1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
.. _functions:
.. cpp:namespace:: nanobind
Functions
=========
Binding annotations
-------------------
Besides :ref:`keyword and default arguments <keyword_and_default_args>`,
:ref:`docstrings <docstrings>`, and :ref:`return value policies <rvp>`, other
function binding annotations can be specified to achieve different goals as
described below.
Default arguments revisited
---------------------------
A noteworthy point about the previously discussed way of specifying
:ref:`default arguments <keyword_and_default_args>` is that nanobind
immediately converts them into Python objects. Consider the following example:
.. code-block:: cpp
nb::class_<MyClass>(m, "MyClass")
.def("f", &MyClass::f, "value"_a = SomeType(123));
nanobind must be set up to deal with values of the type ``SomeType`` (via a
prior instantiation of ``nb::class_<SomeType>``), or an exception will be
thrown.
The "preview" of the default argument in the function signature is generated
using the object's ``__str__`` method. If not available, the signature may not
be very helpful, e.g.:
.. code-block:: pycon
>> help(my_ext.MyClass)
class MyClass(builtins.object)
| Methods defined here:
....
| f(...)
| f(self, value: my_ext.SomeType = <my_ext.SomeType object at 0x1004d7230>) -> None
In such cases, you can either refine the implementation of the type in question
or manually override how nanobind renders the default value using the
:cpp:func:`.sig("string") method <arg::sig>`:
.. code-block:: cpp
nb::class_<MyClass>(m, "MyClass")
.def("f", &MyClass::f, "value"_a.sig("SomeType(123)") = SomeType(123));
.. _noconvert:
Implicit conversions, and how to suppress them
----------------------------------------------
Consider the following function taking a floating point value as input:
.. code-block:: cpp
m.def("double", [](float x) { return 2.f * x; });
We can call this function using a Python ``float``, but an ``int`` works just
as well:
.. code-block:: pycon
>>> my_ext.double(2)
4.0
nanobind performed a so-called *implicit conversion* for convenience. The same
mechanism generalizes to custom types defining a
:cpp:class:`nb::init_implicit\<T\>() <init_implicit>`-style constructor:
.. code-block:: cpp
nb::class_<A>(m, "A")
// Following this line, nanobind will automatically convert 'B' -> 'A' if needed
.def(nb::init_implicit<B>());
This behavior is not always desirable---sometimes, it is better to give up or
try another function overload. To achieve this behavior, use the
:cpp:func:`.noconvert() <arg::noconvert>` method of the :cpp:class:`nb::arg
<arg>` annotation to mark the argument as *non-converting*. An example:
.. code-block:: cpp
m.def("double", [](float x) { return 2.f * x; }, nb::arg("x").noconvert());
The same experiment now fails with a ``TypeError``:
.. code-block:: pycon
>>> my_ext.double(2)
TypeError: double(): incompatible function arguments. The following ↵
argument types are supported:
1. double(x: float) -> float
Invoked with types: int
You may, of course, combine this with the ``_a`` shorthand notation (see the
section on :ref:`keyword arguments <keyword_and_default_args>`) or specify
*unnamed* non-converting arguments using :cpp:func:`nb::arg().noconvert()
<arg::noconvert>`.
.. note::
The number of :cpp:class:`nb::arg <arg>` annotations must match the argument
count of the function. To enable no-convert behaviour for just one of
several arguments, you will need to specify :cpp:func:`nb::arg().noconvert()
<arg::noconvert>` for that argument, and :cpp:class:`nb::arg() <arg>` for
the remaining ones.
.. _none_arguments:
None arguments
--------------
A common design pattern in C/C++ entails passing ``nullptr`` to pointer-typed
arguments to indicate a missing value. Since nanobind cannot know whether a
function uses such a convention, it refuses conversions from ``None`` to
``nullptr`` by default. For example, consider the following binding code:
.. code-block:: cpp
struct Dog { };
const char *bark(Dog *dog) {
return dog != nullptr ? "woof!" : "(no dog)";
}
NB_MODULE(my_ext, m) {
nb::class_<Dog>(m, "Dog")
.def(nb::init<>());
m.def("bark", &bark);
}
Calling the function with ``None`` raises an exception:
.. code-block:: pycon
>>> my_ext.bark(my_ext.Dog())
'woof!'
>>> my_ext.bark(None)
TypeError: bark(): incompatible function arguments. The following ↵
argument types are supported:
1. bark(arg: my_ext.Dog, /) -> str
To switch to a more permissive behavior, call the :cpp:func:`.none()
<arg::none>` method of the :cpp:class:`nb::arg <arg>` annotation:
.. code-block:: cpp
m.def("bark", &bark, nb::arg("dog").none());
With this change, the function accepts ``None``, and its signature also changes
to reflect this fact.
