File: cinvpr.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (483 lines) | stat: -rw-r--r-- 14,998 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
      SUBROUTINE CINVPR (EED,METHOD,NFOUND)
C
C     GIVEN REAL OR COMPLEX MATRICIES, CINVPR WILL SOLVE FOR ALL OF
C     THE EIGENVALUES AND EIGENVECTORS WITHIN A SPECIFIED REGION
C
C     DEFINITION OF INPUT AND OUTPUT PARAMETERS
C
C     FILEK(7) = MATRIX CONTROL BLOCK FOR THE INPUT STIFFNESS MATRIX K
C     FILEM(7) = MATRIX CONTROL BLOCK FOR THE INPUT MASS MATRIX M
C     FILEB(7) = MATRIX CONTROL BLOCK FOR THE INPUT DAMPING MATRIX B
C     FILELM(7)= MATRIX CONTROL BLOCK FOR THE OUTPUT EIGENVALUES
C     FILEVC(7)= MATRIX CONTROL BLOCK FOR THE OUTPUT EIGENVECTORS
C     DMPFIL   = FILE CONTAINING THE EIGENVALUE SUMMARY
C     SR1FIL-  = SCRATCH FILES USED INTERNALLY
C     SR0FIL
C     EPS      = CONVERGENCE CRITERIA
C     NOREG    = NUMBER OF REGIONS INPUT
C     REG(1,I) = X1 FOR REGION I
C     REG(2,I) = Y1 FOR REGION I
C     REG(3,I) = X2 FOR REGION I
C     REG(4,I) = Y2 FOR REGION I
C     REG(5,I) = L1 FOR REGION I
C     REG(6,I) = NO. OF DESIRED  ROOTS FOR REGION I
C     REG(7,I) = NO. OF ESTIMATED ROOTS IN REGION I
C
C
      LOGICAL          NOLEFT
      INTEGER          METHOD    ,EED      ,EIGC(2)  ,PHIDLI  ,
     1                 SWITCH    ,SCRFIL   ,IHEAD(10),IREG(7,1)
      INTEGER          NAME(2)   ,FILELM   ,FILEVC   ,
     1                 REAL      ,RDP      ,TYPEK    ,TYPEM    ,
     2                 TYPEB     ,COMFLG   ,IZ(1)    ,DMPFIL   ,
     3                 TIMED     ,FILEK    ,T1       ,T2       ,
     4                 FILEB     ,FILEM
      REAL             L         ,L1       ,MAXMOD
      DOUBLE PRECISION LAM1      ,DZ(1)    ,MINDIA
      DOUBLE PRECISION LAMBDA    ,LMBDA    ,DTEMP(2)
      CHARACTER        UFM*23
      COMMON /XMSSG /  UFM
      COMMON /CDCMPX/  IDUM(30)  ,MINDIA
      COMMON /CINVPX/  FILEK(7)  ,FILEM(7) ,FILEB(7) ,FILELM(7),
     1                 FILEVC(7) ,DMPFIL   ,SCRFIL(11),NOREG   ,
     2                 EPS       ,REG(7,10),PHIDLI
      COMMON /NAMES /  RD        ,RDREW    ,WRT       ,WRTREW  ,
     1                 REW       ,NOREW    ,EOFNRW    ,RSP     ,
     1                 RDP
      COMMON /SYSTEM/  KSYSTM(65)
      COMMON /ZZZZZZ/  Z(1)
      COMMON /OUTPUT/  HEAD(1)
      COMMON /CINVXX/  LAMBDA(2) ,SWITCH   ,COMFLG    ,LMBDA(2),
     1                 ITER      ,TIMED    ,NOCHNG    ,RZERO   ,
