1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
SUBROUTINE BOUND (FBREC,AFE,NAFE,KGE,NKGE)
C
C COMPUTES AREA FACTOR AND GRAVITIONAL STIFFNESS MATRICES FOR A FACE
C OF A INDIVIDUAL FLUID ELEMENT
C
LOGICAL ERROR ,GRAV
INTEGER GF1 ,GF2 ,GF3 ,GF4 ,FBREC(12),
1 GS1 ,GS2 ,GS3 ,GS4 ,GRID(3,4),
2 GSI ,GSJ ,IZ(1) ,LOCSOF(4),LOCTOF(3),
3 LOCFOS(4),FLEDGE(2,4) ,FEDGE(2,4) ,
4 STEDGE(2,3)
REAL Z
DOUBLE PRECISION AFE(48) ,KGE(144) ,IN(3) ,JN(3) ,
1 KN(3) ,R12(3) ,R13(3) ,R14(3) ,R24(3) ,
2 H ,NN ,KS(3) ,MAG ,X3 ,
3 Y3 ,Y4 ,S(48) ,X4 ,AKJ(3,4) ,
4 AA ,BB ,CC ,A ,ZZ ,
5 DVMAG ,RHOXG ,Y(3) ,E(3,2) ,KII(144) ,
6 KTWO(2,2),KIK(9) ,T(3,3) ,KTEMP(2,3) ,
7 TFST(3,3),Z1 ,X1 ,DHALF ,C1 ,
8 ST(3,4) ,Z2 ,Y1 ,EPS(2) ,C2 ,
9 FL(3,4) ,Z3 ,X2 ,DLB ,C3 ,
O TR(3,3) ,Z4 ,Y2 ,DUB ,D1 ,
1 P(2,7) ,SS(9) ,AA2 ,NN1 ,D2 ,
2 C(4,7) ,EPSLON ,FDET ,ZZ1 ,DZ ,
3 F(3,7) ,NX ,AKJCON ,DD ,AEPS ,
4 PT(3,4) ,TRIA ,EPSO10 ,AFLEL ,LEPS ,
5 VTEMP(3) ,KSB(3) ,NZ ,KIDENT(3),FACTII ,
6 CONII ,FII ,DPOLY ,ASTRIA ,ASTREL ,
7 AFLSTR ,DADOTB ,DAPOLY
CHARACTER UFM*23 ,UWM*25
COMMON /XMSSG / UFM ,UWM
C
C OPEN CORE
C
COMMON /ZZZZZZ/ Z(1)
C
C CORE POINTERS
C
COMMON /FLBPTR/ ERROR ,ICORE ,LCORE ,IBGPDT ,NBGPDT ,
1 ISIL ,NSIL ,IGRAV ,NGRAV
C
C MATERIAL PROPERTIES
C
COMMON /MATIN / MATID ,INFLAG
COMMON /MATOUT/ DUM(3) ,RHO
C
C MODULE PARAMETERS
C
COMMON /BLANK / NOGRAV
C
C NASTRAN PARAMETERS
C
COMMON /SYSTEM/ SYSBUF ,NOUT
EQUIVALENCE (TFST(1,1),IN(1)) ,(X1,FL(1,1)) ,(X2,FL(1,2)) ,
1 (TFST(1,2),JN(1)) ,(Y1,FL(2,1)) ,(Y2,FL(2,2)) ,
2 (TFST(1,3),KN(1)) ,(Z1,FL(3,1)) ,(Z2,FL(3,2)) ,
3 (SS(1),BB) ,(X3,FL(1,3)) ,(X4,FL(1,4)) ,
4 (SS(2),CC) ,(Y3,FL(2,3)) ,(Y4,FL(2,4)) ,
5 (SS(3),ZZ) ,(Z3,FL(3,3)) ,(Z4,FL(3,4)) ,
6 (SS(4),NN) ,(SS(5),NN1) ,(SS(6),ZZ1 ) ,
7 (EPS(1),AEPS) ,(EPS(2),LEPS) ,(FII,BB ) ,
8 (FACTII,CC) ,(CONII,AKJCON),(Z(1),IZ(1))
C
C GRID POINTS TO BE USED IN SUBDIVIDING QUADS INTO TRIANGLES
C
DATA GRID / 1 ,2 ,3 ,
1 2 ,3 ,4 ,
2 3 ,4 ,1 ,
3 4 ,1 ,2 /
C
DATA DZ, D1, D2, DHALF / 0.D0, 1.D0, 2.D0, .5D0 /
DATA EPSLON, EPSO10 / 1.D-3, 1.D-4 /
DATA DLB , DUB /-1.D-3, 1.001D0 /
