File: bound.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (636 lines) | stat: -rw-r--r-- 18,569 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
      SUBROUTINE BOUND (FBREC,AFE,NAFE,KGE,NKGE)
C
C     COMPUTES AREA FACTOR AND GRAVITIONAL STIFFNESS MATRICES FOR A FACE
C     OF A INDIVIDUAL FLUID ELEMENT
C
      LOGICAL         ERROR    ,GRAV
      INTEGER         GF1      ,GF2      ,GF3      ,GF4      ,FBREC(12),
     1                GS1      ,GS2      ,GS3      ,GS4      ,GRID(3,4),
     2                GSI      ,GSJ      ,IZ(1)    ,LOCSOF(4),LOCTOF(3),
     3                LOCFOS(4),FLEDGE(2,4)        ,FEDGE(2,4)         ,
     4                STEDGE(2,3)
      REAL            Z
      DOUBLE PRECISION          AFE(48)  ,KGE(144) ,IN(3)    ,JN(3)    ,
     1                KN(3)    ,R12(3)   ,R13(3)   ,R14(3)   ,R24(3)   ,
     2                H        ,NN       ,KS(3)    ,MAG      ,X3       ,
     3                Y3       ,Y4       ,S(48)    ,X4       ,AKJ(3,4) ,
     4                AA       ,BB       ,CC       ,A        ,ZZ       ,
     5                DVMAG    ,RHOXG    ,Y(3)     ,E(3,2)   ,KII(144) ,
     6                KTWO(2,2),KIK(9)   ,T(3,3)   ,KTEMP(2,3)         ,
     7                TFST(3,3),Z1       ,X1       ,DHALF    ,C1       ,
     8                ST(3,4)  ,Z2       ,Y1       ,EPS(2)   ,C2       ,
     9                FL(3,4)  ,Z3       ,X2       ,DLB      ,C3       ,
     O                TR(3,3)  ,Z4       ,Y2       ,DUB      ,D1       ,
     1                P(2,7)   ,SS(9)    ,AA2      ,NN1      ,D2       ,
     2                C(4,7)   ,EPSLON   ,FDET     ,ZZ1      ,DZ       ,
     3                F(3,7)   ,NX       ,AKJCON   ,DD       ,AEPS     ,
     4                PT(3,4)  ,TRIA     ,EPSO10   ,AFLEL    ,LEPS     ,
     5                VTEMP(3) ,KSB(3)   ,NZ       ,KIDENT(3),FACTII   ,
     6                CONII    ,FII      ,DPOLY    ,ASTRIA   ,ASTREL   ,
     7                AFLSTR   ,DADOTB   ,DAPOLY
      CHARACTER       UFM*23   ,UWM*25
      COMMON /XMSSG / UFM      ,UWM
C
C     OPEN CORE
C
      COMMON /ZZZZZZ/ Z(1)
C
C     CORE POINTERS
C
      COMMON /FLBPTR/ ERROR    ,ICORE    ,LCORE    ,IBGPDT   ,NBGPDT   ,
     1                ISIL     ,NSIL     ,IGRAV    ,NGRAV
C
