1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
SUBROUTINE BAR (Z,IDEFM,NOGPTT,NOEDT)
C
C THIS IS THE ELEMENT TEMPERATURE AND DEFORMATION LOADING ROUTINE
C FOR THE BAR ELEMENT.
C
C THIS ROUTINE IS VERY MUCH SIMILIAR TO THAT OF SUBROUTINES KBAR AND
C SBAR1 THUS ANY ALTERS HERE MAY BE REQUIRED IN THESE OTHER TWO
C ROUTINES ALSO.
C
C ECPT FOR THE BAR
C
C ECPT( 1) - IELID ELEMENT ID. NUMBER
C ECPT( 2) - ISILNO(2) * SCALAR INDEX NOS. OF THE GRID POINTS
C ECPT( 3) - ... *
C ECPT( 4) - SMALLV(3) $ REFERENCE VECTOR
C ECPT( 5) - ... $
C ECPT( 6) - ... $
C ECPT( 7) - ICSSV COOR. SYS. ID FOR SMALLV VECTOR
C ECPT( 8) - IPINFL(2) * PIN FLAGS
C ECPT( 9) - ... *
C ECPT(10) - ZA(3) $ OFFSET VECTOR FOR POINT A
C ECPT(11) - ... $
C ECPT(12) - ... $
C ECPT(13) - ZB(3) * OFFSET VECTOR FOR POINT B
C ECPT(14) - ... *
C ECPT(15) - ... *
C ECPT(16) - IMATID MATERIAL ID.
C ECPT(17) - A CROSS-SECTIONAL AREA
C ECPT(18) - I1 $ AREA MOMENTS OF INERTIA
C ECPT(19) - I2 $
C ECPT(20) - FJ TORSIONAL CONSTANT
C ECPT(21) - NSM NON-STRUCTURAL MASS
C ECPT(22) - FE FORCE ELEM DESCRIPTIONS (FORCE METHOD)
C ECPT(23) - C1 * STRESS RECOVERY COEFFICIENTS
C ECPT(24) - C2 *
C ECPT(25) - D1 *
C ECPT(26) - D2 *
C ECPT(27) - F1 *
C ECPT(28) - F2 *
C ECPT(29) - G1 *
C ECPT(30) - G2 *
C ECPT(31) - K1 $ AREA FACTORS FOR SHEAR
C ECPT(32) - K2 $
C ECPT(33) - I12 AREA MOMENT OF INERTIA
C ECPT(34) - MCSIDA COOR. SYS. ID. FOR GRID POINT A
C ECPT(35) - GPA(3) * BASIC COORDINATES FOR GRID POINT A
C ECPT(36) - ... *
C ECPT(37) - ... *
C ECPT(38) - MCSIDB COOR. SYS. ID. FOR GRID POINT B
C ECPT(39) - GPB(3) $ BASIC COORDINATES FOR GRID POINT B
C ECPT(40) - ... $
C ECPT(41) - ... $
C ECPT(42) - ELTEMP AVG. ELEMENT TEMPERATURE
C
LOGICAL ABASIC ,BBASIC ,BASIC ,AOFSET ,BOFSET ,
1 OFFSET
REAL L ,LSQ ,LCUBE ,I1 ,I2 ,
1 K1 ,K2 ,KE ,KEP ,I12 ,
2 NSM ,LR1 ,LR2 ,LB ,L2B3 ,
3 L2B6 ,UA(6)
DIMENSION VECI(3) ,VECJ(3) ,VECK(3) ,Z(1) ,TA(18) ,
1 TB(9) ,ECPT(100),IECPT(38),IPIN(10) ,
2 SMALV0(6)
C
C SDR2 PHASE I INPUT AND OUTPUT COMMON BLOCK
C
COMMON /TRIMEX/ IELID ,ISILNO(2),SMALLV(3),ICSSV ,IPINFL(2),
1 ZA(3) ,ZB(3) ,IMATID ,A ,I1 ,
2 I2 ,FJ ,NSM ,FE ,C1 ,
3 C2 ,D1 ,D2 ,F1 ,F2 ,
4 G1 ,G2 ,K1 ,K2 ,I12 ,
5 MCSIDA ,GPA(3) ,MCSIDB ,GPB(3) ,TEMPEL
C
COMMON /SSGWRK/ KE(144) ,KEP(144) ,DELA(6) ,DELB(6)
C
C INPUT AND OUTPUT BLOCKS FOR SUBROUTINE MAT
C
COMMON /MATIN / MATIDC ,MATFLG ,ELTEMP ,STRESS ,SINTH ,
1 COSTH
COMMON /MATOUT/ E ,G ,NU ,RHO ,ALPHA ,
1 T SUB 0 ,G SUB E ,SIGT ,SIGC ,SIGS
EQUIVALENCE (IELID,ECPT(1),IECPT(1)) ,(TA(10),TB(1))
C
C
C SET UP POINTERS TO COOR. SYS. IDS., OFFSET VECTORS, AND PIN FLAGS.