DATA X1, X2, Y1, Y2, Z1, Z2, Z3, Z4 / 8*0.D0 /
C
DATA FEDGE / 1,2, 2,3, 3,4, 4,1 /
DATA STEDGE/ 1,2, 2,3, 3,1 /
DATA KIDENT/ 0.D0, 0.D0, 1.D0 /
C
C
C DETERMINE SIZES OF MATRIX PARTITIONS
C
NGRIDS = 4
IF (FBREC( 6) .LT. 0) NGRIDS = 3
NGRIDF = 4
IF (FBREC(12) .LT. 0) NGRIDF = 3
C
NROW = 3*NGRIDS
NAFE = NROW*NGRIDF*2
NKGE = 0
C
C OBTAIN MATERIAL PROPERTY AND GRAVITY DATA IF GRAV ID IS
C PRESENT
C
GRAV = .FALSE.
IF (FBREC(7) .EQ. 0) GO TO 600
INFLAG = 11
MATID = FBREC(8)
CALL MAT (FBREC(1))
C
IF (NGRAV .EQ. 0) GO TO 8013
LGRAV = IGRAV + NGRAV - 1
DO 200 I = IGRAV,LGRAV,6
IF (IZ(I) .EQ. FBREC(7)) GO TO 400
200 CONTINUE
C
GO TO 8013
C
400 G = SQRT(Z(I+3)**2 + Z(I+4)**2 + Z(I+5)**2)
G = G*Z(I+2)
RHOXG = DBLE(RHO)*DBLE(G)
NKGE = NROW*NROW*2
NOGRAV= 1
GRAV = .TRUE.
C
C NORMILIZE THE GRAVITY VECTOR
C
E(1,2) = DBLE(Z(I+3))
E(2,2) = DBLE(Z(I+4))
E(3,2) = DBLE(Z(I+5))
CALL DNORM (E(1,2),MAG)
IF (IZ(I+1) .EQ. 0) GO TO 600
C
C TRANSFORM GRAVITY VECTOR TO BASIC
C
J = IZ(IBGPDT)
IZ(IBGPDT) = IZ(I+1)
CALL TRANSD (IZ(IBGPDT),TR)
IZ(IBGPDT) = J
CALL GMMATD (TR,3,3,0,E(1,2),3,1,0,VTEMP)
DO 500 J = 1,3
500 E(J,2) = VTEMP(J)
C
C
C COMPUTE NEW COORDINATES FOR FLUID FACE BASED ON FLUID COORDINATE
C SYSTEM - PERFORM THIS ONLY IF THE FLUID FACE HAS CHANGED
C THESE COMPUTATIONS INCLUDE --
C
C IN,JN,KN - NORMAL VECTORS TO DEFINE FLUID COORDINATE SYSTEM
C X2,X3,X4 - X COORDINATES OF GRID POINTS IN NEW SYSTEM
C ( X1 = 0 )
C Y3,Y4 Y COORDINATES OF GRID POINTS IN NEW SYSTEM
C ( Y1,Y2 = 0 )
C
C NORMAL (UNIT) VECTORS STORED *COLUMN-WISE* IN U --
C I IN U(L,1), J IN U(L,2), K IN U(L,3), L= 1,3
C TRANSFORMED FLUID COORDINATES STORED IN FL
C
C
C LOCATE GRID POINTS COORDINATES FOR THE FLUID GRID POINTS IN THE
C BGPDT TABLE
C
600 GF1 = IBGPDT + (FBREC( 9)-1)*4
GF2 = IBGPDT + (FBREC(10)-1)*4
GF3 = IBGPDT + (FBREC(11)-1)*4
GF4 = -1
IF (NGRIDF .EQ. 4) GF4 = IBGPDT + (FBREC(12)-1)*4
C
IF (NGRIDF .EQ. 4) GO TO 700
C
C TRIANGULAR FLUID FACE
C
DO 660 I = 1,3
R12(I) = Z(GF2+I) - Z(GF1+I)
IN(I) = R12(I)
660 R13(I) = Z(GF3+I) - Z(GF1+I)
C
CALL DNORM (IN,MAG)
