File: bar.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (560 lines) | stat: -rw-r--r-- 16,544 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
      SUBROUTINE BAR (Z,IDEFM,NOGPTT,NOEDT)
C
C     THIS IS THE ELEMENT TEMPERATURE AND DEFORMATION LOADING ROUTINE
C     FOR THE BAR ELEMENT.
C
C     THIS ROUTINE IS VERY MUCH SIMILIAR TO THAT OF SUBROUTINES KBAR AND
C     SBAR1 THUS ANY ALTERS HERE MAY BE REQUIRED IN THESE OTHER TWO
C     ROUTINES ALSO.
C
C     ECPT FOR THE BAR
C
C     ECPT( 1)  -  IELID         ELEMENT ID. NUMBER
C     ECPT( 2)  -  ISILNO(2)     * SCALAR INDEX NOS. OF THE GRID POINTS
C     ECPT( 3)  -    ...         *
C     ECPT( 4)  -  SMALLV(3)     $ REFERENCE VECTOR
C     ECPT( 5)  -    ...         $
C     ECPT( 6)  -    ...         $
C     ECPT( 7)  -  ICSSV         COOR. SYS. ID FOR SMALLV VECTOR
C     ECPT( 8)  -  IPINFL(2)     * PIN FLAGS
C     ECPT( 9)  -    ...         *
C     ECPT(10)  -  ZA(3)         $ OFFSET VECTOR FOR POINT A
C     ECPT(11)  -    ...         $
C     ECPT(12)  -    ...         $
C     ECPT(13)  -  ZB(3)         * OFFSET VECTOR FOR POINT B
C     ECPT(14)  -    ...         *
C     ECPT(15)  -    ...         *
C     ECPT(16)  -  IMATID        MATERIAL ID.
C     ECPT(17)  -  A             CROSS-SECTIONAL AREA
C     ECPT(18)  -  I1            $ AREA MOMENTS OF INERTIA
C     ECPT(19)  -  I2            $
C     ECPT(20)  -  FJ            TORSIONAL CONSTANT
C     ECPT(21)  -  NSM           NON-STRUCTURAL MASS
C     ECPT(22)  -  FE            FORCE ELEM DESCRIPTIONS (FORCE METHOD)
C     ECPT(23)  -  C1            * STRESS RECOVERY COEFFICIENTS
C     ECPT(24)  -  C2            *
C     ECPT(25)  -  D1            *
C     ECPT(26)  -  D2            *
C     ECPT(27)  -  F1            *
C     ECPT(28)  -  F2            *
C     ECPT(29)  -  G1            *
C     ECPT(30)  -  G2            *
C     ECPT(31)  -  K1            $ AREA FACTORS FOR SHEAR
C     ECPT(32)  -  K2            $
C     ECPT(33)  -  I12           AREA MOMENT OF INERTIA
C     ECPT(34)  -  MCSIDA        COOR. SYS. ID. FOR GRID POINT A
C     ECPT(35)  -  GPA(3)        * BASIC COORDINATES FOR GRID POINT A
C     ECPT(36)  -    ...         *
C     ECPT(37)  -    ...         *
C     ECPT(38)  -  MCSIDB        COOR. SYS. ID. FOR GRID POINT B
C     ECPT(39)  -  GPB(3)        $ BASIC COORDINATES FOR GRID POINT B
C     ECPT(40)  -    ...         $
C     ECPT(41)  -    ...         $
C     ECPT(42)  -  ELTEMP        AVG. ELEMENT TEMPERATURE
C
      LOGICAL           ABASIC   ,BBASIC   ,BASIC    ,AOFSET ,BOFSET   ,
     1                  OFFSET
      REAL              L        ,LSQ      ,LCUBE    ,I1     ,I2       ,
     1                  K1       ,K2       ,KE       ,KEP    ,I12      ,
     2                  NSM      ,LR1      ,LR2      ,LB     ,L2B3     ,
