File: dbase.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (1374 lines) | stat: -rw-r--r-- 50,931 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
      SUBROUTINE DBASE
C
C     DRIVER FOR DATABASE MODULE
C
C     THIS UTILITY MODULE TRANSFERS GRID POINT DATA, CONNECTING ELEMENT
C     DATA, AND MOST OF THE OFP DATA BLOCKS (DISPLACEMENT, VELOCITY,
C     ACCELERTION, LOAD, GRID POINT FORCE, EIGENVECTOR, ELEMENT STRESS
C     AND ELEMENT FORCE) TO A FORTRAN FILE, FORMATTED OR UNFORMATTED.
C     THE GRID POINT DATA ARE IN BASIC COORDINATE SYSTEM, AND THE
C     DISPLACEMENT DATA IF REQUESTED, CAN BE IN BASIC SYSTEM (DEFAULT)
C     OR IN GLOBAL COORDINATE SYSTEM. GRID POINTS ARE IN EXTERNAL GRID
C     NUMBERING SYSTEM.
C     THE FORMATTED OUTTP FILE CAN BE PRINTED, OR EDITTED BY SYSTEM
C     EDITOR. ALL OUTPUT LINES ARE 132 COLUMNS OR LESS.
C
C
C     WRITTEN ON THE LAST DAY OF 1988 BY G.CHAN/UNISYS.
C     REVISED 10/89, EXPANDED TO INCLUDE THREE OFP FILES
C
C     DATABASE  EQEXIN,BGPDT,GEOM2,CSTM,O1,O2,O3//C,N,OUTTP/C,N,FORMAT
C                                                /C,N,BASIC   $
C
C               EQEXIN - MUST BE PRESENT
C               BGPDT  - IF PURGE, NO GRID POINT DATA SENT TO OUTTP
C               GEOM2  - IF PURGE, NO ELEMENT CONNECTIVITY DATA SENT TO
C                        OUTTP
C               CSTM   - IF PURGE, DISPLACEMENT VECTOR IN GLOBAL COORD.
C               Oi     - ANY ONE OF NASTRAN STANDARD OFP FILES LISTED
C                        BELOW. IF PURGE, NO DATA SENT TO OUTTP.
C                        IF THE DATA IN THIS OFP FILE IS COORDINATE
C                        SENSITIVE, SUCH AS DISPLACEMENT, THE DATA CAN
C                        BE SENT OUT TO OUTTP IN BASIC OR GLOBAL
C                        COORDINATES AS SPECIFIED THE PARAMETER BASIC.
C               OUTTP  - MUST BE ONE OF THE UT1,UT2,INPT,INP1,...,9 FILE
C               FORMAT = 0, UNFORMATTED OUTPUT TO OUTTP FILE (DEFAULT)
C                      = 1, FORMATTED
C               BASIC  = 0, DISPLACEMENT VECTORS REMAIN IN GLOBAL COORD.
C                           SYSTEM (DEFAULT)
C                      = 1, DISPLACEMENT VECTORS IN BASIC COORD. SYSTEM
C                           (NOT USED IN ELEMENT FORCES AND STRESSES)
C
C     LIST OF AVAILABLE OFP FILES (Oi)
C          OUDV1,  OUDVC1, OUGV1,  OUHV1,  OUHVC1, OUPV1,  OUPVC1,
C          OUDV2,  OUDVC2, OUGV2,  OUHV2,  OUHVC2, OUPV2,  OUPVC2,
C          OUBGV1, OPHID,  OPHIG,  OPHIH,  OCPHIP,
C          OPG1,   OPP1,   OPPC1,  OQG1,   OQP1,   OQPC1,  OQBG1,
C          OPG2,   OPP2,   OPPC2,  OQG2,   OQP2,   OQPC2,  OQBG2,
C          OEF1,   OEFC1,  OES1,   OESC1,  OEFB1,  OBEF1,
C          OEF2,   OEFC2,  OES2,   OESC2,  OESB1,  OBES1
C          OES1A,
C          HOUDV1, HOUGV1, HOPG1,  HOQG1,  HOEF1,  HOES1,  HOPNL1,
C          HOUDV2, HOUGV2, HOPP2,  HOQP2,  HOEF2,  HOEFIX, HOPNL2
C
C
C     MAP THIS ROUTINE IN LINK2, LINK4 AND LINK14
C
      IMPLICIT INTEGER (A-Z)
      LOGICAL          FMTTD,BASC,NOCSTM,NOBGPT,NOGEOM,DEBUG,EFS,ECXYZ
      INTEGER          SUB(2),B(5),NAM(8),A(10),FMT(4),ONAME(6),SUBN(3),
     1                 A1(80),F(79),F8(6),INPX(3),IX(1),FSTF(4),INP(8)
      REAL             RX(200),RZ(1),RA(1),T(9),FREQ
      CHARACTER*8      CA,MO,CAMO,BA,GL,BAGL,GPT,ELM,DIS,LOD,FORC,VELO,
     1                 ACC,EIGN,STR,ELF,DXX,DYY(3),DASH,BLK8
      CHARACTER        UFM*23,UWM*25,UIM*29
      COMMON /XMSSG /  UFM,UWM,UIM
      COMMON /SYSTEM/  SYSBUF,NOUT,NOGO
      COMMON /ZZZZZZ/  Z(1)
      COMMON /BLANK /  OUTTP,FORMTD,BASIC
      COMMON /GPTA1 /  NEL,LAST,INCR,E(1)
      COMMON /MACHIN/  MACH
      COMMON /NAMES /  RD,RDREW,WRT,WRTREW,REW,NOREW,EOFNRW
      EQUIVALENCE      (Z(1),RZ(1)),       (B(1),NAM(1)),
     1                 (A(1),RA(1),A1(3)), (RX(1),IX(1))
      DATA    EQEXIN,  BGPDT, GEOM2,  CSTM,  SCR1,  SUB              /
     1        101,     102,   103,    104,   301,   4HDBAS,4HE       /
      DATA    END1,    END2,  END3,   FMT                            /
     1        4H -EN,  2HD-,  2H--,   4H, UN,4HFORM,4HATTE,1HD       /
      DATA    FMT1,    MONE,  BLANK,  BZERO, IZERO,        DEBUG     /
