1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
|
SUBROUTINE BARD
C
C THIS SUBROUTINE PROCESSES BAR ELEMENT DATA TO PRODUCE STIFFNESS
C AND MASS MATRICES. IF THE HEAT TRANSFER OPTION IS ON, CONDUCTIVITY
C AND CAPACITY MATRICES ARE PRODUCED.
C
C DOUBLE PRECISION VERSION
C THIS ROUTINE WILL PRODUCE MASS MATRICES BY EITHER THE CONSISTENT
C OR CONVENTIONAL MASS METHODS.
C THE ECPT/EST ENTRIES FOR THE BAR (ELEMENT TYPE 34) ARE
C
C
C ECPT( 1) - IELID ELEMENT ID. NUMBER
C ECPT( 2) - ISILNO(2) * SCALAR INDEX NOS. OF THE GRID POINTS
C ECPT( 3) - ... *
C ECPT( 4) - SMALLV(3) $ REFERENCE VECTOR
C ECPT( 5) - ... $
C ECPT( 6) - ... $
C ECPT( 7) - ICSSV COOR. SYS. ID FOR SMALLV VECTOR
C ECPT( 8) - IPINFL(2) * PIN FLAGS
C ECPT( 9) - ... *
C ECPT(10) - ZA(3) $ OFFSET VECTOR FOR POINT A
C ECPT(11) - ... $
C ECPT(12) - ... $
C ECPT(13) - ZB(3) * OFFSET VECTOR FOR POINT B
C ECPT(14) - ... *
C ECPT(15) - ... *
C ECPT(16) - IMATID MATERIAL ID.
C ECPT(17) - A CROSS-SECTIONAL AREA
C ECPT(18) - I1 $ AREA MOMENTS OF INERTIA
C ECPT(19) - I2 $
C ECPT(20) - FJ TORSIONAL CONSTANT
C ECPT(21) - NSM NON-STRUCTURAL MASS
C ECPT(22) - FE FORCE ELEM DESCRIPTIONS (FORCE METHOD)
C ECPT(23) - C1 * STRESS RECOVERY COEFFICIENTS
C ECPT(24) - C2 *
C ECPT(25) - D1 *
C ECPT(26) - D2 *
C ECPT(27) - F1 *
C ECPT(28) - F2 *
C ECPT(29) - G1 *
C ECPT(30) - G2 *
C ECPT(31) - K1 $ AREA FACTORS FOR SHEAR
C ECPT(32) - K2 $
C ECPT(33) - I12 AREA MOMENT OF INERTIA
C ECPT(34) - MCSIDA COOR. SYS. ID. FOR GRID POINT A
C ECPT(35) - GPA(3) * BASIC COORDINATES FOR GRID POINT A
C ECPT(36) - ... *
C ECPT(37) - ... *
C ECPT(38) - MCSIDB COOR. SYS. ID. FOR GRID POINT B
C ECPT(39) - GPB(3) $ BASIC COORDINATES FOR GRID POINT B
C ECPT(40) - ... $
C ECPT(41) - ... $
C ECPT(42) - ELTEMP AVG. ELEMENT TEMPERATURE
C
LOGICAL BASIC,OFFSET,NOGO,AOFSET,BOFSET
INTEGER DICT(7),IS12OR(4),IS21OR(4),GSUBE,ESTID,IECPT(38)
REAL K1,K2,I1,I2,I12,NSM
DIMENSION ECPT(42),IPIN(10),IKK(4)
DOUBLE PRECISION CONST,BL22,BLSQ3,FM,KE,KK,KEP,M,MEP,ME,
1 LR1,LR2,LB,L2B3,L2B6,VECI(3),VECJ(3),VECK(3),
2 SMALVN,TA,TB,VEC,DELA,DELB,FL,SMALLV(3),
3 FLL,BL,BLSQ,BLCUBE,EI1,EI2,R1,R2,SK1,SK2,
4 SK3,SK4,AEL,GJL,BETA,BL13,BLSQ4,A2B,LIMIT,
5 EPSI,EPSI2
CHARACTER UFM*23,UWM*25
COMMON /XMSSG / UFM,UWM
COMMON /SYSTEM/ KSYSTM(100)
COMMON /EMGEST/ IELID,ISILNO(2),SMALV(3),ICSSV,IPINFL(2),ZA(3),
1 ZB(3),IMATID,A,I1,I2,FJ,NSM,FE,C1,C2,D1,D2,
2 F1,F2,G1,G2,K1,K2,I12,MCSIDA,GPA(3),MCSIDB,
3 GPB(3),TEMPEL
COMMON /EMGPRM/ IXTRA,JCORE,NCORE,DUM(12),ISTIF,IMASS,IDAMP,
1 IPREC,NOGO,HEAT,ICMBAR,LCSTM,LMAT,LHMAT
COMMON /EMGDIC/ IDUMM, LDICT,NGRIDS,ELID,ESTID
COMMON /EMGTRX/ KE(144),KEP(144),M(12,12),ME(144),MEP(144),
1 KK(144),SMALVN(6),TA(18),TB(9),VEC(10),
2 DELA(6),DELB(6)
COMMON /MATIN / MATIDC,MATFLG,ELTEMP,STRESS,SINTH,COSTH
COMMON /MATOUT/ E,G,NU,RHO,ALPHA,TSUBO,GSUBE,SIGT,SIGC,SIGS
COMMON /HMTOUT/ FK
EQUIVALENCE (KSYSTM(2),IOUTPT),(KSYSTM(56),IHEAT),
1 (ECPT(1),IECPT(1),IELID),(KSYSTM(87),KSY87),
2 (VEC(1),VECI(1)),(VEC(4),VECJ(1)),
3 (VEC(7),VECK(1))
DATA IKK / 1,7,73,79 /, EPSI,EPSI2 / 1.0D-18,1.0D-7 /
DATA IS12OR/ 1,37,109,73 /, IS21OR / 73,109,37,1 /
C
C
DICT(1) = ESTID
C
C SET UP POINTERS TO COOR. SYS. IDS., OFFSET VECTORS, AND PIN FLAGS.