X2 = MAG
C
CALL DAXB (R12,R13,KN)
CALL DNORM (KN,MAG)
C
CALL DAXB (KN,IN,JN)
C
X3 = R13(1)*IN(1) + R13(2)*IN(2) + R13(3)*IN(3)
Y3 = R13(1)*JN(1) + R13(2)*JN(2) + R13(3)*JN(3)
GO TO 1000
C
C QUADRATIC FLUID FACE
C
700 DO 800 I = 1,3
R12(I) = Z(GF2+I) - Z(GF1+I)
R13(I) = Z(GF3+I) - Z(GF1+I)
R14(I) = Z(GF4+I) - Z(GF1+I)
800 R24(I) = Z(GF4+I) - Z(GF2+I)
C
CALL DAXB (R13,R24,KN)
CALL DNORM (KN,MAG)
C
H = R12(1)*KN(1) + R12(2)*KN(2) + R12(3)*KN(3)
C
DO 900 I = 1,3
900 IN(I) = R12(I) - H*KN(I)
CALL DNORM (IN,MAG)
C
X2 = MAG
C
CALL DAXB (KN,IN,JN)
C
X3 = R13(1)*IN(1) + R13(2)*IN(2) + R13(3)*IN(3)
X4 = R14(1)*IN(1) + R14(2)*IN(2) + R14(3)*IN(3)
Y3 = R13(1)*JN(1) + R13(2)*JN(2) + R13(3)*JN(3)
Y4 = R14(1)*JN(1) + R14(2)*JN(2) + R14(3)*JN(3)
C
C VARIOUS CALCULATIONS DEPENDENT ON FLUID FACE
C
C INDICES FOR CORNERS OF FLUID ELEMENT
C
1000 DO 1010 N = 1,2
DO 1010 J = 1,NGRIDF
1010 FLEDGE(N,J) = FEDGE(N,J)
FLEDGE(2,NGRIDF) = 1
C
C SET UP FOR FLUID TRIANGLE
C
C1 = (D1 - FL(1,3)/FL(1,2))/FL(2,3)
C2 = FL(1,3)/(FL(1,2)*FL(2,3))
DO 1020 N = 1,3
R12(N) = FL(N,2) - FL(N,1)
1020 R13(N) = FL(N,3) - FL(N,1)
CALL DAXB (R12,R13,VTEMP)
C
IF (NGRIDF .EQ. 3) GO TO 1040
C
C SET UP FOR FLUID QUADRANGLE
C
C1 = FL(2,3) - FL(2,4)
C2 = FL(1,2)*FL(2,4)
C3 = FL(1,2) - FL(1,3) + FL(1,4)
AA =-FL(1,2)*C1
AA2 = D2*AA
C
DO 1030 N = 1,3
R13(N) = FL(N,3) - FL(N,1)
1030 R24(N) = FL(N,4) - FL(N,2)
CALL DAXB (R13, R24,VTEMP)
1040 AFLEL = DVMAG(VTEMP,DZ)
C
C ZERO OUT AREA FACTOR MATRIX
C AND AREA COMMON TO FLUID AND STRUCTURE ELEMENTS (AFLSTR)
C
DO 1042 I = 1,48
AFE(I) = DZ
1042 S(I) = 0.0D0
DO 1044 I = 1,144
1044 KGE(I) = 0.0D0
AFLSTR = 0.0
C
C DETERMINE NUMBER OF STRUCTURAL TRIANGLES TO BE USED, ITRIA
C AND CUMULATIVE AREA CONSTANT, TRIA
C ITRIA= 4, TRIA= .5 WHEN STRUCTURE ELEMENT IS QUADRANGLE
C ITRIA= 1, TRIA= 1. WHEN STRUCTURE ELEMENT IS TRIANGLE
C
ITRIA = 1
TRIA = D1
IF (NGRIDS .EQ. 3) GO TO 1050
ITRIA = 4
TRIA = DHALF
C
C TRANSFORM STRUCTURE COORDINATES TO FLUID COORDINATE SYSTEM
C
1050 GS1 = IBGPDT + (FBREC(3)-1)*4
GS2 = IBGPDT + (FBREC(4)-1)*4
