File: cone.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (361 lines) | stat: -rw-r--r-- 9,941 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
      SUBROUTINE CONE (TI,Z)
C
C     THIS ROUTINE COMPUTES THE THERMAL LOADS ON A AXISYMMETRIC CONE
C
      REAL    I00      ,I10
      REAL    I01      ,I11      ,I21      ,I31      ,I41
      REAL    I02      ,I12      ,I22
      REAL    I03      ,I13      ,I23      ,I33
      REAL    TI(2)    ,Z(1)     ,PA(8)    ,XI(6)    ,ECPT(35)
      REAL    N2D33    ,NSP      ,NCP      ,NSPOPI
      REAL    EHT(96)  ,HUQ(100) ,HYQ(10)
      COMMON /CONDAS/   PI       ,TWOPI    ,RADEG    ,DEGRA    ,
     1                  S4PISQ
      COMMON /TRIMEX/   MECPT(35)
      COMMON /MATIN /   MATID    ,INFLAG   ,TEMP     ,STRESS   ,SINTH  ,
     1                  COSTH
      COMMON /MATOUT/   G11,G12  ,G13,G22  ,G23,G33  ,RHO,ALPH1,ALPH2  ,
     1                  ALPH3    ,TSUB0    ,GSUBE    ,SIGTEN   ,SIGCOM ,
     2                  SIGSHE   ,G2X211   ,G2X212   ,G2X222
      EQUIVALENCE      (ECPT( 1) ,MECPT(1)),(ECPT( 9), TS    )
      EQUIVALENCE      (ECPT(28) ,RA      ),(ECPT(32), RB    )
      EQUIVALENCE      (ECPT(29) ,ZA      ),(ECPT(33), ZB    )
      EQUIVALENCE      (ECPT( 6) ,MATID2  ),(ECPT( 8), MATID3)
      EQUIVALENCE      (GSHEAR   ,G12     )
      DATA    ONE   /  1.0   /
C
C     DEFINITION OF VARIABLES
C
C        ECPT  ENTRIES FOR CONE
C
C     ECPT(1)  INTEGER   ELEMENT ID = 1000*ELID + HARMONIC
C     ECPT(2)  INTEGER   SIL  A
C     ECPT(3)  INTEGER   SIL  B
C     ECPT(4)  INTEGER   MAT ID  1
C     ECPT(5)  REAL      T    MEMBRANE THICKNESS
C     ECPT(6)  INTEGER   MAT ID  2
C     ECPT(7)  REAL      MOMENT OF INERTIA
C     ECPT(8)  INTEGER   MAT ID 3
C     ECPT(9)  REAL      SHEAR THICKNESS
C     ECPT(10) REAL      NON -STRUCTRAL  MASS
C     ECPT(11) REAL      Z1
C     ECPT(12) REAL      Z2
C     ECPT(13) REAL      PHI 1
C     ECPT(14) REAL          2
C     ECPT(15) REAL          3
C     ECPT(16) REAL          4
C     ECPT(17) REAL          5
C     ECPT(18) REAL          6
C     ECPT(19) REAL          7
C     ECPT(20) REAL          8
C     ECPT(21) REAL          9
C     ECPT(22) REAL         10
C     ECPT(23) REAL         11
C     ECPT(24) REAL         12
C     ECPT(25) REAL         13
C     ECPT(26) REAL         14
C     ECPT(27) INTEGER   COORDINANT SYSTEM FOR POINT  A
C     ECPT(28) REAL      R   (A)
C     ECPT(29) REAL      Z   (A)