C ICSIDA AND ICSIDB ARE COOR. SYS. IDS.
C
JCSIDA = 34
JCSIDB = 38
JOFSTA = 10
JOFSTB = 13
JPINA = 8
JPINB = 9
ICSIDA = IECPT(34)
ICSIDB = IECPT(38)
LIMIT = DBLE(IABS(KSY87))*.01D0
C
C NORMALIZE THE REFERENCE VECTOR WHICH LIES IN THE FIRST PRINCIPAL
C AXIS PLANE (FMMS - 36 P. 4)
C
FL = 0.D0
DO 40 I = 1,3
SMALLV(I) = SMALV(I)
40 FL = FL + SMALLV(I)**2
FL = DSQRT(FL)
IF (DABS(FL) .LT. EPSI) GO TO 7770
DO 50 I = 1,3
50 SMALVN(I) = SMALLV(I)/FL
C
C DETERMINE IF POINT A AND B ARE IN BASIC COORDINATES OR NOT.
C COMPUTE THE TRANSFORMATION MATRICES TA AND TB IF NECESSARY
C
IF (ICSIDA .NE. 0) CALL TRANSD(ECPT(JCSIDA),TA)
IF (ICSIDB .NE. 0) CALL TRANSD(ECPT(JCSIDB),TB)
C
C DETERMINE IF WE HAVE NON-ZERO OFFSET VECTORS.
C
AOFSET = .TRUE.
J = JOFSTA - 1
DO 70 I = 1,3
J = J + 1
IF (ECPT(J) .NE. 0.0) GO TO 80
70 CONTINUE
AOFSET = .FALSE.
80 BOFSET = .TRUE.
J = JOFSTB - 1
DO 90 I = 1,3
J = J + 1
IF (ECPT(J) .NE. 0.0) GO TO 100
90 CONTINUE
BOFSET = .FALSE.
C
C FORM THE CENTER AXIS OF THE BEAM WITHOUT OFFSETS.
C
100 DO 105 I = 1,3
JTA = I + JCSIDA
JTB = I + JCSIDB
105 VECI(I) = ECPT(JTA) - ECPT(JTB)
C
C SAVE IN A2B THE LENGTH OF BAR, WITHOUT OFFSET, FROM GRID PT. A
C TO B
C
A2B = DSQRT(VECI(1)**2 + VECI(2)**2 + VECI(3)**2)
C
C TRANSFORM THE OFFSET VECTORS IF NECESSARY
C
IF (.NOT.AOFSET .AND. .NOT.BOFSET) GO TO 150
C
C TRANSFORM THE OFFSET VECTOR FOR POINT A IF NECESSARY.
