1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
SUBROUTINE COMB2
C
C COMB2 PERFORMS THE TRANSFORMATION AND ADDITION OF STIFFNESS, MASS,
C OR LOAD MATRICES FOR THE PHASE 2 SUBSTRUCTURE COMBINE OPERATION
C
C NOVEMBER 1973
C
C
LOGICAL ADDFLG
INTEGER TFLAG ,SIGNAB ,SIGNC ,PREC ,
1 SCR1 ,SCR2 ,SCR3 ,SCR4 ,SCR5 ,
2 RULE ,TYPIN ,TYPOUT ,ACOMB ,AMCB(7,7) ,
3 HMCB(6,7),SOF1 ,SOF2 ,SOF3 ,DRY ,
4 BUF1 ,RDSOF ,RC ,USE ,HORG ,
5 PVEC ,RFILES ,IZ(1) ,RECT ,RSP ,
6 NAME(2) ,RSOFAR ,KMP(5) ,TYPE ,KMPITM(5) ,
7 BLANK ,SYSBUF ,CPV(7) ,RPV(7) ,SCR6 ,
8 XXXX ,SCR7 ,PORA ,PAPP
DOUBLE PRECISION DBZ(1)
DIMENSION MCBTRL(7)
CHARACTER UFM*23 ,UWM*25 ,UIM*29 ,SFM*25
COMMON /XMSSG / UFM ,UWM ,UIM ,SFM
COMMON /BLANK / DRY ,TYPE(2) ,PORA(2) ,NAMESS(2,7),
1 ACOMB ,USE(14) ,RFILES(3) ,KK ,
2 KN ,JN
COMMON /SYSTEM/ SYSBUF ,NOUT
COMMON /NAMES / RD ,RDREW ,WRT ,WRTREW ,
1 REW ,NOREW ,EOFNRW ,RSP ,
2 RDP ,CSP ,CDP ,SQUARE ,
3 RECT
COMMON /PACKX / TYPIN ,TYPOUT ,IROW ,NROW ,
1 INCR
COMMON /PARMEG/ MCBP(7) ,MCBP11(7) ,MCBP21(7) ,MCBP12(7) ,
1 MCBP22(7) ,MRGZ ,RULE
COMMON /MPY3TL/ MCBA2(7) ,MCBB2(7) ,MCBC2(7) ,MCBD2(7) ,
1 SCR5 ,SCR6 ,SCR7 ,LKORE ,
2 ICODE ,IPREC ,DUMMY(13)
COMMON /MPYADX/ MCBA(7) ,MCBB(7) ,MCBC(7) ,MCBD(7) ,
1 LCORE ,TFLAG ,SIGNAB ,SIGNC ,
2 PREC ,MSCR ,DUMM
COMMON /ZZZZZZ/ Z(1)
EQUIVALENCE (DBZ(1),Z(1),IZ(1)),(PVEC,KMPITM(3))
DATA NAME / 4HCOMB,4H2 /
DATA HORG / 4HHORG /
DATA BLANK / 4H /
DATA XXXX / 4HXXXX /
DATA PAPP / 4HPAPP /
DATA KMP / 4HK , 4HM , 4HP , 4HB , 4HK4 /
DATA KMPITM / 4HKMTX, 4HMMTX, 4HPVEC, 4HBMTX, 4HK4MX /
C
C INITIALIZE
C
DO 5 I = 1,14
IF (NAMESS(I,1).EQ.XXXX .OR. NAMESS(I,1).EQ.0) NAMESS(I,1) = BLANK
5 CONTINUE
ACOMB = 201
SCR1 = 301
SCR2 = 302
SCR3 = 303
SCR4 = 304
SCR5 = 305
SCR6 = 306
SCR7 = 307
SIGNAB= 1
SIGNC = 1
PREC = 0
MSCR = SCR5
ICODE = 0