.. code-block:: pycon
>>> my_ext.bark(None)
'(no dog)'
>>> my_ext.bark.__doc__
'bark(dog: Optional[my_ext.Dog]) -> str'
You may also specify a ``None`` default argument value, in which case the
annotation can be omitted:
.. code-block:: cpp
m.def("bark", &bark, nb::arg("dog") = nb::none());
Note that passing values *by pointer* (including null pointers) is only
supported for :ref:`bound <bindings>` types. :ref:`Type casters <type_casters>`
and :ref:`wrappers <wrappers>` cannot be used in such cases and will produce
compile-time errors.
Alternatively, you can also use ``std::optional<T>`` to pass an optional
argument *by value*. To use it, you must include the header file associated
needed by its type caster:
.. code-block:: cpp
#include <nanobind/stl/optional.h>
NB_MODULE(my_ext, m) {
m.def("bark", [](std::optional<Dog> d) { ... }, nb::arg("dog") = nb::none());
}
.. _overload_resolution:
Overload resolution order
-------------------------
nanobind relies on a two-pass scheme to determine the right implementation when
a bound function or method with multiple overloads is called from Python.
The first pass attempts to call each overload while disabling implicit argument
conversion---it's as if every argument had a matching
:cpp:func:`nb::arg().noconvert() <arg::noconvert>` annotation as described
:ref:`above <noconvert>`. The process terminates successfully when nanobind
finds an overload that is compatible with the provided arguments.
If the first pass fails, a second pass retries all overloads while enabling
implicit argument conversion. If the second pass also fails, the function
dispatcher raises a ``TypeError``.
Within each pass, nanobind tries overloads in the order in which they were
registered. Consequently, it prefers an overload that does not require implicit
conversion to one that does, but otherwise prefers earlier-defined overloads to
later-defined ones. Within the second pass, the precise number of implicit
conversions needed does not influence the order.
The special exception :cpp:class:`nb::next_overload <next_overload>` can also
influence overload resolution. Raising this exception from an overloaded
function causes it to be skipped, and overload resolution resumes. This can be
helpful in complex situations where the value of a parameter must be inspected
to see if a particular overload is eligible.
.. _args_kwargs_1:
Accepting \*args and \*\*kwargs
-------------------------------
Python supports functions that accept an arbitrary number of positional and
keyword arguments:
.. code-block:: python
def generic(*args, **kwargs):
... # do something with args and kwargs
Such functions can also be created using nanobind:
.. code-block:: cpp
void generic(nb::args args, nb::kwargs kwargs) {
for (auto v: args)
nb::print(nb::str("Positional: {}").format(v));
for (auto kv: kwargs)
nb::print(nb::str("Keyword: {} -> {}").format(kv.first, kv.second));
}
// Binding code
m.def("generic", &generic);
The class :cpp:class:`nb::args <args>` derives from :cpp:class:`nb::tuple
<tuple>` and :cpp:class:`nb::kwargs <kwargs>` derives from :cpp:class:`nb::dict
<dict>`.
You may also use them individually or even combine them with ordinary
parameters. Note that :cpp:class:`nb::kwargs <kwargs>` must be the last
parameter if it is specified, and any parameters after
:cpp:class:`nb::args <args>` are implicitly :ref:`keyword-only <kw_only>`,
just like in regular Python.
.. _args_kwargs_2:
Expanding \*args and \*\*kwargs
-------------------------------
Conversely, nanobind can also expand standard containers to add positional and
keyword arguments to a Python call. The example below shows how to do this
using the wrapper types :cpp:class:`nb::object <object>`,
:cpp:class:`nb::callable <callable>`, :cpp:class:`nb::list <list>`,
:cpp:class:`nb::dict <dict>`
.. code-block:: cpp
nb::object my_call(nb::callable callable) {
nb::list list;
nb::dict dict;
list.append("positional");
dict["keyword"] = "value";
return callable(1, *list, **dict);
}
NB_MODULE(my_ext, m) {
m.def("my_call", &my_call);
}
Here is an example use of the above extension in Python:
.. code-block:: pycon
>>> def x(*args, **kwargs):
... print(args)
... print(kwargs)
...
>>> import my_ext
>>> my_ext.my_call(x)
(1, 'positional')
{'keyword': 'value'}
.. _kw_only:
Keyword-only parameters
-----------------------
Python supports keyword-only parameters; these can't be filled positionally,
thus requiring the caller to specify their name. They can be used
to enforce more clarity at call sites if a function has
multiple paramaters that could be confused with each other, or to accept
named options alongside variadic ``*args``.