C ICSIDA AND ICSIDB ARE COOR. SYS. IDS.
C
JCSIDA = 34
JCSIDB = 38
JOFSTA = 10
JOFSTB = 13
JPINA = 8
JPINB = 9
ICSIDA = IECPT(34)
ICSIDB = IECPT(38)
C
C NORMALIZE THE REFERENCE VECTOR WHICH LIES IN THE FIRST PRINCIPAL
C AXIS PLANE (FMMS - 36 P. 4)
C
FL = 0.0
DO 50 I = 1,3
50 FL = FL + SMALLV(I)**2
FL = SQRT(FL)
DO 60 I = 1,3
60 SMALLV(I) = SMALLV(I)/FL
C
C DETERMINE IF POINT A AND B ARE IN BASIC COORDINATES OR NOT.
C
ABASIC = .TRUE.
BBASIC = .TRUE.
IF (ICSIDA .NE. 0) ABASIC = .FALSE.
IF (ICSIDB .NE. 0) BBASIC = .FALSE.
C
C COMPUTE THE TRANSFORMATION MATRICES TA AND TB IF NECESSARY
C
IF (.NOT.ABASIC) CALL GBTRAN (ECPT(JCSIDA),ECPT(JCSIDA+1),TA)
IF (.NOT.BBASIC) CALL GBTRAN (ECPT(JCSIDB),ECPT(JCSIDB+1),TB)
C
C DETERMINE IF WE HAVE NON-ZERO OFFSET VECTORS.
C
AOFSET = .TRUE.
J = JOFSTA - 1
DO 70 I = 1,3
J = J + 1
IF (ECPT(J) .NE. 0.0) GO TO 80
70 CONTINUE
AOFSET = .FALSE.
80 BOFSET = .TRUE.
J = JOFSTB - 1
DO 90 I = 1,3
J = J + 1
IF (ECPT(J) .NE. 0.0) GO TO 100
90 CONTINUE
BOFSET = .FALSE.
C
C FORM THE CENTER AXIS OF THE BEAM WITHOUT OFFSETS.
C
100 VECI(1) = ECPT(JCSIDA+1) - ECPT(JCSIDB+1)
VECI(2) = ECPT(JCSIDA+2) - ECPT(JCSIDB+2)
VECI(3) = ECPT(JCSIDA+3) - ECPT(JCSIDB+3)
C
C TRANSFORM THE OFFSET VECTORS IF NECESSARY
C
IF (.NOT.AOFSET .AND. .NOT.BOFSET) GO TO 150
C
C TRANSFORM THE OFFSET VECTOR FOR POINT A IF NECESSARY.