     3                  L2B6     ,UA(6)
      DIMENSION         VECI(3)  ,VECJ(3)  ,VECK(3)  ,Z(1)   ,TA(18)   ,
     1                  TB(9)    ,ECPT(100),IECPT(38),IPIN(10)         ,
     2                  SMALV0(6)
C
C     SDR2 PHASE I INPUT AND OUTPUT COMMON BLOCK
C
      COMMON   /TRIMEX/ IELID    ,ISILNO(2),SMALLV(3),ICSSV  ,IPINFL(2),
     1                  ZA(3)    ,ZB(3)    ,IMATID   ,A      ,I1       ,
     2                  I2       ,FJ       ,NSM      ,FE     ,C1       ,
     3                  C2       ,D1       ,D2       ,F1     ,F2       ,
     4                  G1       ,G2       ,K1       ,K2     ,I12      ,
     5                  MCSIDA   ,GPA(3)   ,MCSIDB   ,GPB(3) ,TEMPEL
C
      COMMON   /SSGWRK/ KE(144)  ,KEP(144) ,DELA(6)  ,DELB(6)
C
C     INPUT AND OUTPUT BLOCKS FOR SUBROUTINE MAT
C
      COMMON   /MATIN / MATIDC   ,MATFLG   ,ELTEMP   ,STRESS  ,SINTH   ,
     1                  COSTH
      COMMON   /MATOUT/ E        ,G        ,NU       ,RHO     ,ALPHA   ,
     1                  T SUB 0  ,G SUB E  ,SIGT     ,SIGC    ,SIGS
      EQUIVALENCE       (IELID,ECPT(1),IECPT(1))     ,(TA(10),TB(1))
C
C
C     SET UP POINTERS TO COOR. SYS. IDS., OFFSET VECTORS, AND PIN FLAGS.
C     ICSIDA AND ICSIDB ARE COOR. SYS. IDS.
C
      JCSIDA = 34
      JCSIDB = 38
      JOFSTA = 10
      JOFSTB = 13
      JPINA  =  8
      JPINB  =  9
      ICSIDA = IECPT(34)
      ICSIDB = IECPT(38)
C
C     NORMALIZE THE REFERENCE VECTOR WHICH LIES IN THE FIRST PRINCIPAL
C     AXIS PLANE  (FMMS - 36 P. 4)
C
      FL = 0.0
      DO 50 I = 1,3
   50 FL = FL + SMALLV(I)**2
      FL = SQRT(FL)
      DO 60 I = 1,3
   60 SMALLV(I) = SMALLV(I)/FL
C
C     DETERMINE IF POINT A AND B ARE IN BASIC COORDINATES OR NOT.
C
      ABASIC = .TRUE.
      BBASIC = .TRUE.
      IF (ICSIDA .NE. 0) ABASIC = .FALSE.
      IF (ICSIDB .NE. 0) BBASIC = .FALSE.
C
C     COMPUTE THE TRANSFORMATION MATRICES TA AND TB IF NECESSARY
C
      IF (.NOT.ABASIC) CALL GBTRAN (ECPT(JCSIDA),ECPT(JCSIDA+1),TA)
      IF (.NOT.BBASIC) CALL GBTRAN (ECPT(JCSIDB),ECPT(JCSIDB+1),TB)
C
C     DETERMINE IF WE HAVE NON-ZERO OFFSET VECTORS.
C
      AOFSET = .TRUE.
      J = JOFSTA - 1
      DO 70 I = 1,3
      J = J + 1
      IF (ECPT(J) .NE. 0.0) GO TO 80
   70 CONTINUE
      AOFSET = .FALSE.
   80 BOFSET = .TRUE.
      J = JOFSTB - 1
      DO 90 I = 1,3
      J = J + 1
      IF (ECPT(J) .NE. 0.0) GO TO 100
   90 CONTINUE
      BOFSET = .FALSE.
C
C     FORM THE CENTER AXIS OF THE BEAM WITHOUT OFFSETS.
C
  100 VECI(1) = ECPT(JCSIDA+1) - ECPT(JCSIDB+1)
      VECI(2) = ECPT(JCSIDA+2) - ECPT(JCSIDB+2)
      VECI(3) = ECPT(JCSIDA+3) - ECPT(JCSIDB+3)
C
C     TRANSFORM THE OFFSET VECTORS IF NECESSARY
C
      IF (.NOT.AOFSET .AND. .NOT.BOFSET) GO TO 150
C
C     TRANSFORM THE OFFSET VECTOR FOR POINT A IF NECESSARY.