     2                 IND       ,IVECT    ,KREG      ,REAL    ,
     3                 LEFT      ,NORTHO   ,NOROOT    ,NZERO   ,
     4                 LAM1(2)   ,MAXMOD   ,NODES     ,NOEST   ,
     5                 ISTART    ,IND1     ,ITERX     ,ISYM
      EQUIVALENCE      (KSYSTM(1),ISYS )   ,(IREG(1,1),REG(1,1))
      EQUIVALENCE      (FILEK(5) ,TYPEK)   ,(FILEM(5),TYPEM)   ,
     1                 (FILEB(5) ,TYPEB)   ,(IZ(1),Z(1))
      EQUIVALENCE      (ANODES   ,NODES)   ,(ANOEST,NOEST)     ,
     1                 (Z(1)     ,DZ(1))   ,(KSYSTM(2),NOUT )
      DATA     IHEAD/  0,1009,2,7*0 /
      DATA     EIGC /  207,2        /
      DATA     NAME /  4HCINV,4HPR  /
      DATA     SIGN /  1.0          /
C
C     DEFINITION OF INTERNAL PARAMETERS
C
C     REAL     = 0 - ALL MATRICIES ARE REAL
C                1 - AT LEAST ONE MATRIX IS COMPLEX
C     NSHIFT   = NO. OF SHIFT POINTS IN A REGION
C     NODES    = NO. OF DESIRED ROOTS IN A REGION
C     NOEST    = NO. OF ESTIMATED ROOTS IN A REGION
C     SHIFT    = INDEX OF THE CURRENT SHIFT POINT
C     ISHIFT   = INDEX OF THE CURRENT SHIFT POINT
C     IMIN     = LOWEST INDEX OF THE COMPLETED SHIFT POINTS
C     IMAX     = HIGHEST INDEX OF COMPLETED SHIFT POINTS
C
C     FILE ALLOCATION
C
C     SR1FIL CONTAINS (LAMBDA**2*M + LAMBDA*B + K)
C     SR2FIL CONTAINS -(B+LAMBDA*M)
C     SR3FIL CONTAINS THE LOWER TRIANGLE OF THE DECOMPOSED DYNAMIC MTRX
C     SR4FIL CONTAINS THE UPPER TRIANGLE OF THE DECOMPOSED DYNAMIC MTRX
C     SR5FIL IS USED AS A SCRATCH FOR CDCOMP
C     SR6FIL IS USED AS A SCRATCH FOR CDCOMP
C     SR7FIL IS USED AS A SCRATCH FOR CDCOMP
C     SR8FIL CONTAINS THE LOWER TRIANGLE L
C     SR9FIL CONTAINS THE UPPER TRIANGLE U
C     SR0FIL CONTAINS THE LEFT EIGENVECTORS
C     S11FIL CONTAINS  -(B + LAMBDA*M)
C
C     DEFINITION OF INTERNAL PARAMETERS
C
C     IND      = AN INDEX FOR GENERATING VARIOUS STARTING VECTORS
C     ITER     = TOTAL NUMBER OF ITERATIONS
C     NODCMP   = TOTAL NUMBER OF DECOMPOSITIONS
C     NOSTRT   = NUMBER OF STARTING POINTS USED
C     NOMOVS   = NUMBER OF TIMES A STARTING POINT HAD TO BE MOVED
C     RZERO    = DISTANCE FROM THE STARTING POINT TO THE CORNER OF THE
C                PARALELOGRAM
C     NOCHNG   = COUNT OF THE NUMBER OF MOVES WHILE LOOKING FOR ONE ROO
C     COMFLG   = 0 -
C              = 1 -
C              = 2 -
C              = 3 -
C              = 4 -
C              = 5 -
C              = 6 -
C     SWITCH   =
C     IVECT    =
C     KREG     = 0-NO VECTORS FOUND IN SEARCH AREA YET