     1        1H,,     -1,    4H    , 4H 0.0,4H-0  ,       .FALSE.   /
      DATA    LS,      INPX,                 LIMAF,        LIMRX     /
     1        1HS,     4H INP,4HINPT, 4H  UT,    78,       200       /
      DATA    GPT,            ELM,           DIS,          DASH      /
     1        'GRID PTS',     'ELEMENTS',    'DISPLCNT',  '--------' /
      DATA    LOD,            FORC,          VELO,         BLK8      /
     1        'LOADINGS',     'GD FORCE',    'VELOCITY',  '        ' /
      DATA    ACC,            EIGN,          STR,          ELF       /
     1        'ACCELERN',     'EIGENVCR',    'E.STRESS',  'E.FORCES' /
      DATA    CA,             MO,            BA,           GL        /
     1        ' CASE = ',     ' MODE = ',    '  BASIC ',  ' GLOBAL ' /
      DATA    FSTF / 4H1ST , 4H2ND ,4H3RD ,  4H4TH /   ,   INP       /
     1        4HEQEX,2HIN  , 4HBGPD,2HT  ,   4HGEOM,4H2   ,4HCSTM,1H /
C
C
      IF (DEBUG) WRITE (NOUT,10)
   10 FORMAT (/5X,'-- DBASE LOCAL DEBUG --')
      NAM(1) = 106
      CALL RDTRL (NAM(1))
      IF (NAM(1) .GT. 0) GO TO 20
      CALL PAGE
      WRITE  (NOUT,15) UIM
   15 FORMAT (A29,', DATABASE NEW DMAP FORMAT', //5X,
     1       'DATABASE   EQEXIN,BGPDT,GEOM2,CSTM,O1,O2,O3//C,N,OUTTP/',
     2       'C,N,FORMAT/C,N,BASIC  $', /5X,'FIRST 4 FILES ARE FIXED ',
     3       'IN NAMES AND ORDER, NEXT 3 FILES CAN BE SELECTED BY USER',
     4       /5X,'FIRST EQEXIN FILE MUST BE PRESENT, OTHERS CAN BE ',
     5       'SELECTIVELY OMITTED')
   20 IF (OUTTP.GE.11 .AND. OUTTP.LE.24) GO TO 30
      WRITE  (NOUT,25) UFM,OUTTP
   25 FORMAT (A23,', OUTPUT FILE SPEC. ERROR')
      CALL MESAGE (-37,0,SUB)
   30 EFS   = .FALSE.
      FMTTD = .FALSE.
      BASC  = .FALSE.
      ECXYZ = .FALSE.
      IF (FORMTD .EQ. 1) FMTTD = .TRUE.
      IF (BASIC  .EQ. 1) BASC  = .TRUE.
      IF (FMTTD) FMT(1) = FMT1
      CALL FNAME (101,NAM(1))
      IF (NAM(1).EQ.INP(1) .AND. NAM(2).EQ.INP(2)) GO TO 34
      CALL PAGE2 (3)
      WRITE  (NOUT,32) FSTF(1),NAM(1),NAM(2)
   32 FORMAT (//,' *** USER FATAL ERROR IN DATABASE MODULE, THE ',A4,
     1  'INPUT DATA BLOCK ',2A4,' IS ILLEGAL.', /5X,'THE FIRST 4 INPUT',
     2  ' DATA BLOCKS MUST BE ''EQEXIN,BGPDT,GEOM2,CSTM'', AND IN ',
     3  'EXACT ORDER SHOWN')
      NOGO   = 1
   34 NOBGPT = .FALSE.
      NOGEOM = .FALSE.
      NOCSTM = .FALSE.
      NAM(1) = BGPDT
      CALL RDTRL (NAM)
      IF (NAM(1) .LE. 0) NOBGPT = .TRUE.
      IF (NOBGPT) GO TO 35
      CALL FNAME (102,NAM(1))
      IF (NAM(1).EQ.INP(3) .AND. NAM(2).EQ.INP(4)) GO TO 35
      CALL PAGE2 (3)
      WRITE (NOUT,32) FSTF(2),NAM(1),NAM(2)
      NOGO = 1
   35 NAM(1) = GEOM2
      CALL RDTRL (NAM)
      IF (NAM(1) .LE. 0) NOGEOM = .TRUE.
      IF (NOGEOM) GO TO 36
      CALL FNAME (103,NAM(1))
      IF (NAM(1).EQ.INP(5) .AND. NAM(2).EQ.INP(6)) GO TO 36
      CALL PAGE2 (3)
      WRITE (NOUT,32) FSTF(3),NAM(1),NAM(2)
      NOGO = 1
   36 NAM(1) = CSTM
      CALL RDTRL (NAM)
      IF (NAM(1) .LE. 0) NOCSTM = .TRUE.
      IF (NOCSTM) GO TO 37
      CALL FNAME (104,NAM(1))
      IF (NAM(1).EQ.INP(7) .AND. NAM(2).EQ.INP(8)) GO TO 37
      CALL PAGE2 (3)
      WRITE (NOUT,32) FSTF(4),NAM(1),NAM(2)
      NOGO = 1
   37 IF (NOGO .EQ. 1) RETURN
C
      NZ    = KORSZ(Z(1))
      BUF1  = NZ   - SYSBUF
      BUF2  = BUF1 - SYSBUF
      NZ    = BUF2 - 1
      COOR  = 0
C
C     OPEN EQEXIN, READ FIRST RECORD, AND SORT EX-INT TABLE BY INTERNAL
C     NUMBERS, Z(1) THRU Z(NEQ)
C
      FILE = EQEXIN
      CALL OPEN   (*1300,EQEXIN,Z(BUF1),RDREW)
      CALL FWDREC (*1300,EQEXIN)
      CALL READ   (*1300,*60,EQEXIN,Z(1),NZ,1,NEQ)
      J = 0
   40 CALL READ (*1300,*50,EQEXIN,Z(1),NZ,1,NEQ)
      J = J + NZ
      GO TO 40
   50 J = J + NEQ
      J = J*2
      CALL MESAGE (-8,J,SUB)
C
   60 CALL CLOSE (EQEXIN,REW)
      LEFT = NZ - NEQ - 1
      NEQ2 = NEQ/2
      J = NEQ2*5 - LEFT
      IF (J .GT. 0) CALL MESAGE (-8,J,SUB)
      CALL SORT (0,0,2,2,Z(1),NEQ)
C
C     IF BGPDT FILE NOT REQUESTED, SKIP PROCESSING GRID POINT DATA
C
      IF (NOBGPT) GO TO 170
C
C
C     GRID POINTS PROCESSING
C     ======================
C
C     OPEN BGPDT, READ THE ENTIRE RECORD, AND REPLACE THE COORD.SYSTEM
C     WORD BY THE EXTERNAL GRID POINT NUMBER.