C     MATERIAL PROPERTIES
C
      COMMON /MATIN / MATID    ,INFLAG
      COMMON /MATOUT/ DUM(3)   ,RHO
C
C     MODULE PARAMETERS
C
      COMMON /BLANK / NOGRAV
C
C     NASTRAN PARAMETERS
C
      COMMON /SYSTEM/ SYSBUF   ,NOUT
      EQUIVALENCE     (TFST(1,1),IN(1))  ,(X1,FL(1,1))  ,(X2,FL(1,2))  ,
     1                (TFST(1,2),JN(1))  ,(Y1,FL(2,1))  ,(Y2,FL(2,2))  ,
     2                (TFST(1,3),KN(1))  ,(Z1,FL(3,1))  ,(Z2,FL(3,2))  ,
     3                (SS(1),BB)         ,(X3,FL(1,3))  ,(X4,FL(1,4))  ,
     4                (SS(2),CC)         ,(Y3,FL(2,3))  ,(Y4,FL(2,4))  ,
     5                (SS(3),ZZ)         ,(Z3,FL(3,3))  ,(Z4,FL(3,4))  ,
     6                (SS(4),NN)         ,(SS(5),NN1)   ,(SS(6),ZZ1 )  ,
     7                (EPS(1),AEPS)      ,(EPS(2),LEPS) ,(FII,BB    )  ,
     8                (FACTII,CC)        ,(CONII,AKJCON),(Z(1),IZ(1))
C
C     GRID POINTS TO BE USED IN SUBDIVIDING QUADS INTO TRIANGLES
C
      DATA    GRID  /  1     ,2     ,3   ,
     1                 2     ,3     ,4   ,
     2                 3     ,4     ,1   ,
     3                 4     ,1     ,2   /
C
      DATA    DZ, D1,  D2, DHALF / 0.D0,  1.D0, 2.D0, .5D0 /
      DATA    EPSLON,  EPSO10    / 1.D-3, 1.D-4            /
      DATA    DLB   ,  DUB       /-1.D-3, 1.001D0          /
      DATA    X1, X2,  Y1, Y2, Z1, Z2, Z3, Z4 / 8*0.D0     /
C
      DATA    FEDGE /  1,2, 2,3, 3,4, 4,1 /
      DATA    STEDGE/  1,2, 2,3, 3,1      /
      DATA    KIDENT/  0.D0, 0.D0, 1.D0   /
C
C
C     DETERMINE SIZES OF MATRIX PARTITIONS
C
      NGRIDS = 4
      IF (FBREC( 6) .LT. 0) NGRIDS = 3
      NGRIDF = 4
      IF (FBREC(12) .LT. 0) NGRIDF = 3
C
      NROW = 3*NGRIDS
      NAFE = NROW*NGRIDF*2
      NKGE = 0
C
C     OBTAIN MATERIAL PROPERTY AND GRAVITY DATA IF GRAV ID IS
C     PRESENT
C
      GRAV   = .FALSE.
      IF (FBREC(7) .EQ. 0) GO TO 600
      INFLAG = 11
      MATID  = FBREC(8)
      CALL MAT (FBREC(1))
C
      IF (NGRAV .EQ. 0) GO TO 8013
      LGRAV = IGRAV + NGRAV - 1
      DO 200 I = IGRAV,LGRAV,6
      IF (IZ(I) .EQ. FBREC(7)) GO TO 400
  200 CONTINUE
C
      GO TO 8013
C
  400 G     = SQRT(Z(I+3)**2 + Z(I+4)**2 + Z(I+5)**2)
      G     = G*Z(I+2)
      RHOXG = DBLE(RHO)*DBLE(G)
      NKGE  = NROW*NROW*2
      NOGRAV= 1
      GRAV  = .TRUE.