C                1- A VECTOR HAS BEEN FOUND IN THE SEARCH AREA
C     ISING    = SINGULARITY FLAG
C     ITERM    = REASON FOR TERMINATING
C              = 1 - 2SINGULARITIES IN A ROW
C              = 2 - 4 MOVES WHILE TRACKING ONE ROOT
C              = 3 - ALL REGIONS COMPLETED
C              = 4 - 3*NOEST FOUND
C              = 5 - ALL ROOTS FOUND
C              = 8 - 200 ITERATIONS WITH ONE MOVE WITHOUR CONVERGING
C     TIMED    = TIME TOO FORM AND DECOMPOSE THE DYNAMIC MATRIX
C     LEFT     = 1 - DECOMPOSE MATRIX FOR THE COMPUTATION OF THE LEFT
C                EIGENVECTORS
C
      CALL SSWTCH (12,IDIAG)
      IND1 = 0
      NZ   = KORSZ(Z)
      CALL KLOCK (ISTART)
      IBUF = NZ - ISYS - 2
      IFILE= FILELM(1)
      CALL OPEN  (*500,FILELM,Z(IBUF),WRTREW)
      CALL CLOSE (FILELM,REW)
      IFILE = FILEVC (1)
      CALL OPEN  (*500,FILEVC,Z(IBUF),WRTREW)
      CALL CLOSE (FILEVC,REW)
      CALL GOPEN (DMPFIL,Z(IBUF),WRTREW)
      CALL CLOSE (DMPFIL,EOFNRW)
      IFILE = SCRFIL(10)
      CALL OPEN (*500,IFILE,Z(IBUF),WRTREW)
      CALL CLOSE (IFILE,REW)
      NOLEFT = .FALSE.
      IZ(1)  = 204
      CALL RDTRL (IZ)
      IF (IZ(1) .LT. 0) NOLEFT = .TRUE.
      NORTHO = 0
      NROW   = 2*FILEK(3)
      NROW2  = 2*NROW
      ISYM   = 1
      IF (FILEK(1).NE.0 .AND. FILEK(4).NE.6) GO TO 2
      IF (FILEM(1).NE.0 .AND. FILEM(4).NE.6) GO TO 2
      IF (FILEB(1).NE.0 .AND. FILEB(4).NE.6) GO TO 2
      ISYM = 0
    2 CONTINUE
C
C     PICK UP REGION PARAMETERS
C
      CALL PRELOC (*500,Z(IBUF),EED)
      CALL LOCATE (*500,Z(IBUF),EIGC(1),FLAG)
    6 CALL FREAD (EED,IREG,10,0)
      IF (METHOD.EQ.IREG(1,1) .OR. METHOD.EQ.-1) GO TO 8
    7 CALL FREAD (EED,IREG,7,0)
      IF (IREG(6,1) .NE. -1) GO TO 7
      GO TO 6
    8 JREG = 1
      EPS  = .0001
      IF (REG(1,2) .NE. 0.) EPS = REG(1,2)
   11 CALL FREAD (EED,IREG(1,JREG),7,0)
      IF (IREG(6,JREG) .EQ. -1) GO TO 9
      JREG = JREG + 1
      IF (JREG .GT. 10) GO TO 9
      GO TO 11
    9 CALL CLOSE (EED,REW)
      NOREG = JREG - 1
      JREG  = 0
C
C     PICK UP PARAMETERS FOR REGION I
C
    5 JREG   = JREG + 1
      ITER   = 0
      NODCMP = 0
      NOSTRT = 0
      NOMOVS = 0
      X1     = REG(1,JREG)
      Y1     = REG(2,JREG)
      X2     = REG(3,JREG)
      Y2     = REG(4,JREG)
      L      = REG(5,JREG)
      ANOEST = REG(6,JREG)
      ANODES = REG(7,JREG)
      IF (NODES.EQ. 0) NODES = 3*NOEST
      NSHIFT = SQRT((X1-X2)**2+(Y1-Y2)**2)/L + 1.