C
      IDELA = 1
      J = JOFSTA - 1
      DO 110 I = 1,3
      J = J + 1
  110 DELA(I) = ECPT(J)
      IF (ABASIC) GO TO 120
      IDELA = 4
      CALL GMMATS (TA,3,3,0, DELA(1),3,1,0, DELA(4))
C
C     TRANSFORM THE OFFSET VECTOR FOR POINT B IF NECESSARY
C
  120 IDELB = 1
      J = JOFSTB - 1
      DO 130 I = 1,3
      J = J + 1
  130 DELB(I) = ECPT(J)
      IF (BBASIC) GO TO 140
      IDELB = 4
      CALL GMMATS (TB,3,3,0, DELB(1),3,1,0, DELB(4))
C
C     SINCE THERE WAS AT LEAST ONE NON-ZERO OFFSET VECTOR RECOMPUTE VECI
C
  140 VECI(1) = VECI(1) + DELA(IDELA  ) - DELB(IDELB  )
      VECI(2) = VECI(2) + DELA(IDELA+1) - DELB(IDELB+1)
      VECI(3) = VECI(3) + DELA(IDELA+2) - DELB(IDELB+2)
C
C     COMPUTE THE LENGTH OF THE BIG V (VECI) VECTOR AND NORMALIZE
C
  150 VECI(1) = -VECI(1)
      VECI(2) = -VECI(2)
      VECI(3) = -VECI(3)
      FL = SQRT (VECI(1)**2 + VECI(2)**2 + VECI(3)**2)
      DO 160 I = 1,3
  160 VECI(I) = VECI(I)/FL
C
C     COMPUTE THE SMALL V SUB 0 VECTOR, SMALV0.  ***CHECK THIS LOGIC***
C
      DO 165 I = 1,3
  165 SMALV0(I) = SMALLV(I)
      ISV = 1
      IF (ICSSV .EQ. 0) GO TO 180
      ISV = 4
      CALL GMMATS (TA,3,3,0, SMALV0(1),3,1,0, SMALV0(4))
C
C     COMPUTE THE K VECTOR, VECK = VECI X SMALV0, AND NORMALIZE
C
  180 VECK(1) =  VECI(2)*SMALV0(ISV+2) - VECI(3)*SMALV0(ISV+1)
      VECK(2) =  VECI(3)*SMALV0(ISV  ) - VECI(1)*SMALV0(ISV+2)
      VECK(3) =  VECI(1)*SMALV0(ISV+1) - VECI(2)*SMALV0(ISV)
      FLL     =  SQRT(VECK(1)**2 + VECK(2)**2 + VECK(3)**2)
      VECK(1) =  VECK(1)/FLL
      VECK(2) =  VECK(2)/FLL
      VECK(3) =  VECK(3)/FLL
C
C     COMPUTE THE J VECTOR, VECJ = VECK X VECI, AND NORMALIZE
C
      VECJ(1) =  VECK(2)*VECI(3) - VECK(3)*VECI(2)
      VECJ(2) =  VECK(3)*VECI(1) - VECK(1)*VECI(3)
      VECJ(3) =  VECK(1)*VECI(2) - VECK(2)*VECI(1)
      FLL     =  SQRT(VECJ(1)**2 + VECJ(2)**2 + VECJ(3)**2)
      VECJ(1) =  VECJ(1)/FLL
      VECJ(2) =  VECJ(2)/FLL
      VECJ(3) =  VECJ(3)/FLL
C
C     CALL MAT TO GET MATERIAL PROPERTIES.