C
C     NORMILIZE THE GRAVITY VECTOR
C
      E(1,2) = DBLE(Z(I+3))
      E(2,2) = DBLE(Z(I+4))
      E(3,2) = DBLE(Z(I+5))
      CALL DNORM (E(1,2),MAG)
      IF (IZ(I+1) .EQ. 0) GO TO 600
C
C     TRANSFORM GRAVITY VECTOR TO BASIC
C
      J = IZ(IBGPDT)
      IZ(IBGPDT) = IZ(I+1)
      CALL TRANSD (IZ(IBGPDT),TR)
      IZ(IBGPDT) = J
      CALL GMMATD (TR,3,3,0,E(1,2),3,1,0,VTEMP)
      DO 500 J = 1,3
  500 E(J,2) = VTEMP(J)
C
C
C     COMPUTE NEW COORDINATES FOR FLUID FACE BASED ON FLUID COORDINATE
C     SYSTEM - PERFORM THIS ONLY IF THE FLUID FACE HAS CHANGED
C     THESE COMPUTATIONS INCLUDE --
C
C        IN,JN,KN  - NORMAL VECTORS TO DEFINE FLUID COORDINATE SYSTEM
C        X2,X3,X4  - X COORDINATES OF GRID POINTS IN NEW SYSTEM
C                    ( X1 = 0 )
C        Y3,Y4       Y COORDINATES OF GRID POINTS IN NEW SYSTEM
C                    ( Y1,Y2 = 0 )
C
C     NORMAL (UNIT) VECTORS STORED *COLUMN-WISE* IN U --
C           I IN U(L,1), J IN U(L,2), K IN U(L,3), L= 1,3
C        TRANSFORMED FLUID COORDINATES STORED IN FL
C
C
C     LOCATE GRID POINTS COORDINATES FOR THE FLUID GRID POINTS IN THE
C     BGPDT TABLE
C
  600 GF1 = IBGPDT + (FBREC( 9)-1)*4
      GF2 = IBGPDT + (FBREC(10)-1)*4
      GF3 = IBGPDT + (FBREC(11)-1)*4
      GF4 = -1
      IF (NGRIDF .EQ. 4) GF4 = IBGPDT + (FBREC(12)-1)*4
C
      IF (NGRIDF .EQ. 4) GO TO 700
C
C     TRIANGULAR FLUID FACE
C
      DO 660 I = 1,3
      R12(I) = Z(GF2+I) - Z(GF1+I)
      IN(I)  = R12(I)
  660 R13(I) = Z(GF3+I) - Z(GF1+I)
C
      CALL DNORM (IN,MAG)
      X2 = MAG
C
      CALL DAXB  (R12,R13,KN)
      CALL DNORM (KN,MAG)
C
      CALL DAXB (KN,IN,JN)
C
      X3 = R13(1)*IN(1) + R13(2)*IN(2) + R13(3)*IN(3)
      Y3 = R13(1)*JN(1) + R13(2)*JN(2) + R13(3)*JN(3)
      GO TO 1000
C
C     QUADRATIC FLUID FACE
C
  700 DO 800 I = 1,3
      R12(I) = Z(GF2+I) - Z(GF1+I)
      R13(I) = Z(GF3+I) - Z(GF1+I)
      R14(I) = Z(GF4+I) - Z(GF1+I)
  800 R24(I) = Z(GF4+I) - Z(GF2+I)
C
      CALL DAXB  (R13,R24,KN)
      CALL DNORM (KN,MAG)
C
      H = R12(1)*KN(1) + R12(2)*KN(2) + R12(3)*KN(3)
C
      DO 900 I = 1,3
  900 IN(I) = R12(I) - H*KN(I)
      CALL DNORM (IN,MAG)
C
      X2 = MAG
C
      CALL DAXB (KN,IN,JN)
C
      X3 = R13(1)*IN(1) + R13(2)*IN(2) + R13(3)*IN(3)