C     NOTE - EXT.GRID IDS ARE NO LONGER SORTED.
C     WRITE THE NEW DATA TO SCR1 FILE - EXT.GIRD ID, X,Y,Z BASIC COORD.
C
      FILE = SCR1
      CALL OPEN (*1300,SCR1,Z(BUF1),WRTREW)
      FILE  = BGPDT
      CALL OPEN (*170,BGPDT,Z(BUF2),RDREW)
      CALL FWDREC (*1300,BGPDT)
      NGD   = 0
  100 CALL READ (*110,*110,BGPDT,B(2),4,0,FLAG)
      NGD  = NGD + 1
      K    = NGD*2 - 1
      B(1) = Z(K)
      B(2) = 0
      CALL WRITE (SCR1,B,5,0)
      GO TO 100
  110 CALL WRITE (SCR1,0,0,1)
      CALL CLOSE (SCR1 ,REW)
      CALL CLOSE (BGPDT,REW)
C
C     OPEN SCR1 AND OUTTP
C     SORT THE GRID POINT DATA BY THEIR EXTERNAL NUMBERS
C
C     FOR UNFORMATTED TPAE, TRANSFER GRID DATA FROM SCR1 TO OUTTP IN ONE
C     LONG RECORD
C
C          WORD         CONTENT (UNFORMATTED, 2ND RECORD)
C        ------    ----------------------------------------------------
C             1     NO. OF WORDS (THIS FIRST WORD NOT INCLUDED) IN THIS
C                   RECORD (INTEGER)
C             2     EXTERNAL GRID ID (SORTED)
C             3     0 (NOT USED, RESERVED FOR FUTURE USE. INTEGER)
C         4,5,6     X,Y,Z COORDINATES IN BASIC COORD SYSTEM (REAL)
C             :     REPEAT 2 THRU 6 AS MANY TIMES AS THERE ARE GRIDS.
C
      FILE = SCR1
      JB   = NEQ+ 1
      JBP1 = JB + 1
      JBM1 = JB - 1
      K    = NGD*5
      CALL OPEN (*1300,SCR1,Z(BUF1),RDREW)
      CALL READ (*1300,*1310,SCR1,Z(JBP1),K,1,FLAG)
      CALL CLOSE (SCR1,REW)
      CALL SORT (0,0,5,1,Z(JBP1),K)
C
C     FIRST GRID POINT IDENTIFICATION RECORD TO OUTTP
C
      IF (.NOT.FMTTD) WRITE (OUTTP    ) GPT,DASH
      IF (     FMTTD) WRITE (OUTTP,120) GPT,DASH
  120 FORMAT (1X,2A8)
C
      IF (FMTTD) GO TO 130
      Z(JB) = K
      JE    = K + JB
      WRITE (OUTTP) (Z(J),J=JB,JE)
      GO TO 170
C
C     FOR FORMATTED TAPE
C
C       RECORD   WORD     CONTENT                               FORMAT
C       ------   ----    ----------------------------------------------
C           2      1      TOTAL NUMBER OF GRID POINTS             I8
C           3      1      EXTERNAL GRID ID (NOT SORTED)           I8
C                  2      0 (NOT USED, RESERVED FOR FUTURE USE)   I8
C                3,4,5    X,Y,Z COORDINATES IN BASIC SYSTEM  3(1P,E12.5)
C           :     1-5     REPEAT RECORD 3 AS MANY TIMES AS THERE
C                         ARE GRIDS
C
  130 WRITE  (OUTTP,140) NGD
  140 FORMAT (1X,I8,'= TOTAL NUMBER OF GRID POINTS')
      K = JB
      DO 160 I = 1,NGD
      WRITE  (OUTTP,150) Z(K+1),Z(K+2),RZ(K+3),RZ(K+4),RZ(K+5)
  150 FORMAT (1X,2I8,3(1P,E12.5))
  160 K = K + 5
C
C     IF GEOM2 IS NOT REQUESTED, SKIP PROCESSING ELEMENT DATA
C
  170 IF (NOGEOM) GO TO 490
C
C
C     ELEMENT CONNECTIVITY PROCESSING
C     ===============================
C
C     OPEN GEOM2 AND SCR1. TRANSFER ELEMENT DATA TO SCR1 FILE
C
      FILE = GEOM2
      CALL OPEN (*490,GEOM2,Z(BUF2),RDREW)
      CALL FWDREC (*1300,GEOM2)
C
C     FIRST ELEMENT IDENTIFICATION RECORD TO OUTTUP
C
      IF (.NOT.FMTTD) WRITE (OUTTP    ) ELM,DASH
      IF (     FMTTD) WRITE (OUTTP,120) ELM,DASH
C
  200 CALL READ (*420,*420,GEOM2,B,3,0,FLAG)
      IF (B(1).EQ.B(2) .AND. B(2).EQ.B(3)) GO TO 420
      DO 210 I = 4,LAST,INCR
      IF (B(1) .EQ. E(I)) GO TO 220