RULE = 0
RDSOF = 1
NOGO = 0
RFILES(1) = ACOMB
NSIZE = 0
MCBP21(1) = 0
MCBP22(1) = 0
RSOFAR = 0
KN = 1
JN =-1
DO 10 I = 1,5
IF (TYPE(1) .EQ. KMP(I)) GO TO 20
10 CONTINUE
WRITE (NOUT,6302) SFM,TYPE
IF (DRY .LT. 0) RETURN
C
DRY =-2
ITEM = 0
GO TO 30
20 ITEM = KMPITM(I)
IF (ITEM .EQ. PVEC) ITEM = PORA(1)
IF (DRY .LT. 0) RETURN
C
30 LCORE = KORSZ(Z) - 1
LKORE = LCORE
BUF1 = LCORE - SYSBUF + 1
SOF1 = BUF1 - SYSBUF
SOF2 = SOF1 - SYSBUF - 1
SOF3 = SOF2 - SYSBUF
IF (SOF3 .GT. 0) GO TO 40
CALL MESAGE (8,0,NAME)
DRY =-2
RETURN
C
40 CALL SOFOPN (Z(SOF1),Z(SOF2),Z(SOF3))
C
C GRAB THE MATRIX CONTROL BLOCKS
C
NMAT = 0
DO 170 I = 1,7
IF (NAMESS(1,I) .EQ. BLANK) GO TO 170
AMCB(1,I) = 100 + I
CALL RDTRL (AMCB(1,I))
IF (AMCB(1,I) .GT. 0) GO TO 135
C
C NO GINO FILE. CHECK SOF
C
CALL SOFTRL (NAMESS(1,I),ITEM,AMCB(1,I))
RC = AMCB(1,I)
GO TO (130,110,115,120,120), RC
110 NOGO = 1
WRITE (NOUT,6301) SFM,NAMESS(1,I),NAMESS(2,I),ITEM
GO TO 170
115 IF (TYPE(1) .EQ. KMP(3)) GO TO 170
120 NOGO = 1
CALL SMSG (RC-2,ITEM,NAMESS(1,I))
GO TO 170
C
C MATRIX FOUND ON SOF
C
130 CONTINUE
AMCB(1,I) = 0
C
C GRAB THE MCB OF THE TRANSFORMATION MATRIX
C
135 CALL SOFTRL (NAMESS(1,I),HORG,MCBTRL)
RC = MCBTRL(1)
GO TO (160,140,150,155,155), RC
140 NOGO = 1
CALL SMSG (1,HORG,NAMESS(1,I))
GO TO 170
150 NOGO = 1
WRITE (NOUT,6303) SFM,NAMESS(1,I),NAMESS(2,I)
GO TO 170
155 NOGO = 1
CALL SMSG (RC-2,HORG,NAMESS(1,I))
GO TO 170
160 DO 161 IT = 1,6
161 HMCB(IT,I) = MCBTRL(IT+1)
NMAT = NMAT + 1
USE(2*NMAT-1) = I
DEN = FLOAT(AMCB(7,I))/10000.
USE(2*NMAT) = AMCB(2,I)*AMCB(3,I)*DEN
C
C CHECK COMPATIBILITY OF DIMENSIONS
C
IF (NSIZE .EQ. 0) NSIZE = HMCB(1,I)
IF (HMCB(1,I).EQ.NSIZE .AND. HMCB(2,I).EQ.AMCB(2,I) .AND.
1 HMCB(2,I).EQ.AMCB(3,I)) GO TO 170
IF (ITEM.EQ.PVEC .OR. ITEM.EQ.PAPP .AND. HMCB(1,I).EQ.NSIZE .AND.