      X4 = R14(1)*IN(1) + R14(2)*IN(2) + R14(3)*IN(3)
      Y3 = R13(1)*JN(1) + R13(2)*JN(2) + R13(3)*JN(3)
      Y4 = R14(1)*JN(1) + R14(2)*JN(2) + R14(3)*JN(3)
C
C     VARIOUS CALCULATIONS DEPENDENT ON FLUID FACE
C
C     INDICES FOR CORNERS OF FLUID ELEMENT
C
 1000 DO 1010 N = 1,2
      DO 1010 J = 1,NGRIDF
 1010 FLEDGE(N,J) = FEDGE(N,J)
      FLEDGE(2,NGRIDF) = 1
C
C     SET UP FOR FLUID TRIANGLE
C
      C1 = (D1 - FL(1,3)/FL(1,2))/FL(2,3)
      C2 = FL(1,3)/(FL(1,2)*FL(2,3))
      DO 1020 N = 1,3
      R12(N) = FL(N,2) - FL(N,1)
 1020 R13(N) = FL(N,3) - FL(N,1)
      CALL DAXB (R12,R13,VTEMP)
C
      IF (NGRIDF .EQ. 3) GO TO 1040
C
C     SET UP FOR FLUID QUADRANGLE
C
      C1  = FL(2,3) - FL(2,4)
      C2  = FL(1,2)*FL(2,4)
      C3  = FL(1,2) - FL(1,3) + FL(1,4)
      AA  =-FL(1,2)*C1
      AA2 = D2*AA
C
      DO 1030 N = 1,3
      R13(N) = FL(N,3) - FL(N,1)
 1030 R24(N) = FL(N,4) - FL(N,2)
      CALL DAXB (R13, R24,VTEMP)
 1040 AFLEL = DVMAG(VTEMP,DZ)
C
C     ZERO OUT AREA FACTOR MATRIX
C     AND AREA COMMON TO FLUID AND STRUCTURE ELEMENTS (AFLSTR)
C
      DO 1042 I = 1,48
      AFE(I) = DZ
 1042 S(I) = 0.0D0
      DO 1044 I = 1,144
 1044 KGE(I) = 0.0D0
      AFLSTR = 0.0
C
C     DETERMINE NUMBER OF STRUCTURAL TRIANGLES TO BE USED, ITRIA
C     AND CUMULATIVE AREA CONSTANT, TRIA
C        ITRIA= 4, TRIA= .5 WHEN STRUCTURE ELEMENT IS QUADRANGLE
C        ITRIA= 1, TRIA= 1. WHEN STRUCTURE ELEMENT IS TRIANGLE
C
      ITRIA = 1
      TRIA  = D1
      IF (NGRIDS .EQ. 3) GO TO 1050
      ITRIA = 4
      TRIA  = DHALF
C
C     TRANSFORM STRUCTURE COORDINATES TO FLUID COORDINATE SYSTEM
C
 1050 GS1 = IBGPDT + (FBREC(3)-1)*4
      GS2 = IBGPDT + (FBREC(4)-1)*4
      GS3 = IBGPDT + (FBREC(5)-1)*4
      GS4 = -1
      IF (NGRIDS .EQ. 4) GS4 = IBGPDT + (FBREC(6)-1)*4
C
      DO 1060 N = 1,3
      PT(N,1) = Z(GS1+N) - Z(GF1+N)
      PT(N,2) = Z(GS2+N) - Z(GF1+N)
      PT(N,3) = Z(GS3+N) - Z(GF1+N)
      PT(N,4) = DZ
      IF (NGRIDS .EQ. 4) PT(N,4) = Z(GS4+N) - Z(GF1+N)
      DO 1060 K = 1,4
      ST(N,K) = DZ
 1060 CONTINUE
C
      DO 1070 K = 1,NGRIDS
      DO 1070 N = 1,3
      DO 1070 M = 1,3
 1070 ST(N,K) =  ST(N,K) + PT(M,K)*TFST(M,N)
      DO 1075 N = 1,2
      R12(N) = ST(N,2) - ST(N,1)
      R13(N) = ST(N,3) - ST(N,1)