GS3 = IBGPDT + (FBREC(5)-1)*4
GS4 = -1
IF (NGRIDS .EQ. 4) GS4 = IBGPDT + (FBREC(6)-1)*4
C
DO 1060 N = 1,3
PT(N,1) = Z(GS1+N) - Z(GF1+N)
PT(N,2) = Z(GS2+N) - Z(GF1+N)
PT(N,3) = Z(GS3+N) - Z(GF1+N)
PT(N,4) = DZ
IF (NGRIDS .EQ. 4) PT(N,4) = Z(GS4+N) - Z(GF1+N)
DO 1060 K = 1,4
ST(N,K) = DZ
1060 CONTINUE
C
DO 1070 K = 1,NGRIDS
DO 1070 N = 1,3
DO 1070 M = 1,3
1070 ST(N,K) = ST(N,K) + PT(M,K)*TFST(M,N)
DO 1075 N = 1,2
R12(N) = ST(N,2) - ST(N,1)
R13(N) = ST(N,3) - ST(N,1)
IF (NGRIDS .EQ. 4) R24(N) = ST(N,4) - ST(N,2)
1075 CONTINUE
CALL DAXB (R12,R13,VTEMP)
IF (NGRIDS .EQ. 4) CALL DAXB (R12,R24,VTEMP)
ASTREL = DVMAG(VTEMP,DZ)
AEPS = DHALF*DMIN1(AFLEL,ASTREL)
LEPS = DZ
IF (AEPS .GT. DZ) LEPS = EPSLON*DSQRT(AEPS)
AEPS = EPSLON*AEPS
C
C LOCATE STRUCTURE ELEMENT GRIDS RELATIVE TO FLUID SURFACE
C LOCSOF FLAGS STRUCTURE ON FLUID:
C 1= INSIDE, -1= OUTSIDE, 0= ON FLUID EDGE
C
CALL LOCPT (NGRIDS,ST,NGRIDF,FL,FLEDGE,KIDENT,EPS,LOCSOF)
C
C
C LOOP THRU (INCREMENTAL) STRUCTURAL TRIANGLES (ITRIA IS 1 OR 4)
C
DO 2500 IT = 1,ITRIA
C
C LOCATE COORDINATES OF CURRENT TRIANGLE
C
GS1 = GRID(1,IT)
GS2 = GRID(2,IT)
GS3 = GRID(3,IT)
C
LOCTOF(1) = LOCSOF(GS1)
LOCTOF(2) = LOCSOF(GS2)
LOCTOF(3) = LOCSOF(GS3)
C
C TRANSFER COORDINATES OF CURRENT STRUCTURE TRIANGLE TO CONTIGUOUS
C ARRAY, AND DO VARIOUS CALCULATIONS DEPENDENT ON THEM
C
DO 1100 N = 1,3
TR(N,1) = ST(N,GS1)
TR(N,2) = ST(N,GS2)
TR(N,3) = ST(N,GS3)
R12(N) = TR(N,2) - TR(N,1)
1100 R13(N) = TR(N,3) - TR(N,1)
C
C OBTAIN KS, UNIT VECTOR NORMAL TO (XY) PLANE OF CURRENT STRUCTURAL
C TRIANGLE (IN SYSTEM LOCAL TO FLUID ELEMENT)
C
CALL DAXB (R12,R13,KS)
ASTRIA = DVMAG(KS,DZ)
CALL DNORM (KS,MAG)
C
C OBTAIN KSB, UNIT VECTOR NORMAL TO (XY) PLANE OF CURRENT STRUCTURE
C TRIANGLE (IN NASTRAN BASIC COORD SYSTEM)
C
DO 1150 N = 1,3
R12(N) = PT(N,GS2) - PT(N,GS1)
R13(N) = PT(N,GS3) - PT(N,GS1)
1150 CONTINUE
C
CALL DAXB (R12,R13,KSB)
CALL DNORM (KSB,MAG)
C
C CALCULATE EPSLON FUNCTIONS FOR SIGNIFICANCE TESTING
C
LEPS = DZ
AEPS = DHALF*DMIN1(AFLEL,ASTRIA)*EPSLON
IF (AEPS .GT. DZ) LEPS = DSQRT(AEPS)
C