C     ECPT(30) REAL      NULL
C     ECPT(31) INTEGER   COORDINANT SYSTEM FOR POINT B
C     ECPT(32) REAL      R    (B)
C     ECPT(33) REAL      Z    (B)
C     ECPT(34) REAL      NULL
C     ECPT(35) REAL      TEMPERATURE OF MATERIAL
C
C     XL       LENGTH  BETWEEN  POINTS
C     SP       SINE  OF  PHI
C     CP       COSINE OF PHI
C     I-S      INTEGRAL  FROM  PAGE 46 MS,28
C     MATID    MATERIAL ID  (MAT 1 CARD)
C     INFLAG   OPTION  2  OF MAT ROUTINE
C     TEMP     MATERIAL TEMPERATURE
C     SINTH    0.0  DUMMY
C     COSTH    1.0  DUMMY
C     XN       HARMONIC NUMBER
C     PA(8)    TOTAL LOAD VECTOR
C     XI(6)    CYLINDRICAL LOAD
C
C
C     IF MEMBRANE THICKNESS = 0, THEN LOAD IS ZERO
C
      IF (ECPT(5) .EQ. 0.0) GO TO 160
C
C     COMPUTE  L, SINPHI, COSPHI
C
      RBMA = RB - RA
      ZBMA = ZB - ZA
      XL2  = RBMA**2 + ZBMA**2
      XL   = SQRT(XL2)
      IF (XL .EQ. 0.0) GO TO 160
      SP = RBMA/XL
      CP = ZBMA/XL
C
C     COMPUTE  I-S
C
      XL4 = XL2*XL2
      RAV = (RA + RB)*0.5
      I00 = XL *RAV
      I10 = XL2*(RA + 2.0*RB)/6.0
      I01 = XL
      I11 = XL2/2.0
      I21 = XL2*XL/3.0
      I31 = XL4/4.0
      I41 = XL4*XL/5.0
C
C     SET UP FOR MAT ROUTINE
C
      MATID = MECPT(4)
      INFLAG= 2
      TEMP  = ECPT(35)
      SINTH = 0.0
      COSTH = 1.0
      CALL MAT (MECPT(1))
C
C     COMPUTE COEFICCIENTS
C
      F  = (G12*ALPH2 + G22*ALPH1)*ECPT(5)*PI
      FF = (G11*ALPH2 + G12*ALPH1)*ECPT(5)*PI
C
C     COMPUTE  A
C
      A = (TI(1)-TSUB0)*F
C
C     COMPUTE  B
C
      B = (TI(2)-TI(1))/XL*F
C
C     COMPUTE  C
C
      C = (TI(1)-TSUB0)*FF
C
C     COMPUTE  D
C
      D = (TI(2)-TI(1))/XL*FF
C
C     DECODE  N
C
      IXN = MECPT(1)/1000
      XN  = MECPT(1) - IXN*1000 - 1
C
C     COMPUTE  PA
C
      F  = I01*A + I11*B
      FF = I11*A + I21*B
      PA(1) = XN*F
      PA(2) = XN*FF
      PA(3) = SP*F
      PA(4) = SP*FF + I00*C + I10*D
      PA(5) = CP*F
      PA(6) = CP*FF
      PA(7) = CP*(I21*A + I31*B)
      PA(8) = CP*(I31*A + I41*B)
C
C     CHECK HARMONIC NO.  IF(XN = 0.0) DOUBLE PA VECTOR
C
      IF (XN .NE. 0.0) GO TO 30
      DO 20 I = 1,8
   20 PA(I) = 2.0*PA(I)
C
C     OMPUTE TRANSFORMATION MATRIX HUQ. SEE MS-28, PP. 15, 16, 24, 25
C
   30 DO 40 I = 1,100
   40 HUQ(I) = 0.0
      HUQ(  1) = ONE
      HUQ( 13) = ONE
      HUQ( 25) = ONE
      HUQ( 36) = ONE
      HUQ( 41) = CP/RA
      HUQ( 45) = XN/RA
      HUQ( 49) = ONE
      HUQ( 51) = ONE