      IF (NGRIDS .EQ. 4) R24(N) = ST(N,4) - ST(N,2)
 1075 CONTINUE
      CALL DAXB (R12,R13,VTEMP)
      IF (NGRIDS .EQ. 4) CALL DAXB (R12,R24,VTEMP)
      ASTREL = DVMAG(VTEMP,DZ)
      AEPS   = DHALF*DMIN1(AFLEL,ASTREL)
      LEPS   = DZ
      IF (AEPS .GT. DZ) LEPS = EPSLON*DSQRT(AEPS)
      AEPS   = EPSLON*AEPS
C
C     LOCATE STRUCTURE ELEMENT GRIDS RELATIVE TO FLUID SURFACE
C     LOCSOF FLAGS STRUCTURE ON FLUID:
C            1= INSIDE, -1= OUTSIDE, 0= ON FLUID EDGE
C
      CALL LOCPT (NGRIDS,ST,NGRIDF,FL,FLEDGE,KIDENT,EPS,LOCSOF)
C
C
C     LOOP THRU (INCREMENTAL) STRUCTURAL TRIANGLES (ITRIA IS 1 OR 4)
C
      DO 2500 IT = 1,ITRIA
C
C     LOCATE COORDINATES OF CURRENT TRIANGLE
C
      GS1 = GRID(1,IT)
      GS2 = GRID(2,IT)
      GS3 = GRID(3,IT)
C
      LOCTOF(1) = LOCSOF(GS1)
      LOCTOF(2) = LOCSOF(GS2)
      LOCTOF(3) = LOCSOF(GS3)
C
C     TRANSFER COORDINATES OF CURRENT STRUCTURE TRIANGLE TO CONTIGUOUS
C     ARRAY, AND DO VARIOUS CALCULATIONS DEPENDENT ON THEM
C
      DO 1100 N = 1,3
      TR(N,1) = ST(N,GS1)
      TR(N,2) = ST(N,GS2)
      TR(N,3) = ST(N,GS3)
      R12(N)  = TR(N,2) - TR(N,1)
 1100 R13(N)  = TR(N,3) - TR(N,1)
C
C     OBTAIN KS, UNIT VECTOR NORMAL TO (XY) PLANE OF CURRENT STRUCTURAL
C     TRIANGLE (IN SYSTEM LOCAL TO FLUID ELEMENT)
C
      CALL DAXB (R12,R13,KS)
      ASTRIA = DVMAG(KS,DZ)
      CALL DNORM (KS,MAG)
C
C     OBTAIN KSB, UNIT VECTOR NORMAL TO (XY) PLANE OF CURRENT STRUCTURE
C     TRIANGLE (IN NASTRAN BASIC COORD SYSTEM)
C
      DO 1150 N = 1,3
      R12(N) = PT(N,GS2) - PT(N,GS1)
      R13(N) = PT(N,GS3) - PT(N,GS1)
 1150 CONTINUE
C
      CALL DAXB  (R12,R13,KSB)
      CALL DNORM (KSB,MAG)
C
C     CALCULATE EPSLON FUNCTIONS FOR SIGNIFICANCE TESTING
C
      LEPS = DZ
      AEPS = DHALF*DMIN1(AFLEL,ASTRIA)*EPSLON
      IF (AEPS .GT. DZ)  LEPS = DSQRT(AEPS)
C
C     DETERMINE POINTS DESCRIBING AREA POLYGON COMMON TO BOTH FLUID
C     ELEMENT AND (INCREMENTAL) STRUCTURAL TRIANGLE
C
C        POLYGON POINTS IN   P(2,I)    I .LE. 7
C        FLUID POINTS IN     FL(3,J)   J .LE. 4
C        TRIANGLE POINTS IN  TR(3,K)   K=1,3
C
C     DETERMINE POINTS DESCRIBING POLYGON OF COMMON AREA
C
C
C     LOCATE FLUID ELEMENT POINTS RELATIVE TO BOUNDRY OF THIS STRUCTURAL
C     TRIANGLE
C