C
IDELA = 1
J = JOFSTA - 1
DO 110 I = 1,3
J = J + 1
110 DELA(I) = ECPT(J)
IF (ABASIC) GO TO 120
IDELA = 4
CALL GMMATS (TA,3,3,0, DELA(1),3,1,0, DELA(4))
C
C TRANSFORM THE OFFSET VECTOR FOR POINT B IF NECESSARY
C
120 IDELB = 1
J = JOFSTB - 1
DO 130 I = 1,3
J = J + 1
130 DELB(I) = ECPT(J)
IF (BBASIC) GO TO 140
IDELB = 4
CALL GMMATS (TB,3,3,0, DELB(1),3,1,0, DELB(4))
C
C SINCE THERE WAS AT LEAST ONE NON-ZERO OFFSET VECTOR RECOMPUTE VECI
C
140 VECI(1) = VECI(1) + DELA(IDELA ) - DELB(IDELB )
VECI(2) = VECI(2) + DELA(IDELA+1) - DELB(IDELB+1)
VECI(3) = VECI(3) + DELA(IDELA+2) - DELB(IDELB+2)
C
C COMPUTE THE LENGTH OF THE BIG V (VECI) VECTOR AND NORMALIZE
C
150 VECI(1) = -VECI(1)
VECI(2) = -VECI(2)
VECI(3) = -VECI(3)
FL = SQRT (VECI(1)**2 + VECI(2)**2 + VECI(3)**2)
DO 160 I = 1,3
160 VECI(I) = VECI(I)/FL
C
C COMPUTE THE SMALL V SUB 0 VECTOR, SMALV0. ***CHECK THIS LOGIC***
C
DO 165 I = 1,3
165 SMALV0(I) = SMALLV(I)
ISV = 1
IF (ICSSV .EQ. 0) GO TO 180
ISV = 4
CALL GMMATS (TA,3,3,0, SMALV0(1),3,1,0, SMALV0(4))
C
C COMPUTE THE K VECTOR, VECK = VECI X SMALV0, AND NORMALIZE
C
180 VECK(1) = VECI(2)*SMALV0(ISV+2) - VECI(3)*SMALV0(ISV+1)
VECK(2) = VECI(3)*SMALV0(ISV ) - VECI(1)*SMALV0(ISV+2)
VECK(3) = VECI(1)*SMALV0(ISV+1) - VECI(2)*SMALV0(ISV)
FLL = SQRT(VECK(1)**2 + VECK(2)**2 + VECK(3)**2)
VECK(1) = VECK(1)/FLL
VECK(2) = VECK(2)/FLL
VECK(3) = VECK(3)/FLL
C
C COMPUTE THE J VECTOR, VECJ = VECK X VECI, AND NORMALIZE
C
VECJ(1) = VECK(2)*VECI(3) - VECK(3)*VECI(2)
VECJ(2) = VECK(3)*VECI(1) - VECK(1)*VECI(3)
VECJ(3) = VECK(1)*VECI(2) - VECK(2)*VECI(1)
FLL = SQRT(VECJ(1)**2 + VECJ(2)**2 + VECJ(3)**2)
VECJ(1) = VECJ(1)/FLL
VECJ(2) = VECJ(2)/FLL
VECJ(3) = VECJ(3)/FLL
C
C CALL MAT TO GET MATERIAL PROPERTIES.