.. code-block:: python
def example(val: int, *, check: bool) -> None:
# val can be passed either way; check must be given as a keyword arg
pass
example(val=42, check=True) # good
example(check=False, val=5) # good
example(100, check=True) # good
example(200, False) # TypeError:
# example() takes 1 positional argument but 2 were given
def munge(*args: int, invert: bool = False) -> int:
return sum(args) * (-1 if invert else 1)
munge(1, 2, 3) # 6
munge(4, 5, 6, invert=True) # -15
nanobind provides a :cpp:struct:`nb::kw_only() <kw_only>` annotation
that allows you to produce bindings that behave like these
examples. It must be placed before the :cpp:struct:`nb::arg() <arg>`
annotation for the first keyword-only parameter; you can think of it
as equivalent to the bare ``*,`` in a Python function signature. For
example, the above examples could be written in C++ as:
.. code-block:: cpp
void example(int val, bool check);
int munge(nb::args args, bool invert);
m.def("example", &example,
nb::arg("val"), nb::kw_only(), nb::arg("check"));
// Parameters after *args are implicitly keyword-only:
m.def("munge", &munge,
nb::arg("args"), nb::arg("invert"));
// But you can be explicit about it too, as long as you put the
// kw_only annotation in the correct position:
m.def("munge", &munge,
nb::arg("args"), nb::kw_only(), nb::arg("invert"));
.. note:: nanobind does *not* support the ``pos_only()`` argument annotation
provided by pybind11, which marks the parameters before it as positional-only.
However, a parameter can be made effectively positional-only by giving it
no name (using an empty :cpp:struct:`nb::arg() <arg>` specifier).
.. _function_templates:
Function templates
------------------
Consider the following function signature with a *template parameter*:
.. code-block:: cpp
template <typename T> void process(T t);
A template must be instantiated with concrete types to be usable, which is a
compile-time operation. The generic version version therefore cannot be used
in bindings:
.. code-block:: cpp
m.def("process", &process); // <-- this will not compile
You must bind each instantiation separately, either as a single function
with overloads, or as separately named functions.
.. code-block:: cpp
// Option 1:
m.def("process", &process<int>);
m.def("process", &process<std::string>);
// Option 2:
m.def("process_int", &process<int>);
m.def("process_string", &process<std::string>);
.. _lifetime_annotations:
Lifetime annotations
--------------------
The :cpp:class:`nb::keep_alive\<Nurse, Patient\>() <keep_alive>` annotation
indicates that the argument with index ``Patient`` should be kept alive at least
until the argument with index ``Nurse`` is freed by the garbage collector.
The example below applies the annotation to a hypothetical operation that
appends an entry to a log data structure.
.. code-block:: cpp
nb::class_<Log>(m, "Log")
.def("append",
[](Log &log, Entry *entry) -> void { ... },
nb::keep_alive<1, 2>());
Here, ``Nurse = 1`` refers to the ``log`` argument, while ``Patient = 2``
refers to ``entry``. Setting ``Nurse/Patient = 0`` would select the function
return value (here, the function doesn't return anything, so ``0`` is not a
valid choice).
The example uses the annotation to tie the lifetime of the ``entry`` to that of
``log``. Without it, Python could potentially delete ``entry`` *before*
``log``, which would be problematic if the ``log.append()`` operation causes
``log`` to reference ``entry`` through a pointer address instead of making a
copy. Whether or not this is a good design is another question (for example,
shared ownership via ``std::shared_ptr<T>`` or intrusive reference counting
would avoid the problem altogether).
See the definition of :cpp:class:`nb::keep_alive <keep_alive>` for further
discussion and limitations of this method.
.. _call_guards:
Call guards
-----------
The :cpp:class:`nb::call_guard\<T\>() <call_guard>` annotation allows any scope
guard ``T`` to be placed around the function call. For example, this
definition:
.. code-block:: cpp
m.def("foo", foo, nb::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
The only requirement is that ``T`` is default-constructible, but otherwise
any scope guard will work. This feature is often combined with
:cpp:class:`nb::gil_scoped_release <gil_scoped_release>` to release the
Python *global interpreter lock* (GIL) during a long-running C++ routine
to permit parallel execution.
Multiple guards should be specified as :cpp:class:`nb::call_guard\<T1, T2,
T3...\> <call_guard>`. Construction occurs left to right, while destruction
occurs in reverse.
If your wrapping needs are more complex than
:cpp:class:`nb::call_guard\<T\>() <call_guard>` can handle, it is also
possible to define a custom "call policy", which can observe or modify the
Python object arguments and observe the return value. See the documentation of
:cpp:class:`nb::call_policy\<Policy\> <call_policy>` for details.
