1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
SUBROUTINE CONE (TI,Z)
C
C THIS ROUTINE COMPUTES THE THERMAL LOADS ON A AXISYMMETRIC CONE
C
REAL I00 ,I10
REAL I01 ,I11 ,I21 ,I31 ,I41
REAL I02 ,I12 ,I22
REAL I03 ,I13 ,I23 ,I33
REAL TI(2) ,Z(1) ,PA(8) ,XI(6) ,ECPT(35)
REAL N2D33 ,NSP ,NCP ,NSPOPI
REAL EHT(96) ,HUQ(100) ,HYQ(10)
COMMON /CONDAS/ PI ,TWOPI ,RADEG ,DEGRA ,
1 S4PISQ
COMMON /TRIMEX/ MECPT(35)
COMMON /MATIN / MATID ,INFLAG ,TEMP ,STRESS ,SINTH ,
1 COSTH
COMMON /MATOUT/ G11,G12 ,G13,G22 ,G23,G33 ,RHO,ALPH1,ALPH2 ,
1 ALPH3 ,TSUB0 ,GSUBE ,SIGTEN ,SIGCOM ,
2 SIGSHE ,G2X211 ,G2X212 ,G2X222
EQUIVALENCE (ECPT( 1) ,MECPT(1)),(ECPT( 9), TS )
EQUIVALENCE (ECPT(28) ,RA ),(ECPT(32), RB )
EQUIVALENCE (ECPT(29) ,ZA ),(ECPT(33), ZB )
EQUIVALENCE (ECPT( 6) ,MATID2 ),(ECPT( 8), MATID3)
EQUIVALENCE (GSHEAR ,G12 )
DATA ONE / 1.0 /
C
C DEFINITION OF VARIABLES
C
C ECPT ENTRIES FOR CONE
C
C ECPT(1) INTEGER ELEMENT ID = 1000*ELID + HARMONIC
C ECPT(2) INTEGER SIL A
C ECPT(3) INTEGER SIL B
C ECPT(4) INTEGER MAT ID 1
C ECPT(5) REAL T MEMBRANE THICKNESS
C ECPT(6) INTEGER MAT ID 2
C ECPT(7) REAL MOMENT OF INERTIA
C ECPT(8) INTEGER MAT ID 3
C ECPT(9) REAL SHEAR THICKNESS
C ECPT(10) REAL NON -STRUCTRAL MASS
C ECPT(11) REAL Z1
C ECPT(12) REAL Z2
C ECPT(13) REAL PHI 1
C ECPT(14) REAL 2
C ECPT(15) REAL 3
C ECPT(16) REAL 4
C ECPT(17) REAL 5
C ECPT(18) REAL 6
C ECPT(19) REAL 7
C ECPT(20) REAL 8
C ECPT(21) REAL 9
C ECPT(22) REAL 10
C ECPT(23) REAL 11
C ECPT(24) REAL 12
C ECPT(25) REAL 13
C ECPT(26) REAL 14
C ECPT(27) INTEGER COORDINANT SYSTEM FOR POINT A
C ECPT(28) REAL R (A)
C ECPT(29) REAL Z (A)
C ECPT(30) REAL NULL
C ECPT(31) INTEGER COORDINANT SYSTEM FOR POINT B
C ECPT(32) REAL R (B)
C ECPT(33) REAL Z (B)
C ECPT(34) REAL NULL
C ECPT(35) REAL TEMPERATURE OF MATERIAL
C
C XL LENGTH BETWEEN POINTS
C SP SINE OF PHI
C CP COSINE OF PHI
C I-S INTEGRAL FROM PAGE 46 MS,28
C MATID MATERIAL ID (MAT 1 CARD)
C INFLAG OPTION 2 OF MAT ROUTINE
C TEMP MATERIAL TEMPERATURE
C SINTH 0.0 DUMMY
C COSTH 1.0 DUMMY
C XN HARMONIC NUMBER
C PA(8) TOTAL LOAD VECTOR
C XI(6) CYLINDRICAL LOAD
C
C
C IF MEMBRANE THICKNESS = 0, THEN LOAD IS ZERO
C
IF (ECPT(5) .EQ. 0.0) GO TO 160
C
C COMPUTE L, SINPHI, COSPHI
C
RBMA = RB - RA
ZBMA = ZB - ZA
XL2 = RBMA**2 + ZBMA**2
XL = SQRT(XL2)
IF (XL .EQ. 0.0) GO TO 160
SP = RBMA/XL
CP = ZBMA/XL
C
C COMPUTE I-S
C