C
IDELA = 1
J = JOFSTA - 1
DO 110 I = 1,3
J = J + 1
110 DELA(I) = ECPT(J)
IF (ICSIDA .EQ. 0) GO TO 120
IDELA = 4
CALL GMMATD (TA, 3,3,0, DELA(1),3,1,0, DELA(4))
C
C TRANSFORM THE OFFSET VECTOR FOR POINT B IF NECESSARY
C
120 IDELB = 1
J = JOFSTB - 1
DO 130 I = 1,3
J = J + 1
130 DELB(I) = ECPT(J)
IF (ICSIDB .EQ. 0) GOTO 140
IDELB = 4
CALL GMMATD (TB, 3,3,0, DELB(1),3,1,0, DELB(4))
C
C SINCE THERE WAS AT LEAST ONE NON-ZERO OFFSET VECTOR RECOMPUTE VECI
C
140 DO 145 I = 1,3
JTA = I - 1 + IDELA
JTB = I - 1 + IDELB
145 VECI(I) = VECI(I)+DELA(JTA) - DELB(JTB)
C
C COMPUTE THE LENGTH OF THE BIG V (VECI) VECTOR AND NORMALIZE
C
150 FL = 0.D0
DO 155 I = 1,3
VECI(I) = -VECI(I)
155 FL = FL + VECI(I)**2
FL = DSQRT(FL)
IF (DABS(FL) .LT. EPSI) GO TO 7770
DO 160 I = 1,3
160 VECI(I) = VECI(I)/FL
C
C NOW THAT LENGTH HAS BEEN COMPUTED, CHECK POSSIBLE OFFSET ERROR
C ISSUE WARNING MESSAGE IF OFFSET EXCEEDS A2B BY 'LIMIT' PERCENT.
C (DEFAULT IS 15 PERCENT, KSYSTM(87) WORD)
C
IF (DABS(FL-A2B)/A2B .LE. LIMIT) GO TO 170
WRITE (IOUTPT,165) UWM,IELID
165 FORMAT (A25,' - UNUSUALLY LARGE OFFSET IS DETECTED FOR CBAR ',
1 'ELEMENT ID =',I8)
IF (KSY87 .LE. 0) GO TO 170
WRITE (IOUTPT,167) KSY87
167 FORMAT (/5X,'(OFFSET BAR LENGTH EXCEEDS NON-OFFSET LENGTH BY',
1 I4,' PERCENT, SET BY SYSTEM 87TH WORD)')
KSY87 = -KSY87
C
C BRANCH IF THIS IS A -HEAT- FORMULATION.
C
170 IF (IHEAT .EQ.1) GO TO 500
C
C COMPUTE THE SMALV0 VECTOR
C
ISV = 1
IF (ICSSV .EQ. 0) GO TO 180
ISV = 4
CALL GMMATD (TA,3,3,0, SMALVN(1),3,1,0, SMALVN(4))
C
C COMPUTE THE K VECTOR, VECK = VECI X SMALV0, AND NORMALIZE
C
180 VECK(1) = VECI(2)*SMALVN(ISV+2) - VECI(3)*SMALVN(ISV+1)
VECK(2) = VECI(3)*SMALVN(ISV ) - VECI(1)*SMALVN(ISV+2)
VECK(3) = VECI(1)*SMALVN(ISV+1) - VECI(2)*SMALVN(ISV )
FLL = DSQRT(VECK(1)**2 + VECK(2)**2 + VECK(3)**2)
IF (DABS(FLL) .LT. EPSI2) GO TO 7770
DO 190 I = 1,3
190 VECK(I) = VECK(I)/FLL
C
C COMPUTE THE J VECTOR, VECJ = VECK X VECI, AND NORMALIZE
C
VECJ(1) = VECK(2)*VECI(3) - VECK(3)*VECI(2)
VECJ(2) = VECK(3)*VECI(1) - VECK(1)*VECI(3)
VECJ(3) = VECK(1)*VECI(2) - VECK(2)*VECI(1)
FLL = DSQRT (VECJ(1)**2 + VECJ(2)**2 + VECJ(3)**2)
IF (DABS(FLL) .LT. EPSI2) GO TO 7770
VECJ(1) = VECJ(1)/FLL
VECJ(2) = VECJ(2)/FLL
VECJ(3) = VECJ(3)/FLL
C
C SEARCH THE MATERIAL PROPERTIES TABLE FOR E,G AND THE DAMPING
C CONSTANT.
