File: image_custom_kernel.py

package info (click to toggle)
napari 0.6.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 12,036 kB
  • sloc: python: 112,264; xml: 72; makefile: 44; sh: 5
file content (83 lines) | stat: -rw-r--r-- 2,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Custom image interpolation kernels
==================================

When interpolation is set to 'custom', the convolution kernel provided by
`custom_interpolation_kernel_2d` is used to convolve the image on the gpu.
In this example, we use custom gaussian kernels of arbitrary size, a sharpening
kernel and a ridge detection kernel.

Under the hood, this works by by sampling the image texture with `linear`
interpolation in a regular grid (of size = of the kernel) around each fragment,
and then using the weights in the kernel to add up the final fragment value.

.. tags:: gui, visualization-nD

"""

import numpy as np
from magicgui import magicgui
from scipy.signal.windows import gaussian
from skimage import data

import napari

viewer = napari.Viewer()
layer = viewer.add_image(data.astronaut(), rgb=True, interpolation2d='custom')


def gaussian_kernel(size, sigma):
    window = gaussian(size, sigma)
    kernel = np.outer(window, window)
    return kernel / kernel.sum()


def sharpen_kernel():
    return np.array([
        [ 0, -1,  0],
        [-1,  5, -1],
        [ 0, -1,  0],
    ])


def ridge_detection_kernel():
    return np.array([
        [-1, -1, -1],
        [-1,  9, -1],
        [-1, -1, -1],
    ])


@magicgui(
    auto_call=True,
    kernel_size={'widget_type': 'Slider', 'min': 1, 'max': 20},
    sigma={'widget_type': 'FloatSlider', 'min': 0.1, 'max': 5, 'step': 0.1},
    kernel_type={'choices': ['none', 'gaussian', 'sharpen', 'ridge_detection']},
)
def gpu_kernel(image: napari.layers.Image, kernel_type: str = 'gaussian', kernel_size: int = 5, sigma: float = 1):
    if kernel_type == 'none':
        image.interpolation2d = 'linear'
    else:
        image.interpolation2d = 'custom'

    if kernel_type == 'gaussian':
        gpu_kernel.kernel_size.show()
        gpu_kernel.sigma.show()
    else:
        gpu_kernel.kernel_size.hide()
        gpu_kernel.sigma.hide()

    if kernel_type == 'gaussian':
        image.custom_interpolation_kernel_2d = gaussian_kernel(kernel_size, sigma)
    elif kernel_type == 'sharpen':
        image.custom_interpolation_kernel_2d = sharpen_kernel()
    elif kernel_type == 'ridge_detection':
        image.custom_interpolation_kernel_2d = ridge_detection_kernel()


viewer.window.add_dock_widget(gpu_kernel)
gpu_kernel()


if __name__ == '__main__':
    napari.run()