  210 CONTINUE
      CALL MESAGE (-61,0,0)
  220 NAM(1) = E(I-3)
      NAM(2) = E(I-2)
      ELTYP  = E(I-1)
      NWDS   = E(I+2)
      PID    = E(I+3)
      SYMBOL = E(I+12)
      NG     = E(I+6)
      G1     = E(I+9) - 1
      NG3    = NG +3
      NE     = 0
      MID    = 0
C               TETRA,WEDGE,HEXA1,HEXA2            FHEX1          FHEX2
      IF (ELTYP.GE.39 .AND. ELTYP.LE.42 .OR. ELTYP.EQ.76.OR.ELTYP.EQ.77)
     1   MID = 2
      NAM(3) = ELTYP
      NAM(4) = SYMBOL
      NAM(5) = NG
      NAM(6) = NE
      NAM(7) = NG3
      NAM(8) = 1
      IF (NG .GT. 13) NAM(8) = 2
      IF (NG .GT. 28) NAM(8) = 3
C
C     FOR UNFORMATTED TAPE -
C
C     ELEMENT HEADER RECORD WRITTEN TO SCR1
C
C        WORD        CONTENT  (UNFORMATTED)
C        ----    ----------------------------------------------------
C         1-2     ELEMENT BCD NAME
C           3     ELEMENT TYPE NUMBER, ACCORDING TO GPTABD ORDER
C           4     ELEMENT SYMBOL (2 LETTERS)
C           5     NG= NUMBER OF GRID POINTS
C           6     NE= TOTAL NO. OF ELEMENTS OF THIS CURRENT ELEMENT TYPE
C           7     NO. OF WORDS IN NEXT RECORD PER ELEMENT = NG+2
C           8     NO. OF 132-COLUMN LINES NEEDED IN NEXT RECORD IF OUTTP
C                 IS WRITTED WITH A FORMAT
C
      FILE  = SCR1
      CALL OPEN (*1300,SCR1,Z(BUF1),WRTREW)
      CALL WRITE (SCR1,NAM,8,0)
      FILE  = GEOM2
  230 CALL READ (*490,*250,GEOM2,A,NWDS,0,FLAG)
      A1(1) = A(1)
      A1(2) = A(2)
      A1(3) = 0
      IF (PID .EQ. 0) A1(2) = 0
      IF (MID .EQ. 2) A1(2) =-A(2)
      DO 240 J = 1,NG
  240 A1(J+3) = A(G1+J)
      CALL WRITE (SCR1,A1,NG3,0)
      NE = NE + 1
      GO TO 230
  250 CALL WRITE (SCR1,0,0,1)
      CALL CLOSE (SCR1,REW)
      FILE = SCR1
      CALL OPEN (*1300,SCR1,Z(BUF1),RDREW)
      CALL READ (*1300,*290,SCR1,Z(JB),LEFT,1,NWDS)
      CALL BCKREC (SCR1)
      IF (.NOT.FMTTD) GO TO 370
      J = 0
      CALL READ (*1300,*270,SCR1,Z(JB),LEFT,0,FLAG)
  270 CALL READ (*1300,*280,SCR1,Z(JB),LEFT,0,FLAG)
      J = J + LEFT
      GO TO 270
  280 J = J + FLAG
      CALL MESAGE (-8,J,SUB)
  290 CALL CLOSE (SCR1,REW)
      Z(JB+5) = NE
      IF (FMTTD) GO TO 300
      K = JB + 7
      WRITE (OUTTP) (Z(J),J=JB,K)
      I = K + 1
      K = NWDS + JB - 1
      WRITE (OUTTP) (Z(J),J=I,K)
      GO TO 200
C
C     ELEMENT RECORD TO SCR1
C
C       WORD      CONTENT, ALL INTEGERS  (UNFORMATTED)
C       ----    ------------------------------------------------
C         1      ELEMENT ID
C         2      POSITIVE INTEGER  = PROPERTY ID
C                ZERO IF ELEM HAS NO PROPERTY ID
C                NEGATIVE INTEGER  = MATERIAL ID (ELEMENT HAS NO
C                  PROPERTY ID, BUT IT HAS A MATERIAL ID)
C         3      0 (NOT USED. RESERVED FOR FUTURE USE)
C       4,5,...  ELEMENT CONNECTING GRID POINTS
C         :      REPEAT 1,2,3,4,... AS MANY TIMES AS THERE ARE ELEMENTS
C                  OF THIS SAME TYPE
C
C
C
C     FOR FORMATTED TAPE -
C
C     ELEMENT HEADER RECORD, IN 8-COLUMN FORMAT
C     (LINE ---+++ IS FOR VIDEO AID, NOT PART OF A RECORD)
C
C     --------++++++++--------++++++++--------++++++++--------++++++++
C     ELEMENT CBAR      TYPE =  34  BR GRIDS =       2 TOTAL = ETC...