      L1     = L*.5
      NOROOT = 0
C
C
C     FIND SHIFT POINT CLOSEST TO THE ORIGIN
C
      R = SQRT((X1-X2)**2 + (Y1-Y2)**2)
      IF (R) 10,10,15
   10 WRITE  (NOUT,12) UFM
   12 FORMAT (A23,' 2366, REGION IMPROPERLY DEFINED ON EIGC CARD.')
      CALL MESAGE (-61,0,0)
   15 CONTINUE
      D = (FLOAT(NSHIFT)*L-R)/2.0
      XX = X1 + D*(X1-X2)/R
      X2 = X2 + D*(X2-X1)/R
      X1 = XX
      YY = Y1 + D*(Y1-Y2)/R
      Y2 = Y2 + D*(Y2-Y1)/R
      Y1 = YY
      IF (IDIAG .EQ. 0) GO TO 7000
      WRITE  (NOUT,1000) X1,Y1,X2,Y2,L1,NODES,NOEST,NSHIFT
 1000 FORMAT (1H1,5F10.2,3I5)
 7000 CONTINUE
      DELTX = (X1-X2)/FLOAT(NSHIFT)
      DELTY = (Y1-Y2)/FLOAT(NSHIFT)
      XX    = X2 + DELTX/2.
      YY    = Y2 + DELTY/2.
      RANGE = XX**2  + YY**2
      N     = NSHIFT - 1
      SHIFT = 1.
      IF (DELTX .NE. 0.) GO TO 20
      ANUM1 = L1
      ANUM2 = 0.
      GO TO 25
   20 SLOPE = DELTY/DELTX
      ARG   = SQRT(1.+SLOPE**2)
      ANUM1 = SLOPE*L1/ARG
      ANUM2 = L1/ARG
   25 CONTINUE
      IF (N .EQ. 0) GO TO 40
      DO 30 I = 1,N
      XX    = XX + DELTX
      YY    = YY + DELTY
      RANG  = XX**2 + YY**2
      IF (RANG .GE. RANGE) GO TO 40
      RANGE = RANG
   30 SHIFT = I + 1
C
C     COMPUTE COORDINATES OF CORNERS OF THE REGION
C
   40 XL2   = X2 + ANUM1
      YL2   = Y2 - ANUM2
      IMIN  = SHIFT
      IMAX  = SHIFT
C
C     FIND THE MAXIMUM MODULUS OF THE SEARCH REGION
C
      MAXMOD = XL2**2 + YL2**2
      XX     = X2 - ANUM1
      YY     = Y2 + ANUM2
      MAXMOD = AMAX1(MAXMOD,XX**2+YY**2)
      XX     = X1 + ANUM1
      YY     = Y1 - ANUM2
      MAXMOD = AMAX1(MAXMOD,XX**2+YY**2)
      XX     = X1 - ANUM1
      YY     = Y1 + ANUM2
      MAXMOD = AMAX1(MAXMOD,XX**2+YY**2)
C
C     INITIALIZE
C
      IND    = 0
      LEFT   = 0
   45 ISHIFT = SHIFT
C
C     EVALUATE THE VALUE OF LAMBDA IN THE CENTER OF THE CURRENT SEARCH
C     REGION
C
      LAMBDA(1) = X2 + (SHIFT-.5)*DELTX
      LAMBDA(2) = Y2 + (SHIFT-.5)*DELTY
      IF (LAMBDA(2) .EQ. 0.0D0) LAMBDA(2) = .01*DELTY
C
C     COMPUTE DISTANCE TO FARTHEST CORNER OF THE SQUARE SEARCH REGION
C
      XX = XL2 + SHIFT*DELTX
      YY = YL2 + SHIFT*DELTY
      RZERO = (LAMBDA(1)-XX)**2 + (LAMBDA(2)-YY)**2
      RZERO = SQRT(RZERO)*1.05
      IF (IDIAG .EQ. 0) GO TO 7001
      WRITE  (NOUT,1216)RZERO
 1216 FORMAT (//,10H RZERO =     ,F10.4)
 7001 CONTINUE
      NOSTRT = NOSTRT + 1
      COMFLG = 0
   61 LMBDA(1) = LAMBDA(1)