C
MATIDC = IMATID
MATFLG = 1
ELTEMP = TEMPEL
CALL MAT (IECPT(1))
C
C SET UP INTERMEDIATE VARIABLES FOR ELEMENT STIFFNESS MATRIX
C CALCULATION
C
L = FL
LSQ = L**2
LCUBE= LSQ*L
EI1 = E*I1
EI2 = E*I2
IF (K1.EQ.0.0 .OR. I12 .NE.0.0) GO TO 210
GAK1 = G*A*K1
R1 = (12.0*EI1*GAK1)/(GAK1*LCUBE + 12.0*L*EI1)
GO TO 220
210 R1 = 12.0*EI1/LCUBE
220 IF (K2.EQ.0.0 .OR. I12.NE.0.0) GO TO 230
GAK2 = G*A*K2
R2 = (12.0*EI2*GAK2)/(GAK2*LCUBE + 12.0*L*EI2)
GO TO 240
230 R2 = 12.0*EI2/LCUBE
C
C COMPUTE THE -SMALL- K-S, SK1, SK2, SK3, AND SK4
C
240 SK1 = 0.25*R1*LSQ + EI1/L
SK2 = 0.25*R2*LSQ + EI2/L
SK3 = 0.25*R1*LSQ - EI1/L
SK4 = 0.25*R2*LSQ - EI2/L
C
C COMPUTE THE TERMS THAT WILL BE NEEDED FOR THE 12 X 12 MATRIX KE
C
AEL = A*E /L
LR1 = L*R1/2.0
LR2 = L*R2/2.0
GJL = G*FJ/L
C
C CONSTRUCT THE 12 X 12 MATRIX KE
C
DO 250 I = 1,144
250 KE(I) = 0.0
KE( 1) = AEL
KE( 7) = -AEL
KE( 14) = R1
KE( 18) = LR1
KE( 20) = -R1
KE( 24) = LR1
KE( 27) = R2
KE( 29) = -LR2
KE( 33) = -R2
KE( 35) = -LR2
KE( 40) = GJL
KE( 46) = -GJL
KE( 51) = -LR2
KE( 53) = SK2
KE( 57) = LR2
KE( 59) = SK4
KE( 62) = LR1
KE( 66) = SK1
KE( 68) = -LR1
KE( 72) = SK3
KE( 73) = -AEL
KE( 79) = AEL
KE( 86) = -R1
KE( 90) = -LR1
KE( 92) = R1
KE( 96) = -LR1
KE( 99) = -R2
KE(101) = LR2
KE(105) = R2
KE(107) = LR2
KE(112) = -GJL
KE(118) = GJL
KE(123) = -LR2
KE(125) = SK4
KE(129) = LR2
KE(131) = SK2
KE(134) = LR1
KE(138) = SK3
KE(140) = -LR1
KE(144) = SK1
IF (I12 .EQ. 0.0) GO TO 255
BETA = 12.0*E*I12/LCUBE
LB = L *BETA/2.0
L2B3 = LSQ*BETA/3.0
L2B6 = LSQ*BETA/6.0
KE( 15) = BETA
KE( 17) = -LB
KE( 21) = -BETA
KE( 23) = -LB
KE( 26) = BETA
KE( 30) = LB
KE( 32) = -BETA
KE( 36) = LB
KE( 50) = -LB
KE( 54) = -L2B3
KE( 56) = LB
KE( 60) = -L2B6
KE( 63) = LB
KE( 65) = -L2B3
KE( 69) = -LB
KE( 71) = -L2B6
KE( 87) = -BETA
KE( 89) = LB
KE( 93) = BETA
KE( 95) = LB
KE( 98) = -BETA
KE(102) = -LB
KE(104) = BETA
KE(108) = -LB
KE(122) = -LB
KE(126) = -L2B6
KE(128) = LB
KE(132) = -L2B3
KE(135) = LB
KE(137) = -L2B6
KE(141) = -LB
KE(143) = -L2B3
C
C DETERMINE IF THERE ARE NON-ZERO PIN FLAGS.
C
255 KA = IECPT(JPINA)
KB = IECPT(JPINB)
IF (KA.EQ.0 .AND. KB.EQ.0) GO TO 325
C
C SET UP THE IPIN ARRAY
C
DO 260 I = 1,5
IPIN(I ) = MOD(KA,10)
IPIN(I+5) = MOD(KB,10) + 6
IF (IPIN(I+5) .EQ. 6) IPIN(I+5) = 0
KA = KA/10
260 KB = KB/10
C
C ALTER KE MATRIX DUE TO PIN FLAGS.