C DETERMINE POINTS DESCRIBING AREA POLYGON COMMON TO BOTH FLUID
C ELEMENT AND (INCREMENTAL) STRUCTURAL TRIANGLE
C
C POLYGON POINTS IN P(2,I) I .LE. 7
C FLUID POINTS IN FL(3,J) J .LE. 4
C TRIANGLE POINTS IN TR(3,K) K=1,3
C
C DETERMINE POINTS DESCRIBING POLYGON OF COMMON AREA
C
C
C LOCATE FLUID ELEMENT POINTS RELATIVE TO BOUNDRY OF THIS STRUCTURAL
C TRIANGLE
C
CALL LOCPT (NGRIDF,FL,3,TR,STEDGE,KS,EPS,LOCFOS)
DO 1240 J = 1,NGRIDF
IF (LOCFOS(J) .LT. 0) GO TO 1300
1240 CONTINUE
C
C FLUID ELEMENT IS COMMON AREA POLYGON WHEN NO FLUID POINTS ARE
C OUTSIDE BOUNDRY OF THIS STRUCTURAL TRIANGLE
C
NPOLY = NGRIDF
DO 1250 N = 1,2
DO 1250 J = 1,NGRIDF
1250 P(N,J) = FL(N,J)
GO TO 2000
C
C CALL POLYPT TO DETERMINE POINTS DESCRIBING THE COMMON AREA POLYGON
C
1300 CALL POLYPT (LOCTOF,STEDGE,TR,NGRIDF,FLEDGE,FL,LOCFOS,EPS,NPOLY,P)
C
C SKIP TO NEXT (INCREMENTAL) STRUCTURAL TRIANGLE WHEN THIS TRIANGLE
C IS DISJOINT FROM FLUID ELEMENT
C
IF (NPOLY .LT. 3) GO TO 2500
C
C AREA OF COMMON POLYGON AND HALVED WHEN OVERLAPPING (INCREMENTAL)
C STRUCTURE TRIANGLES USED CUMULATIVE AREA OF FLUID/STRUCTURAL
C ELEMENT OVERLAP
C
2000 A = TRIA*DAPOLY(NPOLY,P)
AFLSTR = AFLSTR + A
C
C TERMS FOR LOAD FACTORS
C
SS(1) = TR(1,1)*TR(2,2)
SS(2) = -TR(1,1)*TR(2,3)
SS(3) = TR(1,2)*TR(2,3)
SS(4) = -TR(1,2)*TR(2,1)
SS(5) = TR(1,3)*TR(2,1)
SS(6) = -TR(1,3)*TR(2,2)
FDET = DZ
DO 2005 M = 1,6
2005 FDET = FDET + SS(M)
SS(1) = SS(1) + SS(4)
SS(2) = SS(2) + SS(5)
SS(3) = SS(3) + SS(6)
SS(4) = TR(2,2) - TR(2,3)
SS(5) = TR(2,3) - TR(2,1)
SS(6) = TR(2,1) - TR(2,2)
SS(7) = TR(1,3) - TR(1,2)
SS(8) = TR(1,1) - TR(1,3)
SS(9) = TR(1,2) - TR(1,1)
C
C GET LOAD DISTRIBUTION FACTORS, F(K,I)
C - FROM -
C I -- AREA POLYGON POINT -- P(N,I)
C K -- STRUCTURE TRIANGLE POINT -- TR(N,K)
C
DO 2010 I = 1,NPOLY
F(1,I) = P(1,I)*SS(4) + P(2,I)*SS(7) + SS(3)
F(2,I) = P(1,I)*SS(5) + P(2,I)*SS(8) + SS(2)
2010 F(3,I) = P(1,I)*SS(6) + P(2,I)*SS(9) + SS(1)
C
C GET PRESSURE DISTRIBUTION FACTORS, C(J,I)
C - FROM -
C I -- AREA POLYGON POINT -- P(N,I)
C J -- FLUID ELEMENT POINT -- FL(N,J)
C