      CALL LOCPT (NGRIDF,FL,3,TR,STEDGE,KS,EPS,LOCFOS)
      DO 1240 J = 1,NGRIDF
      IF (LOCFOS(J) .LT. 0) GO TO 1300
 1240 CONTINUE
C
C     FLUID ELEMENT IS COMMON AREA POLYGON WHEN NO FLUID POINTS ARE
C     OUTSIDE BOUNDRY OF THIS STRUCTURAL TRIANGLE
C
      NPOLY = NGRIDF
      DO 1250 N = 1,2
      DO 1250 J = 1,NGRIDF
 1250 P(N,J) = FL(N,J)
      GO TO 2000
C
C     CALL POLYPT TO DETERMINE POINTS DESCRIBING THE COMMON AREA POLYGON
C
 1300 CALL POLYPT (LOCTOF,STEDGE,TR,NGRIDF,FLEDGE,FL,LOCFOS,EPS,NPOLY,P)
C
C     SKIP TO NEXT (INCREMENTAL) STRUCTURAL TRIANGLE WHEN THIS TRIANGLE
C     IS DISJOINT FROM FLUID ELEMENT
C
      IF (NPOLY .LT. 3) GO TO 2500
C
C     AREA OF COMMON POLYGON AND HALVED WHEN OVERLAPPING (INCREMENTAL)
C     STRUCTURE TRIANGLES USED CUMULATIVE AREA OF FLUID/STRUCTURAL
C     ELEMENT OVERLAP
C
 2000 A = TRIA*DAPOLY(NPOLY,P)
      AFLSTR = AFLSTR + A
C
C     TERMS FOR LOAD FACTORS
C
      SS(1) =  TR(1,1)*TR(2,2)
      SS(2) = -TR(1,1)*TR(2,3)
      SS(3) =  TR(1,2)*TR(2,3)
      SS(4) = -TR(1,2)*TR(2,1)
      SS(5) =  TR(1,3)*TR(2,1)
      SS(6) = -TR(1,3)*TR(2,2)
      FDET  =  DZ
      DO 2005 M = 1,6
 2005 FDET  =  FDET  + SS(M)
      SS(1) =  SS(1) + SS(4)
      SS(2) =  SS(2) + SS(5)
      SS(3) =  SS(3) + SS(6)
      SS(4) =  TR(2,2) - TR(2,3)
      SS(5) =  TR(2,3) - TR(2,1)
      SS(6) =  TR(2,1) - TR(2,2)
      SS(7) =  TR(1,3) - TR(1,2)
      SS(8) =  TR(1,1) - TR(1,3)
      SS(9) =  TR(1,2) - TR(1,1)
C
C     GET LOAD DISTRIBUTION FACTORS, F(K,I)
C     - FROM -
C         I -- AREA POLYGON POINT -- P(N,I)
C         K -- STRUCTURE TRIANGLE POINT -- TR(N,K)
C
      DO 2010 I = 1,NPOLY
      F(1,I) = P(1,I)*SS(4) + P(2,I)*SS(7) + SS(3)
      F(2,I) = P(1,I)*SS(5) + P(2,I)*SS(8) + SS(2)
 2010 F(3,I) = P(1,I)*SS(6) + P(2,I)*SS(9) + SS(1)
C
C     GET PRESSURE DISTRIBUTION FACTORS, C(J,I)
C     - FROM -
C         I -- AREA POLYGON POINT  -- P(N,I)
C         J -- FLUID ELEMENT POINT -- FL(N,J)
C
      IF (NGRIDF .EQ. 4) GO TO 2030
C
C     FLUID ELEMENT IS TRIANGLE
C
      DO 2020 I = 1,NPOLY
      BB     = P(1,I)/FL(1,2)
      C(1,I) = D1 - BB - P(2,I)*C1
      C(2,I) = BB - P(2,I)*C2
 2020 C(3,I) = P(2,I)/FL(2,3)
      GO TO 2100
C
C     FLUID ELEMENT IS QUADRANGLE
C
 2030 DO 2050 I = 1,NPOLY
      BB = P(1,I)*C1 - C2 + P(2,I)*C3