C
C       RECORD  COLUMNS    CONTENT                             FORMAT
C       ------  -------  -----------------------------------------------
C          2      1- 8   'ELEMENT '                          8 LETTERS
C                 9-16   ELEMENT NAME                             2A4
C                17-24   '  TYPE ='                          8 LETTERS
C                25-28   ELEM. TYPE NO. ACCORDING TO GPTABD        I4
C                29,30   BLANK                                     2X
C                31-32   ELEMENT SYMBOL                            A2
C                33-40   ' GRIDS ='                          8 LETTERS
C                41-48   NO. OF GRIDS PER ELEMENT                  I8
C                49-56   ' TOTAL ='                          8 LETTERS
C                57-64   TOTAL NO. OF ELEMENTS OF THIS ELEM. TYPE  I8
C                65-72   ' WDS/EL='                          8 LETTERS
C                73-80   NO. OF WORDS PER ELEMENT IN NEXT RECORDS  I8
C                81-88   ' LINES ='                          8 LETTERS
C                89-96   NO. OF LINES (RECORDS) NEEDED ON NEXT     I8
C                        RECORD FOR THIS ELEMENT TYPE
C
C     ELEMENT RECORD
C     THERE SHOULD BE (TOTAL X LINES) RECORDS IN THIS GROUP
C
C       RECORD  WORD      CONTENT                               FORMAT
C       ------  ----     -----------------------------------------------
C          3      1       ELEMENT ID                               I8
C                 2       POSITIVE INTEGER  = PROPERTY ID          I8
C                         ZERO IF ELEM HAS NO PROPERTY ID
C                         NEGATIVE INTEGER  = MATERIAL ID (ELEMENT HAS
C                            NO PROPERTY ID, BUT IT HAS A MATERIAL ID)
C                 3       0 (NOT USED. RESERVED FOR FUTURE USE)    I8
C              4,5,...16  FIRST 13 EXTERNAL CONNECTING GRID PTS.  13I8
C          4              (IF NEEDED)
C              1,2,...15  NEXT 15 GRID POINTS                  8X,15I8
C          5              (IF NEEDED)
C              1,2,...15  MORE GRID POINTS                     8X,15I8
C
C
C     REPEAT FORMATTED RECORD 3 (AND POSSIBLE 4 AND 5) AS MANY TIMES AS
C     THERE ARE ELEMENTS
C
  300 WRITE  (OUTTP,310) (Z(J+JBM1),J=1,8)
  310 FORMAT (1X,'ELEMENT ',2A4,'  TYPE =',I4,2X,A2,' GRIDS =',I8,
     1        ' TOTAL =',I8,' WDS/EL=',I8,' LINES =',I8)
      I  = JB + 8
      DO 360 J = 9,NWDS,NG3
      JE = I + NG3 - 1
      IF (NG3 .GT. 16) GO TO 330
      WRITE (OUTTP,320,ERR=1390) (Z(K),K=I,JE)
C
C     320  FORMAT (1X,16I8,/,(1X,8X,15I8))
C     THIS FORMAT MAY CAUSE AN EXTRA LINE IN SOME MACHINE IF NG3=16
C
  320 FORMAT (1X,16I8)
      GO TO 360
  330 J16 = I + 15
      J17 = I + 16
      WRITE  (OUTTP,320,ERR=1390) (Z(K),K= I,J16)
      IF (NG3 .GT. 31) GO TO 350
      WRITE  (OUTTP,340,ERR=1390) (Z(K),K=J17,JE)
  340 FORMAT (1X,8X,15I8)
      GO TO 200
  350 J31 = I + 30
      J32 = I + 31
      WRITE (OUTTP,340,ERR=1390) (Z(K),K=J17,J31)
      WRITE (OUTTP,340,ERR=1390) (Z(K),K=J32,JE )
  360 I = JE + 1
      GO TO 200
C
C     BYPASSING INSUFF. CORE SITUATION, FORMATTED TAPE ONLY
C
  370 CALL READ (*1300,*1300,SCR1,A,8,0,FLAG)
      A(6) = NE
      WRITE (OUTTP,310,ERR=1390) (A(J),J=1,8)
  380 CALL READ (*1300,*410,SCR1,A,NG3,0,FLAG)
      IF (NG3  .GT. 16) GO TO 390
      WRITE (OUTTP,320,ERR=1390) (A(J),J=1,NG3)
      GO TO 380
  390 WRITE (OUTTP,320,ERR=1390) (A(J),J=1,16)
      IF (NG3  .GT. 32) GO TO 400
      WRITE (OUTTP,340,ERR=1390) (A(J),J=17,NG3)
      GO TO 380
  400 WRITE (OUTTP,340,ERR=1390) (A(J),J=17,32)
      WRITE (OUTTP,340,ERR=1390) (A(J),J=33,NG3)
      GO TO 380
  410 CALL CLOSE (SCR1,REW)
      GO TO 200
C
C
C     LAST RECORD FOR ELEMENT DATA, UNFORMATTED AND FORMATTED
C
C     --------++++++++--------++++++++--------++++++++--------++++++++
C     ELEMENT -END-     TYPE =   0  -- GRIDS =       0 TOTAL =  ETC...
C
  420 CALL CLOSE (GEOM2,REW)
      DO 430 I = 3,8
  430 NAM(I) = 0
      NAM(1) = END1
      NAM(2) = END2
      NAM(4) = END3
      IF (.NOT.FMTTD) WRITE (OUTTP    ) NAM
      IF (     FMTTD) WRITE (OUTTP,310) NAM
C
C
C     PROCESS OFP DATA BLOCKS   SIGNITURE
C     =======================   =========
C       DISPLACEMENT                 1
C       VELOCITIES                  10
C       ACCELERATIONS               11
C       LOADS                        2
C       GRID POINT OR SPC FORCES     3
C       EIGENVECTORS                 7
C       ELEMENT STRESSES, AND        5
C       ELEMENT STRAIN              21
C       ELEMENT FORCES               4
C
C    (GINO INPUT FILE 105,106,107)
C
  490 OFPSET = 0
      OFP  = 0
C
C     SETUP 500-1000 BIG LOOP FOR 3 OFP DATA BLOCKS
C
  500 OFP  = OFP + 1
      OFPX = CSTM + OFP
      NAM(1) = OFPX
      CALL RDTRL (NAM)
C
C     SKIP CURRENT OFP DATA BLOCK IF IT IS PURGED
C
      IF (NAM(1) .LE. 0) GO TO 1000
C
      FILE = OFPX
      CALL OPEN (*1000,OFPX,Z(BUF1),RDREW)
      CALL FWDREC (*980,OFPX)
      JOS  = 2*OFPSET + 1
      OFPSET = OFPSET + 1
      CALL FNAME (OFPX,ONAME(JOS))
      IF (BASC  .AND. NOBGPT .AND. .NOT.NOCSTM) GO TO 660
      IF (NOBGPT .OR. NOCSTM) BASC = .FALSE.
