1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
from typing import Annotated, overload
import numpy
from numpy.typing import NDArray
def get_is_valid(array: Annotated[NDArray, dict(writable=False)] | None) -> bool: ...
def get_shape(array: Annotated[NDArray, dict(writable=False)]) -> list: ...
def get_size(array: NDArray | None) -> int: ...
def get_itemsize(array: NDArray | None) -> int: ...
def get_nbytes(array: NDArray | None) -> int: ...
def get_stride(array: NDArray, i: int) -> int: ...
def check_shape_ptr(arg: NDArray, /) -> bool: ...
def check_stride_ptr(arg: NDArray, /) -> bool: ...
def check_float(arg: NDArray, /) -> bool: ...
def check_bool(arg: NDArray, /) -> bool: ...
def pass_float32(array: NDArray[numpy.float32]) -> None: ...
def pass_float32_const(array: Annotated[NDArray[numpy.float32], dict(writable=False)]) -> None: ...
def pass_complex64(array: NDArray[numpy.complex64]) -> None: ...
def pass_complex64_const(array: Annotated[NDArray[numpy.complex64], dict(writable=False)]) -> None: ...
def pass_uint32(array: NDArray[numpy.uint32]) -> None: ...
def pass_bool(array: NDArray[numpy.bool]) -> None: ...
def pass_float32_shaped(array: Annotated[NDArray[numpy.float32], dict(shape=(3, None, 4))]) -> None: ...
def pass_float32_shaped_ordered(array: Annotated[NDArray[numpy.float32], dict(shape=(None, None, 4), order='C')]) -> None: ...
def check_rw_by_value(arg: NDArray, /) -> bool: ...
def check_ro_by_value_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...
def check_rw_by_value_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...
def check_ro_by_value_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...
def check_rw_by_const_ref(arg: NDArray, /) -> bool: ...
def check_ro_by_const_ref_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...
def check_rw_by_const_ref_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...
def check_ro_by_const_ref_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...
def check_rw_by_rvalue_ref(arg: NDArray, /) -> bool: ...
def check_ro_by_rvalue_ref_ro(arg: Annotated[NDArray, dict(writable=False)], /) -> bool: ...
def check_rw_by_rvalue_ref_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,))], /) -> bool: ...
def check_ro_by_rvalue_ref_const_float64(arg: Annotated[NDArray[numpy.float64], dict(shape=(None,), writable=False)], /) -> bool: ...
@overload
def check_order(arg: Annotated[NDArray, dict(order='C')], /) -> str: ...
@overload
def check_order(arg: Annotated[NDArray, dict(order='F')], /) -> str: ...
@overload
def check_order(arg: NDArray, /) -> str: ...
def make_contig(arg: Annotated[NDArray, dict(order='C')], /) -> Annotated[NDArray, dict(order='C')]: ...
@overload
def check_device(arg: Annotated[NDArray, dict(device='cpu')], /) -> str: ...
@overload
def check_device(arg: Annotated[NDArray, dict(device='cuda')], /) -> str: ...
@overload
def initialize(arg: Annotated[NDArray[numpy.float32], dict(shape=(10), device='cpu')], /) -> None: ...
@overload
def initialize(arg: Annotated[NDArray[numpy.float32], dict(shape=(10, None), device='cpu')], /) -> None: ...
def noimplicit(array: Annotated[NDArray[numpy.float32], dict(shape=(2, 2), order='C')]) -> int: ...
def implicit(array: Annotated[NDArray[numpy.float32], dict(shape=(2, 2), order='C')]) -> int: ...
def inspect_ndarray(arg: NDArray, /) -> None: ...
def process(arg: Annotated[NDArray[numpy.uint8], dict(shape=(None, None, 3), order='C', device='cpu')], /) -> None: ...
def destruct_count() -> int: ...
def return_dlpack() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...
def passthrough(arg: NDArray, /) -> NDArray: ...
def passthrough_copy(arg: NDArray, /) -> NDArray: ...
def passthrough_arg_none(arg: NDArray | None) -> NDArray: ...
def ret_numpy() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...
def ret_numpy_const_ref() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='C', writable=False)]: ...
def ret_numpy_const_ref_f() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='F', writable=False)]: ...
def ret_numpy_const() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), writable=False)]: ...
def ret_pytorch() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4))]: ...
def ret_array_scalar() -> NDArray[numpy.float32]: ...
def noop_3d_c_contig(arg: Annotated[NDArray[numpy.float32], dict(shape=(None, None, None), order='C')], /) -> None: ...
def noop_2d_f_contig(arg: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], /) -> None: ...
def accept_rw(arg: Annotated[NDArray[numpy.float32], dict(shape=(2))], /) -> float: ...
def accept_ro(arg: Annotated[NDArray[numpy.float32], dict(shape=(2), writable=False)], /) -> float: ...
def check(arg: object, /) -> bool: ...
def accept_np_both_true_contig_a(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='A')], /) -> float: ...
def accept_np_both_true_contig_c(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='C')], /) -> float: ...
def accept_np_both_true_contig_f(arg: Annotated[NDArray[numpy.float32], dict(shape=(2, 1), order='F')], /) -> float: ...
class Cls:
def __init__(self) -> None: ...
def f1(self) -> NDArray[numpy.float32]: ...
def f2(self) -> NDArray[numpy.float32]: ...
def f1_ri(self) -> NDArray[numpy.float32]: ...
def f2_ri(self) -> NDArray[numpy.float32]: ...
def f3_ri(self, arg: object, /) -> NDArray[numpy.float32]: ...
def fill_view_1(x: NDArray) -> None: ...
def fill_view_2(x: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu')]) -> None: ...
def fill_view_3(x: Annotated[NDArray[numpy.float32], dict(shape=(3, 4), order='C', device='cpu')]) -> None: ...
def fill_view_4(x: Annotated[NDArray[numpy.float32], dict(shape=(3, 4), order='F', device='cpu')]) -> None: ...
def fill_view_5(x: Annotated[NDArray[numpy.complex64], dict(shape=(2, 2), order='C', device='cpu')]) -> None: ...
def fill_view_6(x: Annotated[NDArray[numpy.complex64], dict(shape=(2, 2), order='C', device='cpu')]) -> None: ...
def ret_numpy_half() -> Annotated[NDArray[numpy.float16], dict(shape=(2, 4))]: ...
def cast(arg: bool, /) -> NDArray: ...
@overload
def set_item(arg0: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')], arg1: int, /) -> None: ...
@overload
def set_item(arg0: Annotated[NDArray[numpy.complex128], dict(shape=(None,), order='C')], arg1: int, /) -> None: ...
def test_implicit_conversion(arg: Annotated[NDArray, dict(order='C', device='cpu', writable=False)]) -> Annotated[NDArray, dict(order='C', device='cpu', writable=False)]: ...
def ret_infer_c() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='C')]: ...
def ret_infer_f() -> Annotated[NDArray[numpy.float32], dict(shape=(2, 4), order='F')]: ...
class Matrix4f:
def __init__(self) -> None: ...
def data(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...
def data_ref(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...
def data_copy(self) -> Annotated[NDArray[numpy.float32], dict(shape=(4, 4), order='F')]: ...
def ret_from_stack_1() -> object: ...
def ret_from_stack_2() -> Annotated[NDArray[numpy.float32], dict(shape=(3))]: ...
class Wrapper:
def __init__(self, arg: NDArray[numpy.float32], /) -> None: ...
@property
def value(self) -> NDArray[numpy.float32]: ...
@value.setter
def value(self, arg: NDArray[numpy.float32], /) -> None: ...
|