      CC = P(1,I)*FL(2,4) - P(2,I)*FL(1,4)
      IF (BB.EQ.DZ .OR. DABS(AA).GT.DABS(BB*EPSLON)) GO TO 2040
      ZZ = -CC/BB
      GO TO 2045
C
 2040 DD = DSQRT(BB*BB - D2*AA2*CC)
      ZZ = (DD-BB)/AA2
      IF (ZZ.GT.DLB .AND. ZZ.LT.DUB) GO TO 2045
      ZZ = (-DD-BB)/AA2
C
 2045 NN = P(2,I)/(FL(2,4) + ZZ*C1)
      IF (NN.LE.DLB .OR. NN.GE.DUB) GO TO 8005
C
      ZZ1 = D1 - ZZ
      NN1 = D1 - NN
      C(1,I) = ZZ1*NN1
      C(2,I) = ZZ *NN1
      C(3,I) = ZZ *NN
 2050 C(4,I) = ZZ1*NN
C
C     CALCULATE AREA TERMS FOR THIS STRUCTURAL TRIANGLE AND INSERT IN
C     MATRIX
C
 2100 DPOLY  = NPOLY
      AKJCON = A/(FDET*DPOLY)
      DPOLY  = NPOLY - 1
      FACTII = D1/DPOLY
C
      DO 2120 J = 1,NGRIDF
      JLOC = 3*NGRIDS*(J-1)
C
      DO 2120 K = 1,3
      LOC = JLOC + 3*(GRID(K,IT)-1)
C
      AKJ(K,J) = DZ
      DO 2110 I = 1,NPOLY
 2110 AKJ(K,J) = AKJ(K,J) + F(K,I)*C(J,I)
      AKJ(K,J) = AKJCON*AKJ(K,J)
C
      DO 2119 N = 1,3
 2119 S(LOC+N) = S(LOC+N) + AKJ(K,J)*KSB(N)
 2120 CONTINUE
C
      IF (.NOT. GRAV) GO TO 2500
C
C     CALCULATE GRAVITATIONAL STIFFNESS TERMS FOR THIS TRIANGLE
C     AND INSERT INTO MATRIX
C
      DO 2210 N = 1,3
 2210 E(N,1) = DZ
      CALL DAXB (E(1,2),KSB,Y)
      MAG = DADOTB(Y,Y)
      IF (MAG .GT. DZ) MAG = DSQRT(MAG)
      IF (MAG .LT. EPSO10) GO TO 2220
C
      CALL DAXB  (E(1,2),Y,E)
      CALL DNORM (E,MAG)
C
 2220 NX = 0.D0
      NZ = 0.D0
      DO 2230 N = 1,3
      NX = NX + E(N,1)*KSB(N)
 2230 NZ = NZ + E(N,2)*KSB(N)
      CONII = RHOXG*AKJCON/(D2*FDET)
      KTWO(1,1) = DZ
C
      KTWO(2,1) = NX
      KTWO(1,2) = KTWO(2,1)
      KTWO(2,2) = NZ
      CALL GMMATD (E,2,3,1, KTWO,2,2,0, KTEMP)
      CALL GMMATD (KTEMP,3,2,0, E,2,3,0, KIK )
C
      DO 2250 KK1 = 1,3
      K1LOC = 9*NGRIDS*(GRID(KK1,IT)-1)
C
      DO 2250 KK2 = 1,3
      LOC = K1LOC + 9*(GRID(KK2,IT)-1)
C
      H = 0.D0
      DO 2240 I1 = 1,NPOLY
      DO 2240 I2 = 1,NPOLY
      FII = F(KK1,I1)*F(KK2,I2)
      IF (I1 .NE. I2) FII= FACTII*FII
 2240 H = H + FII
C
      DO 2249 N = 1,9
      KGE(LOC+N) = KGE(LOC+N) - KIK(N)*H*CONII
 2249 CONTINUE
C
 2250 CONTINUE
C
C     END OF (INCREMENTAL) STRUCTURAL TRIANGLE LOOP
C
 2500 CONTINUE
C
C     WARNING MESSAGE WHEN FLUID AND STRUCTURE ELEMENTS ARE DISJOINT