1 HMCB(2,I).EQ.AMCB(3,I)) GO TO 170
NOGO = 1
WRITE (NOUT,6304) SFM,I,NAMESS(1,I),NAMESS(2,I)
170 CONTINUE
IF (NOGO .EQ. 0) GO TO 175
C
174 DRY =-2
WRITE (NOUT,177) AMCB,HMCB
177 FORMAT ('0*** COMB2 MATRIX TRAILER DUMP',
1 //7(4X,7I10/), /7(11X,6I10/))
GO TO 9999
C
175 IF (NMAT .EQ. 0) GO TO 9999
C
C DETERMINE PRECISION FOR FINAL MATRIX
C
IPRC = 1
ITYP = 0
DO 176 I = 1,NMAT
IF (AMCB(5,I).EQ.2 .OR. AMCB(5,I).EQ.4) IPRC = 2
IF (AMCB(5,I) .GE. 3) ITYP = 2
176 CONTINUE
IPREC = ITYP + IPRC
C
IF (ITEM.EQ.PVEC .OR. ITEM.EQ.PAPP) GO TO 300
C ******
C *
C PROCESS STIFFNESS, MASS OR DAMPING MATRICES *
C *
C ******
C
C IF NMAT IS ODD, PUT FIRST RESULT ON ACOMB. IF EVEN, PUT IT ON
C SCR4. FINAL RESULT WILL THEN BE ON ACOMB.
C
CALL SORT (0,0,2,2,USE,2*NMAT)
IRF = 1
IF ((NMAT/2)*2 .EQ. NMAT) IRF = 2
IFORM = 6
RFILES(2) = SCR4
ADDFLG =.FALSE.
C
DO 230 KK = 1,NMAT
J = 2*KK - 1
JN = JN + 2
INUSE = USE(JN)
C
C MOVE TRANSFORMATION MATRIX TO SCR2
C
CALL MTRXI (SCR2,NAMESS(1,INUSE),HORG,Z(BUF1),RC)
C
C IF INPUT MATRIX IS ON SOF, MOVE IT TO SCR1
C
MCBB2(1) = 100 + INUSE
IF (AMCB(1,INUSE) .GT. 0) GO TO 180
MCBB2(1) = SCR1
CALL MTRXI (SCR1,NAMESS(1,INUSE),ITEM,Z(BUF1),RC)
C
C PERFORM TRIPLE MULTIPLY H(T)*INPUT*H
C
180 CALL SOFCLS
MCBA2(1) = SCR2
MCBC2(1) = 0
IF (ADDFLG) MCBC2(1) = RFILES(3-IRF)
ADDFLG = .TRUE.
DO 190 J = 2,7
MCBA2(J) = HMCB(J-1,INUSE)
MCBB2(J) = AMCB(J,INUSE)
190 CONTINUE
IF (MCBB2(4) .LE. 2) IFORM = MCBB2(4)
CALL MAKMCB (MCBD2,RFILES(IRF),HMCB(1,INUSE),IFORM,IPREC)
C
CALL MPY3DR (Z)
C
CALL WRTTRL (MCBD2)
DO 220 J = 2,7
220 MCBC2(J) = MCBD2(J)
IRF = 3 - IRF
CALL SOFOPN (Z(SOF1),Z(SOF2),Z(SOF3))
230 CONTINUE
GO TO 9999
C ******
C *
C PROCESS LOAD MATRICES *
C *
C**** ******
300 MCBC(1) = 0
MCBA(1) = SCR2
TFLAG = 1
MRGZ = LCORE
PREC = 0
C
C SELECT FIRST RESULT FILE SO THAT FINAL RESULT WILL WIND UP ON
C ACOMB
C
RFILES(2) = SCR3
RFILES(3) = SCR4
IRF = 1
IF (NMAT.EQ.2 .OR. NMAT.EQ.5) IRF = 2
IF (NMAT.EQ.3 .OR. NMAT.EQ.6) IRF = 3
IF (NMAT .EQ. 1) MCBP(1) = ACOMB
C
C CREATE COLUMN PARTITIONING VECTOR FOR ALL MERGES
C (VECTOR IS ALWAYS NULL)
C
CALL MAKMCB (CPV,SCR6,NSIZE,RECT,RSP)
TYPIN = RSP
TYPOUT = RSP
IROW = 1
NROW = 1
INCR = 1
CALL GOPEN (SCR6,Z(BUF1),WRTREW)
CALL PACK (0,SCR6,CPV)
CALL CLOSE (SCR6,REW)
ADDFLG =.TRUE.