IF (NGRIDF .EQ. 4) GO TO 2030
C
C FLUID ELEMENT IS TRIANGLE
C
DO 2020 I = 1,NPOLY
BB = P(1,I)/FL(1,2)
C(1,I) = D1 - BB - P(2,I)*C1
C(2,I) = BB - P(2,I)*C2
2020 C(3,I) = P(2,I)/FL(2,3)
GO TO 2100
C
C FLUID ELEMENT IS QUADRANGLE
C
2030 DO 2050 I = 1,NPOLY
BB = P(1,I)*C1 - C2 + P(2,I)*C3
CC = P(1,I)*FL(2,4) - P(2,I)*FL(1,4)
IF (BB.EQ.DZ .OR. DABS(AA).GT.DABS(BB*EPSLON)) GO TO 2040
ZZ = -CC/BB
GO TO 2045
C
2040 DD = DSQRT(BB*BB - D2*AA2*CC)
ZZ = (DD-BB)/AA2
IF (ZZ.GT.DLB .AND. ZZ.LT.DUB) GO TO 2045
ZZ = (-DD-BB)/AA2
C
2045 NN = P(2,I)/(FL(2,4) + ZZ*C1)
IF (NN.LE.DLB .OR. NN.GE.DUB) GO TO 8005
C
ZZ1 = D1 - ZZ
NN1 = D1 - NN
C(1,I) = ZZ1*NN1
C(2,I) = ZZ *NN1
C(3,I) = ZZ *NN
2050 C(4,I) = ZZ1*NN
C
C CALCULATE AREA TERMS FOR THIS STRUCTURAL TRIANGLE AND INSERT IN
C MATRIX
C
2100 DPOLY = NPOLY
AKJCON = A/(FDET*DPOLY)
DPOLY = NPOLY - 1
FACTII = D1/DPOLY
C
DO 2120 J = 1,NGRIDF
JLOC = 3*NGRIDS*(J-1)
C
DO 2120 K = 1,3
LOC = JLOC + 3*(GRID(K,IT)-1)
C
AKJ(K,J) = DZ
DO 2110 I = 1,NPOLY
2110 AKJ(K,J) = AKJ(K,J) + F(K,I)*C(J,I)
AKJ(K,J) = AKJCON*AKJ(K,J)
C
DO 2119 N = 1,3
2119 S(LOC+N) = S(LOC+N) + AKJ(K,J)*KSB(N)
2120 CONTINUE
C
IF (.NOT. GRAV) GO TO 2500
C
C CALCULATE GRAVITATIONAL STIFFNESS TERMS FOR THIS TRIANGLE
C AND INSERT INTO MATRIX
C
DO 2210 N = 1,3
2210 E(N,1) = DZ
CALL DAXB (E(1,2),KSB,Y)
MAG = DADOTB(Y,Y)
IF (MAG .GT. DZ) MAG = DSQRT(MAG)
IF (MAG .LT. EPSO10) GO TO 2220
C
CALL DAXB (E(1,2),Y,E)
CALL DNORM (E,MAG)
C
2220 NX = 0.D0
NZ = 0.D0
DO 2230 N = 1,3
NX = NX + E(N,1)*KSB(N)
2230 NZ = NZ + E(N,2)*KSB(N)
CONII = RHOXG*AKJCON/(D2*FDET)
KTWO(1,1) = DZ
C
KTWO(2,1) = NX
KTWO(1,2) = KTWO(2,1)
KTWO(2,2) = NZ
CALL GMMATD (E,2,3,1, KTWO,2,2,0, KTEMP)
CALL GMMATD (KTEMP,3,2,0, E,2,3,0, KIK )
C
DO 2250 KK1 = 1,3
K1LOC = 9*NGRIDS*(GRID(KK1,IT)-1)
C
DO 2250 KK2 = 1,3
LOC = K1LOC + 9*(GRID(KK2,IT)-1)
C
H = 0.D0
DO 2240 I1 = 1,NPOLY
DO 2240 I2 = 1,NPOLY
FII = F(KK1,I1)*F(KK2,I2)
IF (I1 .NE. I2) FII= FACTII*FII
2240 H = H + FII
C
DO 2249 N = 1,9
KGE(LOC+N) = KGE(LOC+N) - KIK(N)*H*CONII
2249 CONTINUE
C
2250 CONTINUE
C
