File: test_ndarray_ext.pyi.ref

package info (click to toggle)
nanobind 2.9.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,060 kB
  • sloc: cpp: 11,838; python: 5,862; ansic: 4,820; makefile: 22; sh: 15
file content (197 lines) | stat: -rw-r--r-- 7,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from typing import Annotated, overload

import numpy
from numpy.typing import NDArray


def get_is_valid(array: Annotated[NDArray, dict(writable=False)] | None) -> bool: ...

def get_shape(array: Annotated[NDArray, dict(writable=False)]) -> list: ...

def get_size(array: NDArray | None) -> int: ...

def get_itemsize(array: NDArray | None) -> int: ...

def get_nbytes(array: NDArray | None) -> int: ...

def get_stride(array: NDArray, i: int) -> int: ...

def check_shape_ptr(arg: NDArray, /) -> bool: ...

def check_stride_ptr(arg: NDArray, /) -> bool: ...

def check_float(arg: NDArray, /) -> bool: ...

def check_bool(arg: NDArray, /) -> bool: ...

def pass_float32(array: NDArray[numpy.float32]) -> None: ...

def pass_float32_const(array: Annotated[NDArray[numpy.float32], dict(writable=False)]) -> None: ...

def pass_complex64(array: NDArray[numpy.complex64]) -> None: ...

def pass_complex64_const(array: Annotated[NDArray[numpy.complex64], dict(writable=False)]) -> None: ...

def pass_uint32(array: NDArray[numpy.uint32]) -> None: ...

def pass_bool(array: NDArray[numpy.bool]) -> None: ...

def pass_float32_shaped(array: Annotated[NDArray[numpy.float32], dict(shape=(3, None, 4))]) -> None: ...

def pass_float32_shaped_ordered(array: Annotated[NDArray[numpy.float32], dict(shape=(None, None, 4), order='C')]) -> None: ...

def check_rw_by_value(arg: NDArray, /) -> bool: ...

def check_ro_by_value_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...

def check_rw_by_value_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...

def check_ro_by_value_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...

def check_rw_by_const_ref(arg: NDArray, /) -> bool: ...

def check_ro_by_const_ref_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...

def check_rw_by_const_ref_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...

def check_ro_by_const_ref_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...

def check_rw_by_rvalue_ref(arg: NDArray, /) -> bool: ...

def check_ro_by_rvalue_ref_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...

def check_rw_by_rvalue_ref_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...

def check_ro_by_rvalue_ref_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...

@overload
def check_order(arg: Annotated[NDArray, dict(order='C')], /) -> str: ...

@overload
def check_order(arg: Annotated[NDArray, dict(order='F')], /) -> str: ...

@overload
def check_order(arg: NDArray, /) -> str: ...

def make_contig(arg: Annotated[NDArray, dict(order='C')], /) -> Annotated[NDArray, dict(order='C')]: ...

@overload
def check_device(arg: Annotated[NDArray, dict(device='cpu')], /) -> str: ...

@overload
def check_device(arg: Annotated[NDArray, dict(device='cuda')], /) -> str: ...

@overload
def initialize(arg: Annotated[NDArray[numpy.float32], dict(shape=(10), device='cpu')], /) -> None: ...

@overload
def initialize(arg: Annotated[NDArray[numpy.float32], dict(shape=(10, None), device='cpu')], /) -> None: ...

def noimplicit(array: Annotated[NDArray[numpy.float32], dict(shape=(2, 2), order='C')]) -> int: ...

def implicit(array: Annotated[NDArray[numpy.float32], dict(shape=(2, 2), order='C')]) -> int: ...

def inspect_ndarray(arg: NDArray, /) -> None: ...

def process(arg: Annotated[NDArray[numpy.uint8], dict(shape=(None, None, 3), order='C', device='cpu')], /) -> None: ...

def destruct_count() -> int: ...

def return_dlpack() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...

def passthrough(arg: NDArray, /) -> NDArray: ...

def passthrough_copy(arg: NDArray, /) -> NDArray: ...

def passthrough_arg_none(arg: NDArray | None) -> NDArray: ...

def ret_numpy() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...

def ret_numpy_const_ref() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='C', writable=False)]: ...

def ret_numpy_const_ref_f() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='F', writable=False)]: ...

def ret_numpy_const() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), writable=False)]: ...

def ret_pytorch() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...

def ret_array_scalar() -> NDArray[numpy.float32]: ...

def noop_3d_c_contig(arg: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C')], /) -> None: ...

def noop_2d_f_contig(arg: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], /) -> None: ...

def accept_rw(arg: Annotated[NDArray[numpy.float32], dict(shape=(2))], /) -> float: ...

def accept_ro(arg: Annotated[NDArray[numpy.float32], dict(shape=(2), writable=False)], /) -> float: ...

def check(arg: object, /) -> bool: ...

def accept_np_both_true_contig_a(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='A')], /) -> float: ...

def accept_np_both_true_contig_c(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='C')], /) -> float: ...

def accept_np_both_true_contig_f(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='F')], /) -> float: ...

class Cls:
    def __init__(self) -> None: ...

    def f1(self) -> NDArray[numpy.float32]: ...

    def f2(self) -> NDArray[numpy.float32]: ...

    def f1_ri(self) -> NDArray[numpy.float32]: ...

    def f2_ri(self) -> NDArray[numpy.float32]: ...

    def f3_ri(self, arg: object, /) -> NDArray[numpy.float32]: ...

def fill_view_1(x: NDArray) -> None: ...

def fill_view_2(x: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu')]) -> None: ...

def fill_view_3(x: Annotated[NDArray[numpy.float32], dict(shape=(3, 4), order='C', device='cpu')]) -> None: ...

def fill_view_4(x: Annotated[NDArray[numpy.float32], dict(shape=(3, 4), order='F', device='cpu')]) -> None: ...

def fill_view_5(x: Annotated[NDArray[numpy.complex64], dict(shape=(2, 2), order='C', device='cpu')]) -> None: ...

def fill_view_6(x: Annotated[NDArray[numpy.complex64], dict(shape=(2, 2), order='C', device='cpu')]) -> None: ...

def ret_numpy_half() -> Annotated[NDArray[numpy.float16], dict(shape=(2, 4))]: ...

def cast(arg: bool, /) -> NDArray: ...

@overload
def set_item(arg0: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')], arg1: int, /) -> None: ...

@overload
def set_item(arg0: Annotated[NDArray[numpy.complex128], dict(shape=(None,), order='C')], arg1: int, /) -> None: ...

def test_implicit_conversion(arg: Annotated[NDArray, dict(order='C', device='cpu', writable=False)]) -> Annotated[NDArray, dict(order='C', device='cpu', writable=False)]: ...

def ret_infer_c() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='C')]: ...

def ret_infer_f() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='F')]: ...

class Matrix4f:
    def __init__(self) -> None: ...

    def data(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...

    def data_ref(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...

    def data_copy(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...

def ret_from_stack_1() -> object: ...

def ret_from_stack_2() -> Annotated[NDArray[numpy.float32], dict(shape=(3))]: ...

class Wrapper:
    def __init__(self, arg: NDArray[numpy.float32], /) -> None: ...

    @property
    def value(self) -> NDArray[numpy.float32]: ...

    @value.setter
    def value(self, arg: NDArray[numpy.float32], /) -> None: ...