C
MATIDC = IMATID
MATFLG = 1
ELTEMP = TEMPEL
CALL MAT (IECPT(1))
C
IF (ISTIF .EQ. 0) GOTO 600
C
C IF ELASTICITY AND SHEAR MODULES BOTH ZERO, SKIP STIFFNESS
C CALCULATION
C
IF (E.EQ.0. .AND. G.EQ.0.) GO TO 600
C
C SET UP INTERMEDIATE VARIABLES FOR ELEMENT STIFFNESS MATRIX
C CALCULATION
C
ASSIGN 305 TO K OR M
205 BL = FL
BLSQ = FL**2
BLCUBE= BLSQ*BL
C
C COMPUTE SOME TERMS TO BE USED IN STIFFNESS MATRIX KE
C
EI1 = DBLE(E)*DBLE(I1)
EI2 = DBLE(E)*DBLE(I2)
IF (K1.EQ.0.0 .OR. I12.NE.0.0) GO TO 210
GAK1 = DBLE(G)*DBLE(A)*DBLE(K1)
R1 = (12.D0*EI1*GAK1)/(GAK1*BLCUBE + 12.D0*BL*EI1)
GO TO 220
210 R1 = 12.D0*EI1/BLCUBE
220 IF (K2.EQ.0.0 .OR. I12.NE.0.0) GO TO 230
GAK2 = DBLE(G)*DBLE(A)*DBLE(K2)
R2 = (12.D0*EI2*GAK2)/(GAK2*BLCUBE + 12.D0*BL*EI2)
GO TO 240
230 R2 = 12.D0*EI2/BLCUBE
C
240 SK1 = .25D0*R1*BLSQ + EI1/BL
SK2 = .25D0*R2*BLSQ + EI2/BL
SK3 = .25D0*R1*BLSQ - EI1/BL
SK4 = .25D0*R2*BLSQ - EI2/BL
C
AEL = DBLE(A)*DBLE(E)/BL
LR1 = BL*R1/2.D0
LR2 = BL*R2/2.D0
GJL = DBLE(G)*DBLE(FJ)/BL
C
C
C CONSTRUCT THE GENERAL 12X12 MATRIX FOR THE BAR ELEMENT
C
C ** **
C * K K *
C * AA AB*
C K = * T *
C * K K *
C * AB BB*
C ** **
C
C
C
C FIRST SET THE COMPONENT CODE AND THE DOF
C
ICODE = 63
NDOF = 12
NSQ = NDOF**2
C
C CONSTRUCT THE 12 X 12 MATRIX KE
C
C ** **
C * 1 73 *
C * 14 62 86 134 *
C * 27 51 99 123 *
C * 40 112 *
C * 29 53 101 125 *
C * 18 66 90 138 *
C * 7 79 *
C * 20 68 92 140 *
C * 33 57 105 129 *
C * 46 118 *
C * 35 59 107 131 *
C * 24 72 96 144 *
C ** **
C
DO 300 I = 1,144
300 KE(I) = 0.D0
KE( 1) = AEL
KE( 7) = -AEL
KE( 14) = R1
KE( 18) = LR1
KE( 20) = -R1
KE( 24) = LR1
KE( 27) = R2
KE( 29) = -LR2
KE( 33) = -R2
KE( 35) = -LR2
KE( 40) = GJL
KE( 46) = -GJL
KE( 51) = -LR2
KE( 53) = SK2
KE( 57) = LR2
KE( 59) = SK4
KE( 62) = LR1
KE( 66) = SK1
KE( 68) = -LR1
KE( 72) = SK3
KE( 73) = -AEL
KE( 79) = AEL
KE( 86) = -R1
KE( 90) = -LR1
KE( 92) = R1
KE( 96) = -LR1
KE( 99) = -R2
KE(101) = LR2
KE(105) = R2
KE(107) = LR2
KE(112) = -GJL
KE(118) = GJL
KE(123) = -LR2
KE(125) = SK4
KE(129) = LR2
KE(131) = SK2
KE(134) = LR1
KE(138) = SK3
KE(140) = -LR1
KE(144) = SK1
IF (I12 .EQ. 0.) GOTO 303
BETA = 12.D0*DBLE(E)*DBLE(I12)/BLCUBE
LB = BL*BETA/2.0D0
L2B3 = BLSQ*BETA/3.0D0
L2B6 = BLSQ*BETA/6.0D0
KE( 15) = BETA
KE( 17) = -LB
KE( 21) = -BETA
KE( 23) = -LB
KE( 26) = BETA
KE( 30) = LB
KE( 32) = -BETA
KE( 36) = LB
KE( 50) = -LB
KE( 54) = -L2B3
KE( 56) = LB
KE( 60) = -L2B6
KE( 63) = LB
KE( 65) = -L2B3
KE( 69) = -LB
KE( 71) = -L2B6
KE( 87) = -BETA
KE( 89) = LB
KE( 93) = BETA
KE( 95) = LB
KE( 98) = -BETA
KE(102) = -LB
KE(104) = BETA
KE(108) = -LB
KE(122) = -LB
KE(126) = -L2B6
KE(128) = LB
KE(132) = -L2B3
KE(135) = LB
KE(137) = -L2B6
KE(141) = -LB
KE(143) = -L2B3
303 GO TO K OR M, (305,640,465,750)
C
C DETERMINE IF THERE ARE NON-ZERO PIN FLAGS.