      KOUNT = 0
  510 KOUNT = KOUNT + 1
      FILE  = OFPX
      DO 515 I = 1,6
  515 F8(I) = 0
C
C     IDENTIFY CURRENT OFP DATA BLOCK IS A DISPLACEMENT FILE OR A NON-
C     DISPLACEMENT FILE
C
      CALL READ (*980,*980,OFPX,A,10,0,FLAG)
      DSPL = MOD(A(2),100)
      NWDS = A(10)
      DXX  = BLK8
      IF (NWDS.NE.8 .AND. NWDS.NE.14) GO TO 530
C
C     CURRENT OFP DATA BLOCK IS A DISPLACEMENT FILE
C
      CALL BCKREC (OFPX)
      IF (DSPL .EQ. 1) DXX = DIS
      IF (DSPL .EQ. 2) DXX = LOD
      IF (DSPL .EQ. 3) DXX = FORC
      IF (DSPL.EQ. 7 .OR. DSPL.EQ.14) DXX = EIGN
      IF (DSPL.EQ.15 .OR. DSPL.EQ.10) DXX = VELO
      IF (DSPL.EQ.16 .OR. DSPL.EQ.11) DXX = ACC
      IF (DXX .EQ. BLK8) GO TO 530
      F(1) = 1
      F(2) = 1
      DO 520 I = 3,NWDS
  520 F(I) = 2
      F8(1) = 11222222
      KK  = 1
      NA4 = 22
      IF (NWDS .EQ. 8) GO TO 600
      F8(2) = 22222200
      KK  = 2
      NA4 = 40
      GO TO 600
C
C     CURRENT OFP DATA BLOCK IS STRESS OR EL FORCE FILE.
C     THE DATA RECORDS HAVE VARIABLE LENGTH (I.E NWDS IS NOT A CONSTANT
C     OF 8 OR 14)
C     CONSTRUCT THE FORMAT CODE IN F AND F8
C           1 = INTEGER
C           2 = REAL
C           3 = BCD
C     AND TURN OFF GLOBAL TO BASIC CONVERSION FLAG BASC
C
  530 IF (DSPL .EQ. 4) DXX = ELF
      IF (DSPL .EQ. 5) DXX = STR
      IF (DXX  .EQ.  BLK8) GO TO 1260
      IF (NWDS .GT. LIMAF) GO TO 1350
      IF (BASC) GO TO 1370
      EFS  = .TRUE.
      CALL FWDREC (*980,OFPX)
      CALL READ (*980,*980,OFPX,A,NWDS,0,FLAG)
      DO 540 I = 1,NWDS
      J = NUMTYP(A(I))
      IF (J.EQ.0 .AND. I.GT.1) J = F(I-1)
  540 F(I)  = J
      IF (DEBUG) WRITE (NOUT,545) NWDS,(F(I),I=1,NWDS)
  545 FORMAT (/,' NWDS/@540=',I3,' F=',50I2, /,(14X,50I2))
      AGAIN = 0
      CALL READ (*980,*570,OFPX,A,NWDS,0,FLAG)
      DO 550 I = 1,NWDS
      J = NUMTYP(A(I))
      IF (F(I) .EQ. J) GO TO 550
      IF (J    .NE. 0) F(I) = -J
      AGAIN = 1
  550 CONTINUE
      IF (AGAIN .EQ. 0) GO TO 570
      CALL READ (*980,*570,OFPX,A,NWDS,0,FLAG)
      DO 560 I = 1,NWDS
      IF (F(I) .GT. 0) GO TO 560
      J = NUMTYP(A(I))
      IF (J .NE. 0) F(I) = J
  560 CONTINUE
      IMHERE = 560
      IF (DEBUG) WRITE (NOUT,545) IMHERE,(F(I),I=1,NWDS)
  570 F(NWDS+1) = -9
      CALL BCKREC (OFPX)
      CALL BCKREC (OFPX)
      NA4= 0
      KK = 0
      DO 580 I = 1,NWDS,8
      KK = KK + 1
      K  = I  + 7
      IF (K .GT. NWDS) K = NWDS
      L  = 10000000
      DO 580 J = I,K
      F8(KK) = F8(KK) + F(J)*L
      NA4 = NA4 + F(J)+ 1
      IF (F(J) .EQ. 3) NA4 = NA4 - 3
  580 L  = L/10
      IF (DEBUG) WRITE (NOUT,590) NA4,(F8(I),I=1,KK)
  590 FORMAT (/,'  NA4 =',I4,'  FORMAT CODE/@590 =',6I10)
C
  600 IF (KOUNT .GT. 1) GO TO 605
      IF (.NOT.FMTTD) WRITE (OUTTP    ) DXX,DASH
      IF (     FMTTD) WRITE (OUTTP,120) DXX,DASH
C
  605 IF (ECXYZ) GO TO 680
      ECXYZ = .TRUE.
      NCSTM = 0
      NSUB  = 0
      IF (.NOT.BASC) GO TO 680
C
C     DISPLACEMENT OFP FILE IS PRESENT, USER IS REQUESTING DISPLACEMENT
C     OUTPUT.
C
C     REMEMBER, WE STILL HAVE THE EXT-INT GRID TABLE IN Z(1) THRU Z(NEQ)
C     IN INTERNAL GIRD NUMBER (2ND WORD OF THE EXT-INT PAIR) SORT.
C     NOW, OPEN BGPDT, READ IN THE BASIC GRID POINT DATA (4 WORDS EACH
C     GRID) AND ADD THE EXTERNAL GRID POINT ID IN FRONT OF THE DATA SET.
C     THUS WE CREATE A NEW TABLE AFTER THE EXT-INT TABLE.
C
C     THE FOLLOWING 5 DATA WORDS FOR EACH GRID POINT:
C            EXTERNAL GRID ID
C            COORDINATE SYSTEM ID
C            X,Y,Z COORDINATES, IN BASIC COORD. SYSTEM
C
C     MOVE THIS NEW TABLE TO THE BEGINNING OF OPEN CORE SPACE
C     OVERWRITING THE OLD EXT-INT TABLE WHICH HAS NO LONGER NEEDED,
C     FROM Z(1) THRU Z(NBGT)
C     SORT THIS NEW TABLE BY THE EXTERNAL GRID NUMBERS.