      HUQ( 52) = XL
      HUQ( 63) = ONE
      HUQ( 64) = XL
      HUQ( 75) = ONE
      HUQ( 76) = XL
      HUQ( 77) = XL2
      HUQ( 78) = HUQ(77)*XL
      HUQ( 86) = ONE
      HUQ( 87) = 2.0*XL
      HUQ( 88) = 3.0*HUQ(77)
      HUQ( 91) = CP/RB
      HUQ( 92) = HUQ(91)*XL
      HUQ( 95) = XN/RB
      HUQ( 96) = HUQ(95)*XL
      HUQ( 97) = HUQ(95)*XL2
      HUQ( 98) = HUQ(96)*XL2
      HUQ( 99) = ONE
      HUQ(100) = XL
C
C     CHCEK IF HYQ VECTOR NEEDED
C
      IF (MATID2 .EQ.0   .OR. MATID3 .EQ.0  ) GO TO 60
      IF (ECPT(7).EQ.0.0 .OR. ECPT(9).EQ.0.0) GO TO 60
C
C     FORM  (D) = I*(G)
C
      D11 = ECPT(7)*G11
      D12 = ECPT(7)*G12
      D22 = ECPT(7)*G22
      D33 = ECPT(7)*G33
C
C     PICK UP GSHEAR FROM MAT
C
      INFLAG = 1
      MATID  = MATID3
      TEMP   = ECPT(35)
      CALL MAT (MECPT(1))
      IF (GSHEAR .EQ. 0.0) GO TO 60
C
C     COMPUTE INTEGRALS
C
      B  = SP
      B2 = B*B
      B3 = B*B2
      B4 = B*B3
      RLOG = ALOG(RB/RA)
      RASQ = RA*RA
      RBMA2  = RBMA*RAV
      ORBORA = ONE/RB - ONE/RA
      TWORA  = RA + RA
C
C     IF SP = 0 EVALUATE INTEGRALS DIFFERENTLY
C
      IF (SP .NE. 0.0) GO TO 45
      TEMP1= RAV*RAV
      TEMP3= XL2*XL
      I02  = XL/RAV
      I12  = XL2/(2.0*RAV)
      I22  = TEMP3/(3.0*RAV)
      I03  = XL/TEMP1
      I13  = XL2/(2.0*TEMP1)
      I23  = TEMP3/(3.0*TEMP1)
      I33  = (XL2*XL2)/(4.0*TEMP1)
      GO TO 49
   45 CONTINUE
      I02 = RLOG/B
      I12 = (RBMA - RA*RLOG)/B2
      I22 = (RBMA2 - TWORA*RBMA + RASQ*RLOG)/B3
      I03 =-ORBORA/B
      I13 = (RLOG + RA*ORBORA)/B2
      I23 = (RBMA - TWORA*RLOG - RASQ*ORBORA)/B3
      I33 = (RBMA2 - 3.0*RA*RBMA + 3.0*RASQ*RLOG + RASQ*RA*ORBORA)/B4
C
C     COMPUTE HYQ
C
   49 CONTINUE
      CP2 = CP*CP
      SP2 = SP*SP
      XN2 = XN*XN
      OPI = ONE/PI
      N2D33  = XN2*D33
      SP2D22 = SP2*D22
      OQ  = XL*TS*GSHEAR*RAV + I02*(N2D33 + SP2D22)*OPI
      OQ  = ONE/OQ
      NSP = XN*SP
      NCP = XN*CP
      NSPOPI  = NSP*OPI
      TWOD33  = 2.0*D33
      TEMP1   = D12*ORBORA
      TEMP2   = NSPOPI*(D22 + D33)
      TEMP3   = XN*NSPOPI*(TWOD33 + D22)
      TEMP4   = OQ*0.5*N2D33*CP*OPI
      TEMP5   = OPI*(XN2*TWOD33 + SP2D22)
      TEMP6   = D12*XN2*XL2/RB
      TEMP7   = NSPOPI*CP*0.5
      HYQ( 1) = OQ*(TEMP1*NCP - TEMP7*I03*(D33 + 2.0*D22))
      HYQ( 2) = OQ*(NCP*XL/RB*D12 - TEMP7*I13*(3.0*D33 + D22)
     1        + 1.5*NCP*OPI*I02*D33)
      HYQ( 3) = TEMP4*I03