C
305 KA = IECPT(JPINA)
KB = IECPT(JPINB)
IF (KA.EQ.0 .AND. KB.EQ.0) GOTO 345
C
C SET UP THE IPIN ARRAY
C
DO 310 I = 1,5
IPIN(I ) = MOD(KA,10)
IPIN(I+5) = MOD(KB,10) + 6
IF (IPIN(I+5) .EQ. 6) IPIN(I+5) = 0
KA = KA/10
310 KB = KB/10
C
C ALTER KE MATRIX DUE TO PIN FLAGS.
C
DO 340 I = 1,10
IF (IPIN(I) .EQ.0) GO TO 340
II = 13*IPIN(I) - 12
IF (KE(II) .NE. 0.D0) GO TO 320
IL = IPIN(I)
II = II - IL
DO 315 J = 1,12
II = II + 1
KE(II) = 0.D0
KE(IL) = 0.D0
IL = IL + 12
315 CONTINUE
GO TO 340
320 DO 330 J = 1,12
JI = 12*(J-1) + IPIN(I)
IJ = 12*(IPIN(I)-1) + J
DO 325 LL = 1,12
JLL = 12*(J-1) + LL
ILL = 12*(IPIN(I)-1) + LL
KEP(JLL) = KE(JLL) - (KE(ILL)/KE(II))*KE(JI)
325 CONTINUE
KEP(IJ) = 0.D0
KEP(JI) = 0.D0
330 CONTINUE
DO 335 K = 1,144
335 KE(K) = KEP(K)
340 CONTINUE
C
C DIVIDE KE INTO FOUR SUBMATRICES AND STORE IN OPEN CORE
C
C E E E
C K = KK(1 TO 36) K = KK(37 TO 72) K = KK(73 TO 108)
C AA AB BA
C
C E
C K = KK(109 TO 144)
C BB
C
C
345 J = 0
DO 355 I = 1,72,12
LOW = I
LIM = I + 5
DO 350 K = LOW,LIM
J = J + 1
KK(J ) = KE(K )
KK(J+36) = KE(K+ 6)
KK(J+72) = KE(K+72)
350 KK(J+108)= KE(K+78)
355 CONTINUE
C
ASSIGN 465 TO K OR M
C
C ZERO OUT THE ARRAY WHERE THE 3X3 MATRIX H AND THE W AND W 6X6
C MATRICES WILL RESIDE. A B
C T
C A MATRIX NOW STORED IN KE
C
358 DO 357 I = 1,9
357 KE(I) = VEC(I)
C
DO 360 I = 28,144
360 KE(I) = 0.D0
C
C
C SET UP POINTERS
C
BASIC = ICSIDA.EQ.0
JCSID = JCSIDA
OFFSET = AOFSET
JOFSET = JOFSTA
DO 395 I = 1,2
IWBEG = I*36
C
C SET UP THE -G- MATRIX. IG POINTS TO THE BEGINNING OF THE G MATRIX
C G = AT X TI
C
IG = 1
IF (BASIC) GO TO 380
CALL TRANSD (ECPT(JCSID),KE(10))
CALL GMMATD (KE(1), 3,3,0, KE(10), 3,3,0, KE(19))
IG = 19
C
C IF THERE IS A NON-ZERO OFFSET FOR THE POINT, SET UP THE D 3X3
C MATRIX.
C
380 IF (.NOT.OFFSET) GO TO 385
KE(10) = 0.D0
KE(11) = ECPT(JOFSET+2)
KE(12) = -ECPT(JOFSET+1)
KE(13) = -KE(11)
KE(14) = 0.D0
KE(15) = ECPT(JOFSET)
KE(16) = -KE(12)
KE(17) = -KE(15)
KE(18) = 0.D0
C
C FORM THE 3X3 PRODUCT H = G X D, I.E., KE(28) = KE(IG) X KE(10)
C
CALL GMMATD (KE(IG), 3,3,0, KE(10), 3,3,0, KE(28))
C
C
C FORM THE W SUBMATRICES IN KE(37) AND KE(73)
C
C
385 KE(IWBEG+ 1) = KE(IG )
KE(IWBEG+ 2) = KE(IG+1)
KE(IWBEG+ 3) = KE(IG+2)
KE(IWBEG+ 7) = KE(IG+3)
KE(IWBEG+ 8) = KE(IG+4)
KE(IWBEG+ 9) = KE(IG+5)
KE(IWBEG+13) = KE(IG+6)
KE(IWBEG+14) = KE(IG+7)
KE(IWBEG+15) = KE(IG+8)
KE(IWBEG+22) = KE(IG )
KE(IWBEG+23) = KE(IG+1)
KE(IWBEG+24) = KE(IG+2)
KE(IWBEG+28) = KE(IG+3)
KE(IWBEG+29) = KE(IG+4)
KE(IWBEG+30) = KE(IG+5)