C
      FILE = BGPDT
      CALL OPEN (*1300,BGPDT,Z(BUF2),RDREW)
      CALL FWDREC (*1300,BGPDT)
      K = -1
      J = JB
  610 CALL READ (*620,*620,BGPDT,Z(J+1),4,0,FLAG)
      K = K + 2
      Z(J) = Z(K)
      J = J + 5
      GO TO 610
  620 CALL CLOSE (BGPDT,REW)
      IF (K+1 .NE. NEQ) CALL MESAGE (-61,0,0)
      NBGT = J - JB
      NBG5 = NBGT/5
      DO 630 J = 1,NBGT
  630 Z(J) = Z(J+JBM1)
      CALL SORT (0,0,5,1,Z(1),NBGT)
      IF (DEBUG) WRITE (NOUT,640)
     1   (Z(J),Z(J+1),RZ(J+2),RZ(J+3),RZ(J+4),J=1,NBGT,5)
  640 FORMAT (/11X,'EXT.GRID - COOR - X,Y,Z/@640',/,(10X,2I8,3E11.4))
C
C     OPEN CSTM FILE IF IT EXISTS.  SAVE ALL COORDINATE TRANSFORMATION
C     MATRICES IN THE OPEN CORE SPACE IN Z(ICSTM) THRU Z(NCSTM), EITHER
C     AFTER THE EXT-COORD-X,Y,X TABLE, OR IN FRONT OF THE TABLE
C
      ICSTM = NBGT + 1
      NCSTM = NBGT
      FILE  = CSTM
      CALL OPEN (*1300,CSTM,Z(BUF2),RDREW)
      CALL FWDREC (*1300,CSTM)
      CALL READ (*650,*650,CSTM,Z(ICSTM),LEFT,1,FLAG)
      CALL MESAGE (-8,0,SUB)
  650 CALL CLOSE (CSTM,REW)
      NCSTM = NCSTM+FLAG
      CALL PRETRS (Z(ICSTM),FLAG)
      GO TO 680
C
  660 WRITE  (NOUT,670) UIM
  670 FORMAT (A29,' FROM DATABASE MODULE - DISPLACEMENT VECTORS REMAIN',
     1       ' IN GLOBAL COOR. SYSTEM', /5X,
     2       'DUE TO BGPDT OR CSTM FILE BEING PURGED',/)
      BASC = .FALSE.
C
C     NOW READ THE DISPLACMENT VECTORS (SUBCASES) FROM CURRENT OFP DATA
C     BLOCK, COMPUTE THE DISPLACEMENT FROM THE DISPLACMENT COORDINATE
C     BACK TO SYSTEM BASIC COORDINATE. SAVE THE VECTOR IN SCR1 FOR RE-
C     PROCESSING LATER.
C
C     2 (3 IF COMPLEX DATA) RECORDS PER ELEMENT TYPE,
C     SAME FORMAT AS GINO OUGV1 FILE
C
C     UNFORMATTED TAPE -
C
C     HEADER RECORD (UNFORMATTED)
C
C        RECORD  WORD       CONTENT (UNFORMATTED)
C        ------  ----   -----------------------------------------------
C           1      1     SUBCASE OR MODE NUMBER, INTEGER
C                  2     ZERO OR FREQUENCY, REAL
C                  3     NWDS, NUMBER OF WORDS PER ENTRY IN NEXT RECORD,
C                        INTEGER. (=8 FOR REAL DATA, OR =14 FOR COMPLEX
C                        FOR ALL DISPLACEMENT RECORDS)
C                 4-5    ORIGINAL GINO FILE NAME, BCD
C                 6-7    ' BASIC  '  OR 'GLOBAL  ', BCD
C                8-13    FORMAT CODE FOR NEXT RECORD, INTEGER
C                        8 DIGITS PER WORD,  1 FOR INTEGER
C                                            2 FOR REAL
C                        EX.  13222222       3 FOR BCD
C                                            0 NOT APPLICABLE
C               14-45    TITLE,    BCD
C               46-77    SUBTITLE, BCD
C              78-109    LABEL,    BCD
C
C     DISPLACEMENT RECORDS (UNFORMATTED)
C
C        RECORD  WORD       CONTENT (UNFORMATTED)
C        ------  ----   -----------------------------------------------
C           2      1     LENGTH, THIS FIRST WORD EXCLUDED, OF THIS
C                        RECORD (INTEGER)
C                  2     EXTERNAL GRID POINT NUMBER (INTEGER)
C                  3     POINT TYPE (1=GRID  PT.  2=SCALAR PT.
C                                    3=EXTRA PT.  4=MODAL  PT., INTEGER)
C                4-9     DISPLACEMENTS (REAL PARTS, REAL
C                        T1,T2,T3,R1,R2,R3)
C               10-15    (COMPLEX DATA ONLY)
C                        DISPLACEMENTS (IMGAGINARY PARTS, REAL
C                        T1,T2,T3,R1,R2,R3)
C                  :     REPEAT WORDS 2 THRU 9 (OR 15) AS MANY TIMES AS
C                        THERE ARE GRID POINT DISPLACEMENT DATA
C           :      :     REPEAT RECORD 2 AS MANY TIMES AS THERE ARE
C                        SUBCASES (OR MODES)
C
C
C     FORMATTED TAPE -
C
C     HEADER RECORD (FORMATTED)
C
C        RECORD   WORD      CONTENT (FORMATTED)                   FORMAT
C        ------   ----   -----------------------------------------------
C           1      1-2    ' CASE = ' OR ' MODE = '             8-LETTERS
C                    3    SUBCASE NUMBER                             I8
C                    4    ZERO OR FREQUENCY                     1P,E12.5
C                  5-6    ' WORDS ='                           8-LETTERS
C                    7    NWDS, NUMBER OF WORDS PER ENTRY IN NEXT    I8
C                         RECORD (=8 FOR REAL DATA, OR =14 COMPLEX,
C                         FOR ALL DISPLACEMENT RECORDS)
C                  8-9    ' INPUT ='                           8-LETTERS
C                10-11    ORIGINAL GINO FILE NAME                   2A4
C                12-13    ' COORD ='                           8-LETTERS
C                14-15    ' BASIC  ' OR 'GLOBAL  '                  2A4
C                16-17    '  CODE ='                           8-LETTERS
C                18-23    FORMAT CODE                               6I8
C                         8 DIGITS PER WORD,  1 FOR INTEGER
C                                             2 FOR REAL
C                         EX.  13222200       3 FOR BCD
C                                             0 NOT APPLICABLE
C                   23    NA4, NUMBER OF WORDS PER ENTRY IN NEXT    (I8)
C                         RECORD, IN A4-WORD COUNT (ONLY IF THE
C                         LAST FORMAT CODE WORD IS NOT USED)
C           2     1-32    TITLE,    32 BCD WORDS                   32A4
C           3    33-64    SUBTITLE, 32 BCD WORDS                   32A4
C           4    65-96    LABEL,    32 BCD WORDS                   32A4
C               (95-96    ELEMENT ID, STRESS AND FORCE ONLY         2A4)
C
C
C     DISPLACEMENT RECORDS (FORMATTED)
C
C        RECORD   WORD      CONTENT (FORMATTED)                   FORMAT
C        ------   ------------------------------------------------------
C           5       1     EXTERNAL GRID POINT NUMBER                 I8
C                   2     POINT TYPE (1=GRID  PT.  2=SCALAR PT.      I8
C                                     3=EXTRA PT.  4=MODAL  PT.)