C
      MATIDC = IMATID
      MATFLG = 1
      ELTEMP = TEMPEL
      CALL MAT (IECPT(1))
C
C     SET UP INTERMEDIATE VARIABLES FOR ELEMENT STIFFNESS MATRIX
C     CALCULATION
C
      L    = FL
      LSQ  = L**2
      LCUBE= LSQ*L
      EI1  = E*I1
      EI2  = E*I2
      IF (K1.EQ.0.0 .OR. I12 .NE.0.0) GO TO 210
      GAK1 = G*A*K1
      R1   = (12.0*EI1*GAK1)/(GAK1*LCUBE + 12.0*L*EI1)
      GO TO 220
  210 R1   =  12.0*EI1/LCUBE
  220 IF (K2.EQ.0.0 .OR. I12.NE.0.0) GO TO 230
      GAK2 = G*A*K2
      R2   = (12.0*EI2*GAK2)/(GAK2*LCUBE + 12.0*L*EI2)
      GO TO 240
  230 R2   =  12.0*EI2/LCUBE
C
C     COMPUTE THE -SMALL- K-S, SK1, SK2, SK3, AND SK4
C
  240 SK1 = 0.25*R1*LSQ + EI1/L
      SK2 = 0.25*R2*LSQ + EI2/L
      SK3 = 0.25*R1*LSQ - EI1/L
      SK4 = 0.25*R2*LSQ - EI2/L
C
C     COMPUTE THE TERMS THAT WILL BE NEEDED FOR THE 12 X 12 MATRIX KE
C
      AEL = A*E /L
      LR1 = L*R1/2.0
      LR2 = L*R2/2.0
      GJL = G*FJ/L
C
C     CONSTRUCT THE 12 X 12 MATRIX KE
C
      DO 250 I = 1,144
  250 KE(I) = 0.0
      KE(  1) =  AEL
      KE(  7) = -AEL
      KE( 14) =  R1
      KE( 18) =  LR1
      KE( 20) = -R1
      KE( 24) =  LR1
      KE( 27) =  R2
      KE( 29) = -LR2
      KE( 33) = -R2
      KE( 35) = -LR2
      KE( 40) =  GJL
      KE( 46) = -GJL
      KE( 51) = -LR2
      KE( 53) =  SK2
      KE( 57) =  LR2
      KE( 59) =  SK4
      KE( 62) =  LR1
      KE( 66) =  SK1
      KE( 68) = -LR1
      KE( 72) =  SK3
      KE( 73) = -AEL
      KE( 79) =  AEL
      KE( 86) = -R1
      KE( 90) = -LR1
      KE( 92) =  R1
      KE( 96) = -LR1
      KE( 99) = -R2
      KE(101) =  LR2
      KE(105) =  R2
      KE(107) =  LR2
      KE(112) = -GJL
      KE(118) =  GJL
      KE(123) = -LR2
      KE(125) =  SK4
      KE(129) =  LR2
      KE(131) =  SK2
      KE(134) =  LR1
      KE(138) =  SK3
      KE(140) = -LR1
      KE(144) =  SK1
      IF (I12 .EQ. 0.0) GO TO 255
      BETA = 12.0*E*I12/LCUBE
      LB   = L  *BETA/2.0
      L2B3 = LSQ*BETA/3.0
      L2B6 = LSQ*BETA/6.0
      KE( 15) =  BETA
      KE( 17) = -LB
      KE( 21) = -BETA
      KE( 23) = -LB
      KE( 26) =  BETA
      KE( 30) =  LB
      KE( 32) = -BETA
      KE( 36) =  LB
      KE( 50) = -LB
      KE( 54) = -L2B3
      KE( 56) =  LB
      KE( 60) = -L2B6
      KE( 63) =  LB
      KE( 65) = -L2B3
      KE( 69) = -LB
      KE( 71) = -L2B6
      KE( 87) = -BETA
      KE( 89) =  LB
      KE( 93) =  BETA
      KE( 95) =  LB
      KE( 98) = -BETA
      KE(102) = -LB
      KE(104) =  BETA
      KE(108) = -LB
      KE(122) = -LB
      KE(126) = -L2B6
      KE(128) =  LB
      KE(132) = -L2B3
      KE(135) =  LB
      KE(137) = -L2B6
      KE(141) = -LB
      KE(143) = -L2B3
C
C     DETERMINE IF THERE ARE NON-ZERO PIN FLAGS.
C
  255 KA = IECPT(JPINA)
      KB = IECPT(JPINB)
      IF (KA.EQ.0 .AND. KB.EQ.0) GO TO 325
C
C     SET UP THE IPIN ARRAY
C
      DO 260 I = 1,5
      IPIN(I  ) = MOD(KA,10)
      IPIN(I+5) = MOD(KB,10) + 6
      IF (IPIN(I+5) .EQ. 6) IPIN(I+5) = 0
      KA = KA/10
  260 KB = KB/10
C
C     ALTER KE MATRIX DUE TO PIN FLAGS.