      LMBDA(2) = LAMBDA(2)
      NOCHNG = 0
      SWITCH = 0
      IVECT  = 0
      KREG   = 0
      IND    = IND + 1
      IF (IABS (IND) .EQ. 13) IND = 1
      ISING  = 0
      GO TO 100
   80 ISING  = 0
      SWITCH = 1
  100 IF (NOCHNG .GE. 4) GO TO 220
      NOCHNG = NOCHNG + 1
      CALL KLOCK (T1)
C
C     CALL IN ADD LINK TO FORM (LAMBDA**2*M + LAMBDA*B + K)
C
      CALL CINVP1
C
C     CALL IN CD COMP TO DECOMPOSE THE MATRIX
C
      IF (IDIAG .EQ. 0) GO TO 7002
      WRITE  (NOUT,1001) LAMBDA
 1001 FORMAT (10H1LAMBDA =   ,2D15.5)
 7002 CONTINUE
      NODCMP = NODCMP + 1
      CALL CINVP2 (*110)
      CALL KLOCK (T2)
      GO TO 120
  110 IF (ISING .EQ. 1) GO TO 210
C
C     SINGULAR MATRIX. INCREMENT LAMBDA AND TRY ONCE MORE
C
      ISING = 1
      LAMBDA(1) = LAMBDA(1) + .02*RZERO
      LAMBDA(2) = LAMBDA(2) + .02*RZERO
      GO TO 100
C
C     DETERMINE THE TIME REQUIRED TO FORM AND DECOMPOSE THE DYNAMIC
C     MATRIX
C
  120 TIMED = T2 - T1
      IF (TIMED .EQ. 0) TIMED = 1
C
C     CALL IN MAIN LINK TO ITERATE FOR EIGENVALUES
C
  121 CALL CINVP3
      IF (LEFT   .EQ. 1) GO TO 130
      IF (COMFLG .EQ. 2) GO TO 125
      IF (COMFLG .EQ. 1) GO TO 80
      GO TO 140
  125 NOMOVS = NOMOVS + 1
      GO TO 61
C
C     CALL IN LINK TO COMPUTE THE LEFT EIGENVECTOR
C
  130 DTEMP(1)  = LAMBDA(1)
      DTEMP(2)  = LAMBDA(2)
      LAMBDA(1) = LAM1(1)
      LAMBDA(2) = LAM1(2)
  131 SWITCH    = -1
      CALL CINVP1
C
C     DECOMPOSE THE DYNAMIC MATRIX AT THE EIGENVALUE TO OBTAIN THE LEFT
C     EIGENVECTOR BY THE DETERMINATE METHOD
C
      IF (IDIAG .EQ. 0) GO TO 132
      WRITE (NOUT,1001) LAMBDA
  132 CALL CINVP2 (*138)
C
C     BUILD LOAD FOR FBS
C
      D1 = NROW/2
      D2 = NORTHO
      DO 133 I = 1,NROW,2
      K  = (I+1)/2
      DZ(I) = SIGN*MINDIA/(1.D0+(1.D0-FLOAT(K)/D1)*D2)
  133 DZ(I+1) = 0.0D0
      SIGN = -SIGN
      CALL CDIFBS (DZ(1),Z(IBUF))
      LAMBDA(1) = DTEMP(1)
      LAMBDA(2) = DTEMP(2)
      SWITCH = 0
C
C     NORMALIZE AND STORE THE LEFT EIGENVECTOR
C
      CALL CNORM1 (DZ(1),FILEK(2))
      IF (IDIAG .EQ. 0) GO TO 135
      WRITE  (NOUT,134) (DZ(I),I=1,NROW)
  134 FORMAT (///,15H LEFT VECTOR   ,//,(10D12.4))
  135 CONTINUE
      IF (NOLEFT .OR. ISYM.EQ.0) GO TO 136
      IFILE = PHIDLI
      CALL OPEN  (*500,IFILE,Z(IBUF),WRT)
      CALL WRITE (IFILE,DZ(1),NROW2,1)
      CALL CLOSE (IFILE,NOREW)
  136 IFILE = SCRFIL(10)
      CALL GOPEN (IFILE,Z(IBUF),RD)