C
DO 400 KK = 1,NMAT
INUSE = USE(2*KK-1)
C
C COPY TRANSFORMATION MATRIX TO SCR2
C
CALL MTRXI (SCR2,NAMESS(1,INUSE),HORG,Z(BUF1),RC)
C
C IF LOAD MATRIX IS ON SOF, COPY IT TO SCR1
C
MCBB(1) = 100 + INUSE
IF (AMCB(1,INUSE) .GT. 0) GO TO 330
MCBB(1) = SCR1
CALL MTRXI (SCR1,NAMESS(1,INUSE),ITEM,Z(BUF1),RC)
C
C MULTIPLY (HT * A) AND STORE RESULT ON RFILES(IRF)
C (ACOMB,SCR3, OR SCR4)
C
330 CALL SOFCLS
DO 340 J = 2,7
MCBA(J) = HMCB(J-1,INUSE)
MCBB(J) = AMCB(J,INUSE)
340 CONTINUE
IF (MCBB(6).EQ.0 .OR. MCBA(3).EQ.MCBB(3)) GO TO 350
I = KK
NOGO = 1
WRITE (NOUT,6304) SFM,I,NAMESS(1,I),NAMESS(2,I)
GO TO 174
350 CALL MAKMCB (MCBD,RFILES(IRF),HMCB(1,INUSE),RECT,IPREC)
C
CALL MPYAD (Z,Z,Z)
C
IF (ADDFLG) GO TO 390
C
C COMPUTE ROW PARTITIONING VECTOR TO MERGE RESULT OF THIS MULTIPLY
C WITH ALL PREVIOUS RESULTS
C
K = AMCB(2,INUSE)
CALL MAKMCB (RPV,SCR5,RSOFAR+K,RECT,RSP)
IF (K .GT. LCORE) GO TO 9008
DO 360 J = 1,K
360 Z(J) = 1.0E0
TYPIN = RSP
TYPOUT= RSP
IROW = RSOFAR + 1
NROW = RSOFAR + K
INCR = 1
CALL GOPEN (SCR5,Z(BUF1),WRTREW)
CALL PACK (Z,SCR5,RPV)
CALL CLOSE (SCR5,REW)
C
C MERGE MATRICES STORE RESULT ON NEXT AVAILABLE RFILE
C
J = MOD(IRF,3) + 1
CALL MAKMCB (MCBP,RFILES(J),NSIZE,RECT,IPREC)
MCBP(2) = RPV(3)
J = MOD(J,3) + 1
MCBP11(1) = RFILES(J)
MCBP12(1) = RFILES(IRF)
DO 380 J = 2,7
MCBP11(J) = MCBP(J)
MCBP12(J) = MCBD(J)
380 CONTINUE
C
CALL MERGE (RPV,CPV,Z)
C
IRF = MOD(IRF,3) + 1
GO TO 395
390 DO 391 J = 2,7
391 MCBP(J) = MCBD(J)
395 RSOFAR = RSOFAR + AMCB(2,INUSE)
ADDFLG =.FALSE.
IRF = MOD(IRF,3) + 1
CALL SOFOPN (Z(SOF1),Z(SOF2),Z(SOF3))
400 CONTINUE
CALL WRTTRL (MCBP)
GO TO 9999
C
C DIAGNOSTICS
C
6301 FORMAT (A25,' 6301, DATA MISSING IN GO MODE FOR SUBSTRUCTURE ',
1 2A4,' ITEM ',A4)
6302 FORMAT (A25,' 6302, ',2A4,' IS ILLEGAL MATRIX TYPE FOR MODULE ',
1 'COMB2')
6303 FORMAT (A25,' 6303, H OR G TRANSFORMATION MATRIX FOR SUBSTRUCTURE'
1, 1X,2A4,' CANNOT BE FOUND ON SOF')
6304 FORMAT (A25,' 6304, MODULE COMB2 INPUT MATRIX NUMBER ',I2,
1 ' FOR SUBSTRUCTURE ,2A4,28H HAS INCOMPATIBLE DIMENSIONS')
9008 CALL MESAGE (8,0,NAME)
C
C NORMAL COMPLETION
C
9999 CALL SOFCLS
RETURN
END
|