.. _higher_order_adv:
Higher-order functions
----------------------
The C++11 standard introduced lambda functions and the generic polymorphic
function wrapper ``std::function<>``, which enable powerful new ways of working
with functions. Lambda functions come in two flavors: stateless lambda function
resemble classic function pointers that link to an anonymous piece of code,
while stateful lambda functions additionally depend on captured variables that
are stored in an anonymous *lambda closure object*.
Here is a simple example of a C++ function that takes an arbitrary function
(stateful or stateless) with signature ``int -> int`` as an argument and runs
it with the value 10.
.. code-block:: cpp
int func_arg(const std::function<int(int)> &f) {
return f(10);
}
The example below is more involved: it takes a function of signature ``int -> int``
and returns another function of the same kind. The return value is a stateful
lambda function, which stores the value ``f`` in the capture object and adds 1 to
its return value upon execution.
.. code-block:: cpp
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
return [f](int i) {
return f(i) + 1;
};
}
This example demonstrates using python named parameters in C++ callbacks which
requires use of the :cpp:func:`nb::cpp_function <cpp_function>` conversion
function. Usage is similar to defining methods of classes:
.. code-block:: cpp
nb::object func_cpp() {
return nb::cpp_function([](int i) { return i+1; },
nb::arg("number"));
}
After including the extra header file :file:`nanobind/stl/function.h`, it is almost
trivial to generate binding code for all of these functions.
.. code-block:: cpp
#include <nanobind/stl/function.h>
NB_MODULE(my_ext, m) {
m.def("func_arg", &func_arg);
m.def("func_ret", &func_ret);
m.def("func_cpp", &func_cpp);
}
The following interactive session shows how to call them from Python.
.. code-block:: pycon
Python 3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import my_ext
>>> def square(i):
... return i*i
...
>>> my_ext.func_arg(square)
100
>>> square_plus_1 = my_ext.func_ret(square)
>>> square_plus_1(4)
17
>>> plus_1 = my_ext.func_cpp()
>>> plus_1.__doc__
'<anonymous>(number: int) -> int'
>>> plus_1(number=43)
44
.. note::
This functionality is very useful when generating bindings for callbacks in
C++ libraries (e.g. GUI libraries, asynchronous networking libraries,
etc.).
.. _binding-overheads:
Minimizing binding overheads
----------------------------
The code that dispatches function calls from Python to C++ is in general
:ref:`highly optimized <benchmarks>`. When it is important to further reduce
binding overheads to an absolute minimum, consider removing annotations for
:ref:`keyword and default arguments <keyword_and_default_args>` along with
other advanced binding annotations.
In the snippet below, ``f1`` has lower binding overheads compared to ``f2``.
.. code-block:: cpp
NB_MODULE(my_ext, m) {
m.def("f1", [](int) { /* no-op */ });
m.def("f2", [](int) { /* no-op */ }, "arg"_a);
}
This is because ``f1``:
1. Does *not* use any of the following advanced argument annotations features:
- **Named function arguments**, e.g., :cpp:class:`nb::arg("name") <arg>` or ``"name"_a``.
- **Default argument values**, e.g., :cpp:func:`nb::arg() = 0 <arg::operator=>` or ``"name"_a = false``.
- **Nullability** or **implicit conversion** flags, e.g.,
:cpp:func:`nb::arg().none() <arg::none>` or :cpp:func:`"name"_a.noconvert()
<arg::noconvert>`.
2. Has no :cpp:class:`nb::keep_alive\<Nurse, Patient\>() <keep_alive>`
annotations.
3. Takes no variable-length positional (:cpp:class:`nb::args <args>`) or keyword
(:cpp:class:`nb::kwargs <kwargs>`) arguments.
4. Has a to total of **8 or fewer** function arguments.
If all of the above conditions are satisfied, nanobind switches to a
specialized dispatcher that is optimized to handle a small number of positional
arguments. Otherwise, it uses the default dispatcher that works in any
situation. It is also worth noting that functions with many overloads generally
execute more slowly, since nanobind must first select a suitable one.
These differences are mainly of interest when a function that does *very
little* is called at a *very high rate*, in which case binding overheads can
become noticeable.
Regarding point 1 of the above list, note that **locking** is okay, as long as
the annotation does not provide an argument name. In other words, a function
binding with a :cpp:func:`nb::arg().lock() <arg::lock>` for some of its arguments stays on the fast
path. This is mainly of interest for :ref:`free-threaded <free-threaded>`
extensions.
|