File: axloop.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (215 lines) | stat: -rw-r--r-- 5,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
      SUBROUTINE AXLOOP (BUF,IBUF,XX,YY,ZZ,HC1,HC2,HC3)
C
      INTEGER         OTPE
      DIMENSION       BUF(50),IBUF(50)
      CHARACTER       UFM*23,UWM*25
      COMMON /XMSSG / UFM,UWM
      COMMON /SYSTEM/ SYSBUF,OTPE
      COMMON /BLANK / IDUM(3),EPSE
C
      PI    = 3.1415926536
      PIBY2 = 1.5707963268
      FPI   = 12.56637062
      C     = 1.
C
      XJ  = BUF(1)
      IAXI= IBUF(2)
      X1  = BUF(3)
      Y1  = BUF(4)
      Z1  = BUF(5)
      X2  = BUF(6)
      Y2  = BUF(7)
      Z2  = BUF(8)
      XC  = BUF(9)
      YC  = BUF(10)
      ZC  = BUF(11)
C
C     FOR NOW, ICID = 0
C
      ICID = IBUF(12)
C
C     CHECK FOR AXISYMMETRIC PROBLEM
C
      IF (IAXI .NE. 1) GO TO 10
      XC = 0.
      YC = 0.
      ZC = Z1
      X2 = 0.
      Y2 = X1
      Z2 = Z1
   10 CONTINUE
C
C     DETERMINE THE DIRECTION OF THE CURRENT LOOP AXIS
C
      CX = X1 - XC
      CY = Y1 - YC
      CZ = Z1 - ZC
      BX = X2 - XC
      BY = Y2 - YC
      BZ = Z2 - ZC
C
C     THE VECTOR AN IS NORMAL TO THE PLANE OF THE LOOP
C
      ANX = CY*BZ - CZ*BY
      ANY = CZ*BX - CX*BZ
      ANZ = CX*BY - CY*BX
      AT1 = SQRT(ANX*ANX + ANY*ANY + ANZ*ANZ)
      AT2  = BX*BX + BY*BY + BZ*BZ
      RAD2 = CX*CX + CY*CY + CZ*CZ
      RADIUS = SQRT(RAD2)
      XIACPI = (XJ*RAD2*PI)/C
C
      ANX = ANX/AT1
      ANY = ANY/AT1
      ANZ = ANZ/AT1
C
C     THE VECTOR R IS FROM THE CENTER OF LOOP TO THE FIELD POINT
C
      RX = XX - XC
      RY = YY - YC
      RZ = ZZ - ZC
C
      R2 = RX*RX + RY*RY + RZ*RZ
      R  = SQRT(R2)
C
C     AT (OR NEAR) CENTER OF LOOP TEST
C
      IF (R .GE. .001) GO TO 218
      COSTHE = 1.
      SINTHE = 0.
      SQAR2S = SQRT(RAD2+R2)
      RX  = ANX
      RY  = ANY
      RZ  = ANZ
      RPX = 0.
      RPY = 0.
      RPZ = 0.
      GO TO 220
  218 CONTINUE
C
      RX = RX/R
      RY = RY/R
      RZ = RZ/R
      COSTHE = ANX*RX + ANY*RY + ANZ*RZ
      SINTHE = SQRT(1. - COSTHE*COSTHE)
C
C     ON (OR VERY NEAR) AXIS OF LOOP TEST
C
      IF (SINTHE .GE. .000001) GO TO 219
      COSTHE = 1.
      SINTHE = 0.
      SQAR2S = SQRT(RAD2+R2)
      RX  = ANX
      RY  = ANY
      RZ  = ANZ
      RPX = 0.
      RPY = 0.
      RPZ = 0.
      GO TO 220
  219 CONTINUE
C
      SQAR2S = SQRT(RAD2 + R2 + (2.*RADIUS*R*SINTHE))
      REALK2 = (4.*RADIUS*R*SINTHE)/(RAD2+R2+(2.*RADIUS*R*SINTHE))
      REALK  = SQRT(REALK2)
      XIACR  = (XJ*RADIUS)/(C*R)
C
C     A CROSS R, NORMAL TO THE PLANE OF A AND R
C
      TX = ANY*RZ - ANZ*RY
      TY = ANZ*RX - ANX*RZ
      TZ = ANX*RY - ANY*RX
C
C     (A CROSS R) CROSS R, NORMAL TO THE PLANE OF R AND (A AND R)
C
      TRPX = TY*RZ - TZ*RY
      TRPY = TZ*RX - TX*RZ
      TRPZ = TX*RY - TY*RX
      AT3  = SQRT(TRPX*TRPX + TRPY*TRPY + TRPZ*TRPZ)
C
C     RPERP, PERPENDICULAR TO THE VECTOR FROM THE CENTER TO THE FIELD PT
C
      RPX = TRPX/AT3
      RPY = TRPY/AT3
      RPZ = TRPZ/AT3
C
C     FOR SMALL POLAR ANGLE OR SMALL RADIUS USE ALTERNATIVE APPROX.