C
DO 320 I = 1,10
IF (IPIN(I) .EQ. 0) GO TO 320
II = 13*IPIN(I) - 12
IF (KE(II) .NE. 0.0) GO TO 280
IL = IPIN(I)
II = II - IL
DO 270 J = 1,12
II = II + 1
KE(II) = 0.0
KE(IL) = 0.0
IL = IL + 12
270 CONTINUE
GO TO 320
280 DO 300 J = 1,12
JI = 12*(J-1) + IPIN(I)
IJ = 12*(IPIN(I) - 1) + J
DO 290 LL = 1,12
JLL = 12*(J-1) + LL
ILL = 12*(IPIN(I) - 1) + LL
KEP(JLL) = KE(JLL) - (KE(ILL)/KE(II))*KE(JI)
290 CONTINUE
KEP(IJ) = 0.0
KEP(JI) = 0.0
300 CONTINUE
DO 310 K = 1,144
310 KE(K) = KEP(K)
320 CONTINUE
C
C E
C STORE K IN KEP(1),...,KEP(36) AND
C AA
C
C E
C STORE K IN KEP(37),...,KEP(72)
C AB
C
325 J = 0
DO 340 I = 1,72,12
LOW = I
LIM = LOW + 5
DO 330 K = LOW,LIM
J = J + 1
KEP(J) = KE(K)
330 KEP(J+36) = KE(K+6)
340 CONTINUE
C T
C STORE VECI, VECJ, VECK IN KE(1),...,KE(9) FORMING THE A MATRIX.
C
KE(1) = VECI(1)
KE(2) = VECI(2)
KE(3) = VECI(3)
KE(4) = VECJ(1)
KE(5) = VECJ(2)
KE(6) = VECJ(3)
KE(7) = VECK(1)
KE(8) = VECK(2)
KE(9) = VECK(3)
C
C SET POINTERS SO THAT WE WILL BE WORKING WITH POINT A.
C
BASIC = ABASIC
JCSID = JCSIDA
OFFSET= AOFSET
JOFSET= JOFSTA
IWBEG = 0
IKEL = 1
ISASB = 73
INDEX = ISILNO(1)
C
C ZERO OUT THE ARRAY WHERE THE 3 X 3 MATRIX AND THE W AND W 6 X 6
C MATRICES WILL RESIDE. A B
C
DO 350 I = 28,108
350 KE(I) = 0.0
C
C SET UP THE -G- MATRIX. IG POINTS TO THE BEGINNING OF THE G MATRIX
C G = AT X TI
C
360 IG = 1
IF (BASIC) GO TO 370
CALL GBTRAN (ECPT(JCSID),ECPT(JCSID+1),KE(10))
CALL GMMATS (KE(1),3,3,0,KE(10),3,3,0, KE(19))
IG = 19
C
C IF THERE IS A NON-ZERO OFFSET FOR THE POINT, SET UP THE D 3 X 3
C MATRIX.
C
370 IF (.NOT. OFFSET) GO TO 380
KE(10) = 0.0
KE(11) = ECPT(JOFSET+2)
KE(12) = -ECPT(JOFSET+1)
KE(13) = -KE(11)
KE(14) = 0.0
KE(15) = ECPT(JOFSET)
KE(16) = -KE(12)
KE(17) = -KE(15)
KE(18) = 0.0
C
C FORM THE 3 X 3 PRODUCT H = G X D, I.E., KE(28) = KE(IG) X KE(10)
C
CALL GMMATS (KE(IG),3,3,0, KE(10),3,3,0, KE(28))
C
C FORM THE W MATRIX OR THE W MATRIX IN KE(37) OR KE(73) DEPENDING
C A B
C UPON WHICH POINT - A OR B - IS UNDER CONSIDERATION. G WILL BE
C STORED IN THE UPPER LEFT AND LOWER RIGHT CORNERS. H, IF NON-ZERO,
C WILL BE STORED IN THE UPPER RIGHT CORNER.