KE(IWBEG+34) = KE(IG+6)
KE(IWBEG+35) = KE(IG+7)
KE(IWBEG+36) = KE(IG+8)
IF (.NOT.OFFSET) GO TO 390
KE(IWBEG+ 4) = KE(28)
KE(IWBEG+ 5) = KE(29)
KE(IWBEG+ 6) = KE(30)
KE(IWBEG+10) = KE(31)
KE(IWBEG+11) = KE(32)
KE(IWBEG+12) = KE(33)
KE(IWBEG+16) = KE(34)
KE(IWBEG+17) = KE(35)
KE(IWBEG+18) = KE(36)
390 BASIC = ICSIDB.EQ.0
JCSID = JCSIDB
OFFSET = BOFSET
JOFSET = JOFSTB
395 CONTINUE
C
C CONVERT THE K PARTITIONS TO GLOBAL COORDINATES AND STORE IN KEP
C
IAFT = 37
DO 400 I = 1,4
IKX = (I-1)*36 + 1
IK = IKX
IF (I .GE. 3) IKX = (7-I-1)*36 + 1
IFORE = ((I-1)/2)*36 + 37
CALL GMMATD (KE(IFORE), 6,6,1, KK(IKX), 6,6,0, KE(109))
CALL GMMATD (KE(109), 6,6,0, KE(IAFT), 6,6,0, KEP(IK))
IAFT = 73
IF (I .EQ. 3) IAFT = 37
400 CONTINUE
C
C REFORM THE K MATRIX (12X12) FROM THE FOUR SUBMATRICES (6X6) AND
C ORDER THE SUBMATRICES BY INCREASING SIL VALUE
C
DO 460 II = 1,4
IX1 = IKK(II)
IX2 = IX1 + 60
IS = IS12OR(II)
IF (ISILNO(1) .GT. ISILNO(2)) IS = IS21OR(II)
DO 450 I = IX1,IX2,12
IP5 = I + 5
DO 440 J = I,IP5
KE(J) = KEP(IS)
440 IS = IS + 1
450 CONTINUE
460 CONTINUE
C
GO TO K OR M, (305,640,465,750)
C
C OUTPUT THE STIFFNESS MATRIX
C
465 DICT(2) = 1
DICT(3) = NDOF
DICT(4) = ICODE
DICT(5) = GSUBE
CALL EMGOUT (KE(1),KE(1),NSQ,1,DICT,1,IPREC)
GO TO 600
C
C THE MASS MATRIX IS GENERATED HERE. IF THE PARAMETER ICMBAR IS
C .LT. 0, CALL THE CONVENTIONAL MASS MATRIX GENERATION ROUTINE FOR
C THE BAR. OTHERWISE CALL THE ROUTINE TO GENERATE CONSISTENT MASS
C MATRICES FOR THE BAR.
C
600 CONST = (FL*(DBLE(RHO)*DBLE(A) + DBLE(NSM)))/420.D0
IF (IMASS.EQ.0 .OR. CONST.EQ.0.D0) RETURN
IF (ICMBAR .LT. 0) GO TO 800
C
C CALCULATE THE CONSISTENT/CONVENTIONAL MASS MATRIX
C
C CALL THE MAT ROUTINE TO FETCH SINGLE PRECISION MATERIAL PROPERTIES
C
MATIDC = IMATID
MATFLG = 1
ELTEMP = TEMPEL
CALL MAT (IECPT(1))
C
C COMPUTE TERMS OF THE ELEMENT MASS MATRIX
C
BL22 = 22.D0*FL
BL13 = 13.D0*FL
BLSQ4 = 4.D0*FL**2
BLSQ3 = 3.D0*FL**2
C
C CONSTRUCT THE ELEMENT MASS MATRIX.
C
DO 610 I = 1,12
DO 610 J = 1,12
610 M( I, J) = 0.D0
M( 1, 1) = 175.D0
M( 1, 7) = 35.D0
M( 2, 2) = 156.D0
M( 2, 6) = BL22
M( 2, 8) = 54.D0
M( 2,12) =-BL13
M( 3, 3) = 156.D0
M( 3, 5) =-BL22
M( 3, 9) = 54.D0
M( 3,11) = BL13
M( 5, 5) = BLSQ4
M( 5, 9) =-BL13
M( 5,11) =-BLSQ3
M( 6, 6) = BLSQ4
M( 6, 8) = BL13
M( 6,12) =-BLSQ3
M( 7, 7) = 175.D0
M( 8, 8) = 156.D0
M( 8,12) =-BL22
M( 9, 9) = 156.D0
M( 9,11) = BL22
M(11,11) = BLSQ4
M(12,12) = BLSQ4
C
C STORE THE UPPER TRIANGULAR PART OF THE MATRIX IN THE LOWER PART.