      HYQ( 4) = TEMP4*I13
      HYQ( 5) = OQ*(TEMP1*XN2  -  TEMP3*I03)
      HYQ( 6) = OQ*(D12*XN2*XL/RB - TEMP3*I13 + TEMP5*I02)
      HYQ( 7) = OQ*(2.0*D11*(RA-RB) + TEMP6 + 2.0*I12*TEMP5 - TEMP3*I23)
      HYQ( 8) = OQ*(-D11*6.*XL*RB + TEMP6*XL + 3.*I22*TEMP5 - TEMP3*I33)
      HYQ( 9) =-OQ*TEMP2*I02
      HYQ(10) = OQ*(XN*XL*(D12 + D33) - TEMP2*I12)
      DO 50 I = 1,10
      HUQ(I+30) = HUQ(I+30) - HYQ(I)
   50 HUQ(I+80) = HUQ(I+80) - HYQ(I)
C
      ITEST = 1
      GO TO 61
   60 ITEST = 0
      HUQ(41) = 0.0
      HUQ(45) = 0.0
      HUQ(91) = 0.0
      HUQ(92) = 0.0
      HUQ(95) = 0.0
      HUQ(96) = 0.0
      HUQ(97) = 0.0
      HUQ(98) = 0.0
      HUQ(99) = 0.0
   61 CONTINUE
C
C     NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
      ISING = -1
      CALL INVERS (10,HUQ(1),10,DUM,0,DETERM,ISING,EHT(1))
      IF (ISING .EQ. 2) CALL MESAGE (-30,40,MECPT(1))
      IF (ITEST .NE. 0) GO TO 62
      HUQ( 85) = 0.0
      HUQ(100) = 0.0
   62 CONTINUE
C
C     COMPLETE SOLUTION
C
C     FIRST OBTAIN PRODUCTS
C                       T
C        EHAT  =  (E)(H  )      AND STORE AT EHT(1) . . . EHT(48)
C                      A
C
C                       T
C        EHBT  =  (E)(H  )      AND STORE AT EHT(49). . . EHT(96)
C                      B
C                                /
C              WHERE  (HUQ) = (HA/HB)
C                                /
C              AND
C                             0    CP   SP   0    0
C
C                             1    0    0    0    0
C
C                             0    CP  -SP   0    0
C                  E MATRIX =
C                             0    0    0    0    SP
C
C                             0    0    0    1    0
C
C                             0    0    0    0    CP
C
      INC1 = 0
      INC2 = 0
  110 DO 120 I = 1,8
      KROW = I + INC1
      NCOL = (I-1)*10 + INC2
      EHT(KROW   ) = SP*HUQ(NCOL+2) + CP*HUQ(NCOL+3)
      EHT(KROW+ 8) =    HUQ(NCOL+1)
      EHT(KROW+16) = CP*HUQ(NCOL+2) - SP*HUQ(NCOL+3)
      EHT(KROW+24) = SP*HUQ(NCOL+5)
      EHT(KROW+32) =    HUQ(NCOL+4)
  120 EHT(KROW+40) = CP*HUQ(NCOL+5)
      IF (INC1 .GT. 0) GO TO 130
      INC1 = 48
      INC2 = 5
      GO TO 110
C
C     PERFORM TRANSFORMATION OF LOAD VECTOR
C
  130 DO 150 J = 1,2
      CALL GMMATS (EHT(48*J-47),6,8,0,PA(1),8,1,0,XI(1))
      K = MECPT(J+1) - 1
      DO 140 I = 1,6
      K = K + 1
  140 Z(K) = Z(K) + XI(I)
  150 CONTINUE
C
  160 RETURN
C
      END