C END OF (INCREMENTAL) STRUCTURAL TRIANGLE LOOP
C
2500 CONTINUE
C
C WARNING MESSAGE WHEN FLUID AND STRUCTURE ELEMENTS ARE DISJOINT
C
IF (AFLSTR .LE. DZ) GO TO 8014
C
C TRANSFORM THE AREA AND STIFFNESS MATRICES TO GLOBAL COORDINATES IF
C REQUIRED
C
DO 2610 IROW = 1,NGRIDS
GSI = IBGPDT + (FBREC(IROW+2)-1)*4
CALL TRANSD (Z(GSI),T)
C
C AREA FACTOR MATRIX
C
JLOC = 3*(IROW-1)
C
DO 2530 ICOL = 1,NGRIDF
ILOC = 3*NGRIDS*(ICOL-1) + JLOC
C
IF (IZ(GSI) .EQ. 0) GO TO 2510
CALL GMMATD (T,3,3,1,S(ILOC+1),3,1,0,AFE(ILOC+1))
GO TO 2530
C
2510 DO 2520 I = 1,3
2520 AFE(ILOC+I) = S(ILOC+I)
C
2530 CONTINUE
IF (.NOT.GRAV) GO TO 2610
C
C GRAVITATIONAL STIFFNESS MATRIX
C
JLOC = 9*(IROW-1)
C
DO 2600 ICOL = 1,NGRIDS
ILOC = 9*NGRIDS*(ICOL-1) + JLOC
C
IF (IZ(GSI) .EQ. 0) GO TO 2540
CALL GMMATD (T,3,3,1, KGE(ILOC+1),3,3,0, KIK)
GO TO 2570
C
2540 KLOC = ILOC
DO 2550 I = 1,9
2550 KIK(I) = KGE(KLOC+I)
C
2570 GSJ = IBGPDT + (FBREC(ICOL+2)-1)*4
IF (IZ(GSJ) .EQ. 0) GO TO 2580
CALL TRANSD (Z(GSJ),T)
CALL GMMATD (KIK,3,3,0, T,3,3,0, KII(ILOC+1))
GO TO 2600
C
2580 KLOC = ILOC
DO 2590 I = 1,9
2590 KII(KLOC+I) = KIK(I)
2600 CONTINUE
2610 CONTINUE
C
C REARANGE THE STORAGE OF THE GRAVITATIONAL STIFFNESS MATRIX
C TO COLUMNWISE FOR THE USE WITH THE ASSEMBLER
C
IF (.NOT.GRAV) RETURN
C
DO 2630 ICOL = 1,NGRIDS
JLOC = 9*NGRIDS*(ICOL-1)
C
DO 2630 IROW = 1,NGRIDS
ILOC = JLOC + 9*(IROW-1)
KLOC = JLOC + 3*(IROW-1)
C
DO 2620 I = 1,3
KGE(KLOC+1) = KII(ILOC+1)
KGE(KLOC+2) = KII(ILOC+4)
KGE(KLOC+3) = KII(ILOC+7)
KLOC = KLOC + 3*NGRIDS
2620 ILOC = ILOC + 1
2630 CONTINUE
RETURN
C
C ERROR CONDITIONS
C
8005 WRITE (NOUT,9005) UFM,FBREC(2)
ERROR = .TRUE.
GO TO 9000
8013 WRITE (NOUT,9013) UFM,FBREC(1),FBREC(7)
ERROR = .TRUE.
GO TO 9000
8014 WRITE (NOUT,9014) UWM,FBREC(1),FBREC(2)
9000 RETURN
C
9005 FORMAT (A23,' 8005. BAD GEOMETRY DEFINED FOR STRUCTURAL ELEMENT ',
1 I8)
C
9013 FORMAT (A23,' 8013, FLUID ELEMENT',I9,' ON A CFLSTR CARD ',
1 'REFERENCES UNDEFINED GRAVITY ID',I9)
C
9014 FORMAT (A25,' 8014, FLUID ELEMENT',I9,' AND STRUCTURE ELEMENT',I9,
1 ' ARE DISJOINT. CHECK CFLSTR CARDS.')
END
|