C
      IF (REALK2 .LT. .0001) GO TO 220
C
C     COMPUTE ELLIPTIC INTEGRAL OF FIRST KIND
C
      F = 1.
      DELTF1 = 1.
      DO 240 N = 1,15000
      XN2  = 2.*FLOAT(N)
      XN21 = XN2 - 1.
      DELTF1 = DELTF1*(XN21/XN2)*REALK
      DELTF2 = DELTF1*DELTF1
      F = F + DELTF2
      IF (ABS(DELTF2/F) .LE. EPSE) GO TO 250
  240 CONTINUE
      DELF = ABS(DELTF2/F)
      WRITE (OTPE,245) UWM,XX,YY,ZZ,XC,YC,ZC,X1,Y1,Z1,X2,Y2,Z2,DELF,EPSE
  245 FORMAT (A25,', CONVERGENCE OF ELLIPTIC INTEGRAL IS UNCERTAIN. ',
     1     'GRID OR INTEGRATION POINT AT COORDINATES', /5X,
     2     1P,3E15.6,'  IS TOO CLOSE TO CURRENT LOOP WITH CENTER AT',
     3     /5X,1P,3E15.6,' AND 2 POINTS AT ',1P,3E15.6, /5X,4HAND ,1P,
     4     3E15.6,' COMPUTATIONS WILL CONTINUE WITH LAST VALUES', /5X,
     5     'CONVERGENCE VALUE WAS ',1P,E15.6,
     6     ' CONVERGENCE CRITERION IS ',1P,E15.6)
  250 F = PIBY2*F
C
C     COMPUTE ELLIPTIC INTEGRAL OF SECOND KIND
C
      E = 1.
      DELTE1 = 1.
      DO 260 N = 1,15000
      XN2  = 2.*FLOAT(N)
      XN21 = XN2-1.
      DELTE1 = DELTE1*(XN21/XN2)*REALK
      DELTE2 = (DELTE1*DELTE1)/XN21
      E = E - DELTE2
      IF (ABS(DELTE2/E) .LE. .000001) GO TO 270
  260 CONTINUE
      DELE = ABS(DELTE2/E)
      WRITE (OTPE,245) UWM,XX,YY,ZZ,XC,YC,ZC,X1,Y1,Z1,X2,Y2,Z2,DELE
  270 E = PIBY2*E
C
C     COMPUTE THE RADIAL COMPONENT OF THE MAGNETIC FIELD
C
      BR = XIACR*(COSTHE/SINTHE)*(E/SQAR2S)*(REALK2/(1.-REALK2))
C
C     COMPUTE THE POLAR COMPONENT OF THE MAGNETIC FIELD
C
      BTHE = XIACR*(1./(SQAR2S*RADIUS*R*SINTHE))*
     1       (((((2.*R2)-((R2+(RADIUS*R*SINTHE))*REALK2))/
     2       (1.-REALK2))*E)-(2.*R2*F))
C
C     GO TO THE RESOLUTION OF FIELD COMPONENTS
C
      GO TO 230
C
C     ALTERNATIVE APPROXIMATION FOR SMALL K**2
C
C     COMPUTE THE RADIAL COMPONENT OF THE MAGNETIC FIELD
C
  220 CONTINUE
      BR = XIACPI*COSTHE*(((2.*RAD2)+(2.*R2)+(RADIUS*R*SINTHE))/
     1     ((SQAR2S)**5))
C
C     COMPUTE THE POLAR COMPONENT OF THE MAGNETIC FIELD
C
      BTHE = -XIACPI*SINTHE*
     1       (((2.*RAD2)-R2+(RADIUS*R*SINTHE))/((SQAR2S)**5))
C
C     RESOLVE MAGNETIC FIELD COMPONENTS INTO RECTANGULAR COMPONENTS
C
  230 CONTINUE
      HCX = RX*BR + RPX*BTHE
      HCY = RY*BR + RPY*BTHE
      HCZ = RZ*BR + RPZ*BTHE
      HC1 = HCX/FPI
      HC2 = HCY/FPI
      HC3 = HCZ/FPI
      RETURN
      END