C
      DO 320 I = 1,10
      IF (IPIN(I) .EQ. 0) GO TO 320
      II = 13*IPIN(I) - 12
      IF (KE(II) .NE. 0.0) GO TO 280
      IL = IPIN(I)
      II = II - IL
      DO 270 J = 1,12
      II = II + 1
      KE(II) = 0.0
      KE(IL) = 0.0
      IL = IL + 12
  270 CONTINUE
      GO TO 320
  280 DO 300 J = 1,12
      JI = 12*(J-1) + IPIN(I)
      IJ = 12*(IPIN(I) - 1) + J
      DO 290 LL = 1,12
      JLL = 12*(J-1) + LL
      ILL = 12*(IPIN(I) - 1) + LL
      KEP(JLL) = KE(JLL) - (KE(ILL)/KE(II))*KE(JI)
  290 CONTINUE
      KEP(IJ) = 0.0
      KEP(JI) = 0.0
  300 CONTINUE
      DO 310 K = 1,144
  310 KE(K) = KEP(K)
  320 CONTINUE
C
C            E
C     STORE K   IN KEP(1),...,KEP(36) AND
C            AA
C
C            E
C     STORE K   IN KEP(37),...,KEP(72)
C            AB
C
  325 J = 0
      DO 340 I = 1,72,12
      LOW = I
      LIM = LOW + 5
      DO 330 K = LOW,LIM
      J = J + 1
      KEP(J) = KE(K)
  330 KEP(J+36) = KE(K+6)
  340 CONTINUE
C                                                            T
C     STORE VECI, VECJ, VECK IN KE(1),...,KE(9) FORMING THE A  MATRIX.
C
      KE(1) = VECI(1)
      KE(2) = VECI(2)
      KE(3) = VECI(3)
      KE(4) = VECJ(1)
      KE(5) = VECJ(2)
      KE(6) = VECJ(3)
      KE(7) = VECK(1)
      KE(8) = VECK(2)
      KE(9) = VECK(3)
C
C     SET POINTERS SO THAT WE WILL BE WORKING WITH POINT A.
C
      BASIC = ABASIC
      JCSID = JCSIDA
      OFFSET= AOFSET
      JOFSET= JOFSTA
      IWBEG = 0
      IKEL  = 1
      ISASB = 73
      INDEX = ISILNO(1)
C
C     ZERO OUT THE ARRAY WHERE THE 3 X 3 MATRIX AND THE W  AND W  6 X 6
C     MATRICES WILL RESIDE.                              A      B
C
      DO 350 I = 28,108
  350 KE(I) = 0.0
C
C     SET UP THE -G- MATRIX.  IG POINTS TO THE BEGINNING OF THE G MATRIX
C     G = AT X TI
C
  360 IG = 1
      IF (BASIC) GO TO 370
      CALL GBTRAN (ECPT(JCSID),ECPT(JCSID+1),KE(10))
      CALL GMMATS (KE(1),3,3,0,KE(10),3,3,0, KE(19))
      IG = 19
C
C     IF THERE IS A NON-ZERO OFFSET FOR THE POINT, SET UP THE D 3 X 3
C     MATRIX.
C
  370 IF (.NOT. OFFSET) GO TO 380
      KE(10) =  0.0
      KE(11) =  ECPT(JOFSET+2)
      KE(12) = -ECPT(JOFSET+1)
      KE(13) = -KE(11)
      KE(14) =  0.0
      KE(15) =  ECPT(JOFSET)
      KE(16) = -KE(12)
      KE(17) = -KE(15)
      KE(18) =  0.0
C
C     FORM THE 3 X 3 PRODUCT H = G X D, I.E., KE(28) = KE(IG) X KE(10)
C
      CALL GMMATS (KE(IG),3,3,0, KE(10),3,3,0, KE(28))
C
C     FORM THE W  MATRIX OR THE W  MATRIX IN KE(37) OR KE(73) DEPENDING
C               A                B
C     UPON WHICH POINT - A OR B - IS UNDER CONSIDERATION.  G WILL BE
C     STORED IN THE UPPER LEFT AND LOWER RIGHT CORNERS.  H, IF NON-ZERO,
C     WILL BE STORED IN THE UPPER RIGHT CORNER.