XL4 = XL2*XL2
RAV = (RA + RB)*0.5
I00 = XL *RAV
I10 = XL2*(RA + 2.0*RB)/6.0
I01 = XL
I11 = XL2/2.0
I21 = XL2*XL/3.0
I31 = XL4/4.0
I41 = XL4*XL/5.0
C
C SET UP FOR MAT ROUTINE
C
MATID = MECPT(4)
INFLAG= 2
TEMP = ECPT(35)
SINTH = 0.0
COSTH = 1.0
CALL MAT (MECPT(1))
C
C COMPUTE COEFICCIENTS
C
F = (G12*ALPH2 + G22*ALPH1)*ECPT(5)*PI
FF = (G11*ALPH2 + G12*ALPH1)*ECPT(5)*PI
C
C COMPUTE A
C
A = (TI(1)-TSUB0)*F
C
C COMPUTE B
C
B = (TI(2)-TI(1))/XL*F
C
C COMPUTE C
C
C = (TI(1)-TSUB0)*FF
C
C COMPUTE D
C
D = (TI(2)-TI(1))/XL*FF
C
C DECODE N
C
IXN = MECPT(1)/1000
XN = MECPT(1) - IXN*1000 - 1
C
C COMPUTE PA
C
F = I01*A + I11*B
FF = I11*A + I21*B
PA(1) = XN*F
PA(2) = XN*FF
PA(3) = SP*F
PA(4) = SP*FF + I00*C + I10*D
PA(5) = CP*F
PA(6) = CP*FF
PA(7) = CP*(I21*A + I31*B)
PA(8) = CP*(I31*A + I41*B)
C
C CHECK HARMONIC NO. IF(XN = 0.0) DOUBLE PA VECTOR
C
IF (XN .NE. 0.0) GO TO 30
DO 20 I = 1,8
20 PA(I) = 2.0*PA(I)
C
C OMPUTE TRANSFORMATION MATRIX HUQ. SEE MS-28, PP. 15, 16, 24, 25
C
30 DO 40 I = 1,100
40 HUQ(I) = 0.0
HUQ( 1) = ONE
HUQ( 13) = ONE
HUQ( 25) = ONE
HUQ( 36) = ONE
HUQ( 41) = CP/RA
HUQ( 45) = XN/RA
HUQ( 49) = ONE
HUQ( 51) = ONE
HUQ( 52) = XL
HUQ( 63) = ONE
HUQ( 64) = XL
HUQ( 75) = ONE
HUQ( 76) = XL
HUQ( 77) = XL2
HUQ( 78) = HUQ(77)*XL
HUQ( 86) = ONE
HUQ( 87) = 2.0*XL
HUQ( 88) = 3.0*HUQ(77)
HUQ( 91) = CP/RB
HUQ( 92) = HUQ(91)*XL
HUQ( 95) = XN/RB
HUQ( 96) = HUQ(95)*XL
HUQ( 97) = HUQ(95)*XL2
HUQ( 98) = HUQ(96)*XL2
HUQ( 99) = ONE
HUQ(100) = XL
C
C CHCEK IF HYQ VECTOR NEEDED
C
IF (MATID2 .EQ.0 .OR. MATID3 .EQ.0 ) GO TO 60
IF (ECPT(7).EQ.0.0 .OR. ECPT(9).EQ.0.0) GO TO 60
C
C FORM (D) = I*(G)
C
D11 = ECPT(7)*G11
D12 = ECPT(7)*G12
D22 = ECPT(7)*G22
D33 = ECPT(7)*G33
C
C PICK UP GSHEAR FROM MAT
C
INFLAG = 1
MATID = MATID3
TEMP = ECPT(35)
CALL MAT (MECPT(1))
IF (GSHEAR .EQ. 0.0) GO TO 60
C
C COMPUTE INTEGRALS
C
B = SP
B2 = B*B
B3 = B*B2
B4 = B*B3
RLOG = ALOG(RB/RA)
RASQ = RA*RA
RBMA2 = RBMA*RAV
ORBORA = ONE/RB - ONE/RA
TWORA = RA + RA
C
C IF SP = 0 EVALUATE INTEGRALS DIFFERENTLY
C
IF (SP .NE. 0.0) GO TO 45
TEMP1= RAV*RAV
TEMP3= XL2*XL
I02 = XL/RAV
I12 = XL2/(2.0*RAV)
I22 = TEMP3/(3.0*RAV)
I03 = XL/TEMP1
I13 = XL2/(2.0*TEMP1)
I23 = TEMP3/(3.0*TEMP1)
I33 = (XL2*XL2)/(4.0*TEMP1)
GO TO 49
45 CONTINUE
I02 = RLOG/B
I12 = (RBMA - RA*RLOG)/B2
I22 = (RBMA2 - TWORA*RBMA + RASQ*RLOG)/B3
I03 =-ORBORA/B
I13 = (RLOG + RA*ORBORA)/B2
