpp:func:`"name"_a.noconvert()
     <arg::noconvert>`.

2. Has no :cpp:class:`nb::keep_alive\<Nurse, Patient\>() <keep_alive>`
   annotations.

3. Takes no variable-length positional (:cpp:class:`nb::args <args>`) or keyword
   (:cpp:class:`nb::kwargs <kwargs>`) arguments.

4. Has a to total of **8 or fewer** function arguments.

If all of the above conditions are satisfied, nanobind switches to a
specialized dispatcher that is optimized to handle a small number of positional
arguments. Otherwise, it uses the default dispatcher that works in any
situation. It is also worth noting that functions with many overloads generally
execute more slowly, since nanobind must first select a suitable one.

These differences are mainly of interest when a function that does *very
little* is called at a *very high rate*, in which case binding overheads can
become noticeable.

Regarding point 1 of the above list, note that **locking** is okay, as long as
the annotation does not provide an argument name. In other words, a function
binding with a :cpp:func:`nb::arg().lock() <arg::lock>` for some of its arguments stays on the fast
path. This is mainly of interest for :ref:`free-threaded <free-threaded>`
extensions.