C
  380 KE(IWBEG+37) = KE(IG  )
      KE(IWBEG+38) = KE(IG+1)
      KE(IWBEG+39) = KE(IG+2)
      KE(IWBEG+43) = KE(IG+3)
      KE(IWBEG+44) = KE(IG+4)
      KE(IWBEG+45) = KE(IG+5)
      KE(IWBEG+49) = KE(IG+6)
      KE(IWBEG+50) = KE(IG+7)
      KE(IWBEG+51) = KE(IG+8)
      KE(IWBEG+58) = KE(IG  )
      KE(IWBEG+59) = KE(IG+1)
      KE(IWBEG+60) = KE(IG+2)
      KE(IWBEG+64) = KE(IG+3)
      KE(IWBEG+65) = KE(IG+4)
      KE(IWBEG+66) = KE(IG+5)
      KE(IWBEG+70) = KE(IG+6)
      KE(IWBEG+71) = KE(IG+7)
      KE(IWBEG+72) = KE(IG+8)
      IF (.NOT.OFFSET) GO TO 390
      KE(IWBEG+40) = KE(28)
      KE(IWBEG+41) = KE(29)
      KE(IWBEG+42) = KE(30)
      KE(IWBEG+46) = KE(31)
      KE(IWBEG+47) = KE(32)
      KE(IWBEG+48) = KE(33)
      KE(IWBEG+52) = KE(34)
      KE(IWBEG+53) = KE(35)
      KE(IWBEG+54) = KE(36)
C                              E                    E
C     FORM THE PRODUCT  S  =  K   X  W   OR  S  = K   X  W  , DEPENDING
C                        A     AA     A       B    AB     B
C
C     UPON WHICH POINT WE ARE WORKING WITH.
C
  390 CALL GMMATS (KEP(IKEL),6,6,0, KE(IWBEG+37),6,6,0, KEP(ISASB))
C
C     IF THE POINT UNDER CONSIDERATION IS POINT B WE ARE FINISHED.  IF
C     NOT, SET UP POINTS AND INDICATORS FOR WORKING WITH POINT B.
C
      IF (IWBEG .EQ. 36) GO TO 500
      BASIC  = BBASIC
      JCSID  = JCSIDB
      OFFSET = BOFSET
      JOFSET = JOFSTB
      IWBEG  = 36
      IKEL   = 37
      ISASB  = 109
      INDEX  = ISILNO(2)
      DO 400 I = 28,36
  400 KE(I) = 0.0
      GO TO 360
C
C     NOW PERFORM THE ELEMENT TEMPERATURE AND DEFORMATION LOADING.
C
  500 TBAR = TSUB0
      IF (NOGPTT .EQ. 0) GO TO 510
      CALL SSGETD (ECPT(1),KE(1),0)
      TBAR = (KE(1) + KE(2))/2.0
  510 DELTA = 0.0
      IF (NOEDT .EQ. 0) GO TO 520
      KE(3) =  0.0
      KE(4) =  0.0
      KE(5) =  0.0
      KE(6) =  0.0
      CALL FEDT (ECPT(1),DELTA,IDEFM)
      GO TO 530
  520 DELTA = 0.0
C
C     ELEMENT TEMPERATURE DATA BEGINS AT KE(1)
C     ELEMENT DEFORMATION DATA = DELTA
C
C     S  BEGINS AT KEP(73)             (6 X 6)
C      A
C
C     S  BEGINS AT KEP(109)            (6 X 6)
C      B
C
C     NOW FILL THE U  MATRIX           (6 X 1)
C                   A
C
  530 ALPHAL = ALPHA*L
C
      UA(1) = -ALPHAL*(TBAR - TSUB0) - DELTA
      UA(2) = -ALPHAL*L*(KE(3) + 2.0*KE(4))/6.0
      UA(3) = -ALPHAL*L*(KE(5) + 2.0*KE(6))/6.0
      UA(4) =  0.0
      UA(5) = -ALPHAL*(KE(5) + KE(6))/2.0
      UA(6) =  ALPHAL*(KE(3) + KE(4))/2.0
C
C     COMPUTE P  AND P  AND STORE THEM INTO Z (OPEN CORE)
C              A      B
C
      DO 600 I = 1,2
      CALL GMMATS (KEP(36*I+37),6,6,1, UA(1),6,1,0, KE(1))
      K = IECPT(I+1) - 1
      DO 550 J = 1,6
      K = K + 1
  550 Z(K) = Z(K) + KE(J)
  600 CONTINUE
C
      RETURN
      END