I23 = (RBMA - TWORA*RLOG - RASQ*ORBORA)/B3
I33 = (RBMA2 - 3.0*RA*RBMA + 3.0*RASQ*RLOG + RASQ*RA*ORBORA)/B4
C
C COMPUTE HYQ
C
49 CONTINUE
CP2 = CP*CP
SP2 = SP*SP
XN2 = XN*XN
OPI = ONE/PI
N2D33 = XN2*D33
SP2D22 = SP2*D22
OQ = XL*TS*GSHEAR*RAV + I02*(N2D33 + SP2D22)*OPI
OQ = ONE/OQ
NSP = XN*SP
NCP = XN*CP
NSPOPI = NSP*OPI
TWOD33 = 2.0*D33
TEMP1 = D12*ORBORA
TEMP2 = NSPOPI*(D22 + D33)
TEMP3 = XN*NSPOPI*(TWOD33 + D22)
TEMP4 = OQ*0.5*N2D33*CP*OPI
TEMP5 = OPI*(XN2*TWOD33 + SP2D22)
TEMP6 = D12*XN2*XL2/RB
TEMP7 = NSPOPI*CP*0.5
HYQ( 1) = OQ*(TEMP1*NCP - TEMP7*I03*(D33 + 2.0*D22))
HYQ( 2) = OQ*(NCP*XL/RB*D12 - TEMP7*I13*(3.0*D33 + D22)
1 + 1.5*NCP*OPI*I02*D33)
HYQ( 3) = TEMP4*I03
HYQ( 4) = TEMP4*I13
HYQ( 5) = OQ*(TEMP1*XN2 - TEMP3*I03)
HYQ( 6) = OQ*(D12*XN2*XL/RB - TEMP3*I13 + TEMP5*I02)
HYQ( 7) = OQ*(2.0*D11*(RA-RB) + TEMP6 + 2.0*I12*TEMP5 - TEMP3*I23)
HYQ( 8) = OQ*(-D11*6.*XL*RB + TEMP6*XL + 3.*I22*TEMP5 - TEMP3*I33)
HYQ( 9) =-OQ*TEMP2*I02
HYQ(10) = OQ*(XN*XL*(D12 + D33) - TEMP2*I12)
DO 50 I = 1,10
HUQ(I+30) = HUQ(I+30) - HYQ(I)
50 HUQ(I+80) = HUQ(I+80) - HYQ(I)
C
ITEST = 1
GO TO 61
60 ITEST = 0
HUQ(41) = 0.0
HUQ(45) = 0.0
HUQ(91) = 0.0
HUQ(92) = 0.0
HUQ(95) = 0.0
HUQ(96) = 0.0
HUQ(97) = 0.0
HUQ(98) = 0.0
HUQ(99) = 0.0
61 CONTINUE
C
C NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
ISING = -1
CALL INVERS (10,HUQ(1),10,DUM,0,DETERM,ISING,EHT(1))
IF (ISING .EQ. 2) CALL MESAGE (-30,40,MECPT(1))
IF (ITEST .NE. 0) GO TO 62
HUQ( 85) = 0.0
HUQ(100) = 0.0
62 CONTINUE
C
C COMPLETE SOLUTION
C
C FIRST OBTAIN PRODUCTS
C T
C EHAT = (E)(H ) AND STORE AT EHT(1) . . . EHT(48)
C A
C
C T
C EHBT = (E)(H ) AND STORE AT EHT(49). . . EHT(96)
C B
C /
C WHERE (HUQ) = (HA/HB)
C /
C AND
C 0 CP SP 0 0
C
C 1 0 0 0 0
C
C 0 CP -SP 0 0
C E MATRIX =
C 0 0 0 0 SP
C
C 0 0 0 1 0
C
C 0 0 0 0 CP
C
INC1 = 0
INC2 = 0
110 DO 120 I = 1,8
KROW = I + INC1
NCOL = (I-1)*10 + INC2
EHT(KROW ) = SP*HUQ(NCOL+2) + CP*HUQ(NCOL+3)
EHT(KROW+ 8) = HUQ(NCOL+1)
EHT(KROW+16) = CP*HUQ(NCOL+2) - SP*HUQ(NCOL+3)
EHT(KROW+24) = SP*HUQ(NCOL+5)
EHT(KROW+32) = HUQ(NCOL+4)
120 EHT(KROW+40) = CP*HUQ(NCOL+5)
IF (INC1 .GT. 0) GO TO 130
INC1 = 48
INC2 = 5
GO TO 110
C
C PERFORM TRANSFORMATION OF LOAD VECTOR
C
130 DO 150 J = 1,2
CALL GMMATS (EHT(48*J-47),6,8,0,PA(1),8,1,0,XI(1))
K = MECPT(J+1) - 1
DO 140 I = 1,6
K = K + 1
140 Z(K) = Z(K) + XI(I)
150 CONTINUE
C
160 RETURN
C
END
|