C
      IF (AFLSTR .LE. DZ) GO TO 8014
C
C     TRANSFORM THE AREA AND STIFFNESS MATRICES TO GLOBAL COORDINATES IF
C     REQUIRED
C
      DO 2610 IROW = 1,NGRIDS
      GSI = IBGPDT + (FBREC(IROW+2)-1)*4
      CALL TRANSD (Z(GSI),T)
C
C     AREA FACTOR MATRIX
C
      JLOC = 3*(IROW-1)
C
      DO 2530 ICOL = 1,NGRIDF
      ILOC = 3*NGRIDS*(ICOL-1) + JLOC
C
      IF (IZ(GSI) .EQ. 0) GO TO 2510
      CALL GMMATD (T,3,3,1,S(ILOC+1),3,1,0,AFE(ILOC+1))
      GO TO 2530
C
 2510 DO 2520 I = 1,3
 2520 AFE(ILOC+I) = S(ILOC+I)
C
 2530 CONTINUE
      IF (.NOT.GRAV) GO TO 2610
C
C     GRAVITATIONAL STIFFNESS MATRIX
C
      JLOC = 9*(IROW-1)
C
      DO 2600 ICOL = 1,NGRIDS
      ILOC = 9*NGRIDS*(ICOL-1) + JLOC
C
      IF (IZ(GSI) .EQ. 0) GO TO 2540
      CALL GMMATD (T,3,3,1, KGE(ILOC+1),3,3,0, KIK)
      GO TO 2570
C
 2540 KLOC = ILOC
      DO 2550 I = 1,9
 2550 KIK(I) = KGE(KLOC+I)
C
 2570 GSJ = IBGPDT + (FBREC(ICOL+2)-1)*4
      IF (IZ(GSJ) .EQ. 0) GO TO 2580
      CALL TRANSD (Z(GSJ),T)
      CALL GMMATD (KIK,3,3,0, T,3,3,0, KII(ILOC+1))
      GO TO 2600
C
 2580 KLOC = ILOC
      DO 2590 I = 1,9
 2590 KII(KLOC+I) = KIK(I)
 2600 CONTINUE
 2610 CONTINUE
C
C     REARANGE THE STORAGE OF THE GRAVITATIONAL STIFFNESS MATRIX
C     TO COLUMNWISE FOR THE USE WITH THE ASSEMBLER
C
      IF (.NOT.GRAV) RETURN
C
      DO 2630 ICOL = 1,NGRIDS
      JLOC = 9*NGRIDS*(ICOL-1)
C
      DO 2630 IROW = 1,NGRIDS
      ILOC = JLOC + 9*(IROW-1)
      KLOC = JLOC + 3*(IROW-1)
C
      DO 2620 I = 1,3
      KGE(KLOC+1) = KII(ILOC+1)
      KGE(KLOC+2) = KII(ILOC+4)
      KGE(KLOC+3) = KII(ILOC+7)
      KLOC = KLOC + 3*NGRIDS
 2620 ILOC = ILOC + 1
 2630 CONTINUE
      RETURN
C
C     ERROR CONDITIONS
C
 8005 WRITE (NOUT,9005) UFM,FBREC(2)
      ERROR = .TRUE.
      GO TO 9000
 8013 WRITE (NOUT,9013) UFM,FBREC(1),FBREC(7)
      ERROR = .TRUE.
      GO TO 9000
 8014 WRITE (NOUT,9014) UWM,FBREC(1),FBREC(2)
 9000 RETURN
C
 9005 FORMAT (A23,' 8005. BAD GEOMETRY DEFINED FOR STRUCTURAL ELEMENT ',
     1       I8)
C
 9013 FORMAT (A23,' 8013, FLUID ELEMENT',I9,' ON A CFLSTR CARD ',
     1       'REFERENCES UNDEFINED GRAVITY ID',I9)
C
 9014 FORMAT (A25,' 8014, FLUID ELEMENT',I9,' AND STRUCTURE ELEMENT',I9,
     1       ' ARE DISJOINT. CHECK CFLSTR CARDS.')
      END