      CALL BCKREC (IFILE)
      CALL FREAD (IFILE,DZ(NROW+2),NROW2,1)
      CALL BCKREC (IFILE)
      CALL CLOSE (IFILE,NOREW)
C
C     COMPUTE REAL LEFT VECTOR SCALED
C
      CALL CX TRN Y (DZ(1),DZ(NROW+2),DTEMP)
      CALL CDIVID (DZ(1),DZ(1),DTEMP,NROW)
      CALL OPEN (*500,IFILE,Z(IBUF),WRT)
      CALL WRITE (IFILE,DZ(1),NROW2,1)
      CALL CLOSE (IFILE,REW)
      GO TO 121
  138 LAMBDA(1) = 1.01*LAMBDA(1)
      LAMBDA(2) = 1.01*LAMBDA(2)
      GO TO 131
  140 IF (COMFLG .GE. 3) GO TO 200
      IF (COMFLG .EQ. 0) GO TO 160
      IF (IDIAG  .EQ. 0) GO TO 150
      WRITE  (NOUT,145) NOREG,JREG
  145 FORMAT (2I10)
  150 IF (NOREG .EQ. JREG) RETURN
      GO TO 5
C
C     FIND NEXT SHIFT POINT WHICH IS CLOSEST TO THE ORIGIN
C
  160 IF (IMIN .NE. 1) GO TO 170
      IF (IMAX .EQ. NSHIFT) GO TO 250
  165 SHIFT = SHIFT + 1.
      IMAX  = IMAX  + 1
      LAMBDA(1) = LMBDA(1) + DELTX
      LAMBDA(2) = LMBDA(2) + DELTY
      GO TO 45
  170 IF (IMAX .NE. NSHIFT) GO TO 180
  175 SHIFT = SHIFT - 1.
      IMIN  = IMIN  - 1
      LAMBDA(1) = LMBDA(1) - DELTX
      LAMBDA(2) = LMBDA(2) - DELTY
      GO TO 45
  180 XX   = LMBDA(1) - DELTX
      YY   = LMBDA(2) - DELTY
      RANG = XX**2 + YY**2
      XX   = LMBDA(1) + DELTX
      YY   = LMBDA(2) + DELTY
      RANGE= XX**2 + YY**2
      IF (RANGE-RANG) 175,175,165
  200 ITERM = COMFLG
      GO TO 260
C
C     SINGULARITY ENCOUNTERED TWICE IN A ROW
C
  210 ITERM = 1
      GO TO 260
C
C     4 MOVES WHILE TRACKING ONE ROOT
C
  220 ITERM = 2
      GO TO 260
C
C     REGIONS COMPLETED
C
  250 ITERM = 3
C
C     SET UP THE SUMMARY FILE
C
  260 IFILE = DMPFIL
      CALL OPEN  (*500,DMPFIL,Z(IBUF),WRT)
      CALL WRITE (DMPFIL,IHEAD(1),10,0)
      I       = 0
      IZ(I+2) = NORTHO
      IZ(I+3) = NOSTRT
      IZ(I+4) = NOMOVS
      IZ(I+5) = NODCMP
      IZ(I+6) = ITER
      IZ(I+7) = ITERM
      DO 270 I = 8,12
 270  IZ(I) = 0
      I = 2
      CALL WRITE (DMPFIL,IZ(I),40,0)
      CALL WRITE (DMPFIL,HEAD(1),96,1)
      CALL WRITE (DMPFIL,IZ(1),0,1)
      CALL CLOSE (DMPFIL,EOFNRW)
C
C     WRITE DUMMY TRAILER
      IXX = FILEK(1)
      FILEK(1) = DMPFIL
      CALL WRTTRL (FILEK(1))
      FILEK(1) = IXX
      NFOUND = NORTHO
      IF (IDIAG .EQ. 0) GO TO 350
      J = 12
      WRITE  (NOUT,300)(IZ(I),I=1,J)
  300 FORMAT (///,12I10)
  350 CONTINUE
      IF (ITERM .EQ. 5) RETURN
      GO TO 150
C
  500 CALL MESAGE (-1,IFILE,NAME)
      RETURN
      END