C
380 KE(IWBEG+37) = KE(IG )
KE(IWBEG+38) = KE(IG+1)
KE(IWBEG+39) = KE(IG+2)
KE(IWBEG+43) = KE(IG+3)
KE(IWBEG+44) = KE(IG+4)
KE(IWBEG+45) = KE(IG+5)
KE(IWBEG+49) = KE(IG+6)
KE(IWBEG+50) = KE(IG+7)
KE(IWBEG+51) = KE(IG+8)
KE(IWBEG+58) = KE(IG )
KE(IWBEG+59) = KE(IG+1)
KE(IWBEG+60) = KE(IG+2)
KE(IWBEG+64) = KE(IG+3)
KE(IWBEG+65) = KE(IG+4)
KE(IWBEG+66) = KE(IG+5)
KE(IWBEG+70) = KE(IG+6)
KE(IWBEG+71) = KE(IG+7)
KE(IWBEG+72) = KE(IG+8)
IF (.NOT.OFFSET) GO TO 390
KE(IWBEG+40) = KE(28)
KE(IWBEG+41) = KE(29)
KE(IWBEG+42) = KE(30)
KE(IWBEG+46) = KE(31)
KE(IWBEG+47) = KE(32)
KE(IWBEG+48) = KE(33)
KE(IWBEG+52) = KE(34)
KE(IWBEG+53) = KE(35)
KE(IWBEG+54) = KE(36)
C E E
C FORM THE PRODUCT S = K X W OR S = K X W , DEPENDING
C A AA A B AB B
C
C UPON WHICH POINT WE ARE WORKING WITH.
C
390 CALL GMMATS (KEP(IKEL),6,6,0, KE(IWBEG+37),6,6,0, KEP(ISASB))
C
C IF THE POINT UNDER CONSIDERATION IS POINT B WE ARE FINISHED. IF
C NOT, SET UP POINTS AND INDICATORS FOR WORKING WITH POINT B.
C
IF (IWBEG .EQ. 36) GO TO 500
BASIC = BBASIC
JCSID = JCSIDB
OFFSET = BOFSET
JOFSET = JOFSTB
IWBEG = 36
IKEL = 37
ISASB = 109
INDEX = ISILNO(2)
DO 400 I = 28,36
400 KE(I) = 0.0
GO TO 360
C
C NOW PERFORM THE ELEMENT TEMPERATURE AND DEFORMATION LOADING.
C
500 TBAR = TSUB0
IF (NOGPTT .EQ. 0) GO TO 510
CALL SSGETD (ECPT(1),KE(1),0)
TBAR = (KE(1) + KE(2))/2.0
510 DELTA = 0.0
IF (NOEDT .EQ. 0) GO TO 520
KE(3) = 0.0
KE(4) = 0.0
KE(5) = 0.0
KE(6) = 0.0
CALL FEDT (ECPT(1),DELTA,IDEFM)
GO TO 530
520 DELTA = 0.0
C
C ELEMENT TEMPERATURE DATA BEGINS AT KE(1)
C ELEMENT DEFORMATION DATA = DELTA
C
C S BEGINS AT KEP(73) (6 X 6)
C A
C
C S BEGINS AT KEP(109) (6 X 6)
C B
C
C NOW FILL THE U MATRIX (6 X 1)
C A
C
530 ALPHAL = ALPHA*L
C
UA(1) = -ALPHAL*(TBAR - TSUB0) - DELTA
UA(2) = -ALPHAL*L*(KE(3) + 2.0*KE(4))/6.0
UA(3) = -ALPHAL*L*(KE(5) + 2.0*KE(6))/6.0
UA(4) = 0.0
UA(5) = -ALPHAL*(KE(5) + KE(6))/2.0
UA(6) = ALPHAL*(KE(3) + KE(4))/2.0
C
C COMPUTE P AND P AND STORE THEM INTO Z (OPEN CORE)
C A B
C
DO 600 I = 1,2
CALL GMMATS (KEP(36*I+37),6,6,1, UA(1),6,1,0, KE(1))
K = IECPT(I+1) - 1
DO 550 J = 1,6
K = K + 1
550 Z(K) = Z(K) + KE(J)
600 CONTINUE
C
RETURN
END
|