C
DO 625 I = 1,10
LOW = I + 1
DO 620 J = LOW,12
M(J,I) = M(I,J)
620 CONTINUE
625 CONTINUE
C
C MULTIPLY BY CONSTANT AND STORE ROW-WISE IN THE ARRAY ME
C
K = 0
DO 630 I = 1,12
DO 630 J = 1,12
K = K + 1
630 ME(K) = CONST*M(I,J)
C
C IF THERE ARE NO PIN FLAGS THERE IS NO NEED TO CALCULATE THE
C ELEMENT STIFFNESS MATRIX
C
KA = IECPT(JPINA)
KB = IECPT(JPINB)
IF (KA.EQ.0 .AND. KB.EQ.0) GO TO 705
C
C COMPUTE THE STIFFNESS MATRIX KE
C
C
ASSIGN 640 TO K OR M
GO TO 205
C
C RETURN HERE AFTER COMPUTING THE STIFFNESS MATRIX
C
C
C SET UP TNHE IPIN ARRAY
C
640 DO 645 I = 1,5
IPIN(I ) = MOD(KA,10)
IPIN(I+5) = MOD(KB,10)+6
IF (IPIN(I+5) .EQ. 6) IPIN(I+5) = 0
KA = KA/10
645 KB = KB/10
C
C ALTER THE ELEMENT MASS MATRIX DUE TO PIN FLAGS. NOTE THAT THE
C FOLLOWING CODE IS CONGRUENT AS IT WERE TO THE CODE IN SUBROUTINE
C DBEAM IN THE DSMG1 MODULE.
C
DO 700 J = 1,10
IF (IPIN(J) .EQ. 0) GO TO 700
JJ = 12*(IPIN(J)-1) + IPIN(J)
IF (KE(JJ) .EQ. 0.) GO TO 680
DO 660 I = 1,12
JI = 12*(IPIN(J)-1) + I
IJ = 12*(I-1) + IPIN(J)
DO 650 L1 = 1,12
IL = 12*(I -1) + L1
LJ = 12*(L1-1) + IPIN(J)
MEP(IL) = ME(IL) - KE(LJ)*ME(JI)/KE(JJ) - KE(JI)*ME(LJ)/KE(JJ)
1 + KE(LJ)*KE(JI)*ME(JJ)/KE(JJ)**2
650 CONTINUE
660 CONTINUE
DO 670 K = 1,144
670 ME(K) = MEP(K)
C
C ZERO OUT THE IPIN(J) TH ROW AND COLUMN OF ME
C
680 J1 = JJ - IPIN(J)
J2 = IPIN(J)
DO 690 K = 1,12
J1 = J1 + 1
ME(J1) = 0.D0
ME(J2) = 0.D0
690 J2 = J2 + 12
700 CONTINUE
C
C E E E
C STORE M AT KK(1 TO 36), M AT KK (37 TO 72), M AT KK(73 TO 108)
C AA AB BA
C
C E
C M AT KK(109 TO 144)
C BB
C
705 J = 0
DO 720 I = 1,72,12
LOW = I
LIM = LOW + 5
DO 710 K = LOW,LIM
J = J + 1
KK(J) = ME(K)
KK(J+ 36) = ME(K+ 6)
KK(J+ 72) = ME(K+72)
710 KK(J+108) = ME(K+78)
720 CONTINUE
C
C CALCULATE THE TRANSFORMATION VECTORS
C
ASSIGN 750 TO K OR M
GO TO 358
C
C OUTPUT THE CONSISTENT MASS MATRIX
C
750 DICT(2) = 1
DICT(3) = NDOF
DICT(4) = ICODE
DICT(5) = 0
CALL EMGOUT (KE(1),KE(1),144,1,DICT,2,IPREC)
RETURN
C
C CALCULATE THE CONVENTIONAL MASS MATRIX HERE
C
C
C GET RHO FROM MPT BY CALLING MAT
C
800 MATIDC = IMATID
MATFLG = 4
ELTEMP = TEMPEL
CALL MAT (ECPT(1))
DO 810 I = 1,72
810 MEP(I) = 0.D0
FM = .5D0*FL*(DBLE(RHO)*DBLE(A) + DBLE(NSM))
C
C DETERMINE IF THE GRID POINT IS ASSOCIATED WITH A NON-ZERO OFFSET.
C
JOFSET = 9
DO 850 II = 1,2
IX = (II-1)*36
J = JOFSET
DO 815 I = 1,3
J = J + 1
IF (ECPT(J) .NE. 0.) GO TO 820
815 CONTINUE
GO TO 840
C
C FORM UPPER RIGHT CORNER OF THE MATRIX
C
820 MEP(IX+ 1) = 1.D0
MEP(IX+ 8) = 1.D0
MEP(IX+15) = 1.D0
MEP(IX+ 5) = ECPT(JOFSET+3)
MEP(IX+ 6) =-ECPT(JOFSET+2)
MEP(IX+12) = ECPT(JOFSET+1)
MEP(IX+10) =-MEP(IX+ 5)
MEP(IX+16) =-MEP(IX+ 6)
MEP(IX+17) =-MEP(IX+12)
MEP(IX+20) =-MEP(IX+ 5)
MEP(IX+21) =-MEP(IX+ 6)
MEP(IX+25) =-MEP(IX+10)
MEP(IX+27) =-MEP(IX+12)
MEP(IX+31) =-MEP(IX+16)
MEP(IX+32) =-MEP(IX+17)
MEP(IX+22) = ECPT(JOFSET+3)**2 + ECPT(JOFSET+2)**2
MEP(IX+29) = ECPT(JOFSET+3)**2 + ECPT(JOFSET+1)**2
MEP(IX+36) = ECPT(JOFSET+2)**2 + ECPT(JOFSET+1)**2
MEP(IX+23) =-ECPT(JOFSET+1)*ECPT(JOFSET+2)
MEP(IX+24) =-ECPT(JOFSET+1)*ECPT(JOFSET+3)
MEP(IX+30) =-ECPT(JOFSET+2)*ECPT(JOFSET+3)
MEP(IX+28) = MEP(IX+23)
MEP(IX+34) = MEP(IX+24)
MEP(IX+35) = MEP(IX+30)
C
C MULTIPLY M BY THE CONSTANT FL
C
DO 830 I = 1,36
IS = IX + I
830 MEP(IS) = MEP(IS)*FM
GO TO 850
C
C HERE WE HAVE A ZERO OFFSET VECTOR
C
840 MEP(IX+ 1) = FM
MEP(IX+ 8) = FM
MEP(IX+15) = FM
850 JOFSET = 12
C
C INSERT THE M AND M SUBMATRICES INTO M ACCORDING TO INCREASING
C SIL A B
C
DO 860 I = 1,144
860 ME(I) = 0.D0
C
IF (ISILNO(1) - ISILNO(2)) 870,870,880
870 IX1 = 1
IX2 = 37
GO TO 890
880 IX1 = 37
IX2 = 1
890 CONTINUE
DO 900 JJ = 1,36
MM = MOD(JJ,6)
IF (MM .EQ. 0) MM = 6
I = ((JJ-1)/6)*12 + MM
J = I + 78
ME(I) = MEP(IX1)
ME(J) = MEP(IX2)
IX1 = IX1 + 1
900 IX2 = IX2 + 1
C
C OUTPUT THE CONVENTIONAL MASS MATRIX
C
DICT(2) = 1
DICT(3) = NDOF
DICT(4) = ICODE
DICT(5) = 0
C
CALL EMGOUT (ME,ME,144,1,DICT,2,IPREC)
C
RETURN
C
C HEAT FORMULATION CONTINUES HERE. GET MATERIAL PROPERTY -K- FROM
C HMAT
C
500 MATFLG = 1
MATIDC = IECPT(16)
ELTEMP = ECPT(42)
DICT(2) = 1
DICT(3) = 2
DICT(4) = 1
DICT(5) = 0
IF (ISTIF .EQ. 0) GO TO 540
CALL HMAT (IELID)
C
KK(1) = DBLE(FK)*DBLE(ECPT(17))/FL
IF (KK(1).EQ. 0.D0) GO TO 520
KK(2) =-KK(1)
KK(3) = KK(2)
KK(4) = KK(1)
CALL EMGOUT (KK(1),KK(1),4,1,DICT,1,IPREC)
C
520 MATFLG = 4
C
C ERROR IN NEXT CARD FOR HEAT FORMULATION. REMOVED BY G.CHAN/SPERRY,
C 1984. ALSO, CHANGE GO TO 520 TO 540, 11-TH CARD ABOVE, AND
C CALL EMGOUT BELOW AND WRITE TO THE 3-RD FILE INSTEAD OF THE 2-ND.
C
CALL HMAT (IELID)
KK(1) = (DBLE(FK)*DBLE(ECPT(17)))*FL/2.D0
IF (KK(1) .EQ. 0.D0) RETURN
KK(2) = KK(1)
DICT(2) = 2
CALL EMGOUT (KK(1),KK(1),2,1,DICT,3,IPREC)
540 RETURN
C
C ERROR RETURNS
C
7770 CONTINUE
WRITE (IOUTPT,7775) UFM,IELID
7775 FORMAT (A23,' 3176, BAR ELEMENT ID',I9,
1 ' HAS ILLEGAL GEOMETRY OR CONNECTIONS.')
NOGO = .TRUE.
RETURN
END
|