C                 3-8     DISPLACEMENTS (REAL PARTS,         6(1P,E12.5)
C                         T1,T2,T3,R1,R2,R3)
C           6             (COMPLEX DATA ONLY)
C                 1-6     DISPLACEMENTS (IMAGINARY PARTS,    6(1P,E12.5)
C                         T1,T2,T3,R1,R2,R3)
C           :       :     REPEAT RECORD 5 (OR RECORDS 5 AND 6) AS MANY
C                         TIMES AS THERE ARE GRID POINT DISPLACMENT DATA
C         LAST      1     MINUS 0                                    I8
C                   2     MINUS 0                                    I8
C                 3-8     ZEROS                              6(1P,E12.5)
C        LAST+1           (COMPLEX DATA ONLY)
C                 1-6     ZEROS                              6(1P,E12.5)
C
C     IF CURRENT OFP DATA BLOCK IS AN ELEMENT STRESS OR ELEMENT FORCE
C     FILE, THE STRESS OR FORCE DATA HAVE VARIABLE LENGTH. (NWDS IS NO
C     LONGER 8 OR 14.)
C
C     THE ELEMENT STRESS OR FORCE RECORDS -
C
C        RECORD   WORD      CONTENT (UNFORMATTED)
C        ------   ------------------------------------------------------
C           2       1      NO. OF WORDS, EXCLUDING THIS FIRST WORD,
C                          IN THIS RECORD. (INTEGER)
C               2-NWDS+1   ELEMENT ID, STRESS OR FORCE DATA
C                          (VARIABLE DATA TYPES ARE DESCRIBED IN 'CODE')
C                   :      REPEAT (2-NWDS+1) WORDS AS MANY TIMES AS
C                          THERE ARE ELEMENTS
C           :       :      REPEAT RECORD 2 AS MANY TIMES AS THERE ARE
C                          SUBCASES.
C
C         WHERE NWDS IS THE NUMBER OF COMPUTER WORDS PER ENTRY, AND
C               CODE IS THE 6-WORD FORMAT CODE, AS DESCRIBED IN THE
C               HEADER RECORD.
C
C
C        RECORD   WORD      CONTENT (FORMATTED)                   FORMAT
C        ------   ------------------------------------------------------
C           5     1-NA4     ELEMENT ID, STRESS OR FORCE DATA       33A4
C                           (THE DATA TYPES ARE DESCRIBED IN
C                           'CODE'; ALL INTEGERS IN 2A4, REAL
C                           NUMBERS IN 3A4, AND BCD IN A4)
C           :       :       (MAXIMUM RECORD LENGTH IS 132 COLUMNS (33A4)
C                           CONTINUATION AND FOLDED INTO NEXT
C                           RECORD(S) IF NECESSARY.
C           :       :       A CARRIAGE CONTROL WORD ALWAYS PRECEEDS
C                           AN OUTPUT RECORD. THUS 1+132=133 COLUMNS
C                           LAST DATA VALUE ON A RECORD MAY SPILL
C                           TO THE NEXT RECORD)
C           :       :       REPEAT ABOVE RECORD(S) AS MANY TIMES
C                           AS THERE ARE ELEMENTS.
C
C         WHERE NA4 IS THE NUMBER OF WORDS PER ENTRY IN A4-WORD COUNT,
C               AND CODE IS 5-WORD FORMAT CODE
C
  680 FILE  = OFPX
      IOUGV = NCSTM + 1
      CALL READ (*980,*700,OFPX,Z(IOUGV),NZ-IOUGV,1,FLAG)
      CALL MESAGE (-37,FILE,SUB)
  700 IF (FLAG .NE. 146) GO TO 1320
      DSPL = MOD(Z(IOUGV+1),100)
      NWDS = Z(IOUGV+9)
      IF (.NOT.EFS .AND. NWDS.NE.8 .AND. NWDS.NE.14) GO TO 1320
      NSUB = NSUB + 1
      CAMO = CA
      CASE = Z(IOUGV+3)
      FREQ = 0.0
      IF (DSPL.NE.7 .AND. DSPL.NE.14) GO TO 710
      CAMO = MO
      CASE = Z (IOUGV+4)
      FREQ = RZ(IOUGV+5)
  710 BAGL = BA
      IF (.NOT.BASC) BAGL  = GL
      IF (FMTTD .AND. F8(6).EQ.0) F8(6) = NA4
      IF (.NOT.EFS) GO TO 715
      J = (Z(IOUGV+2)-1)*INCR
      Z(IOUGV+144) = E(J+1)
      Z(IOUGV+145) = E(J+2)
  715 IF (.NOT.FMTTD) WRITE (OUTTP)
     1   CASE,FREQ,NWDS,ONAME(JOS),ONAME(JOS+1),F8,(Z(J+IOUGV),J=50,145)
      IF ( FMTTD) WRITE (OUTTP,720) CAMO,CASE,
     1   FREQ,NWDS,ONAME(JOS),ONAME(JOS+1),BAGL,F8,(Z(J+IOUGV),J=50,145)
  720 FORMAT (1X,A8,I8,1P,E12.5,' WORDS =',I8,' INPUT =',2A4,
     1   ' COORD =',A8,'  CODE =',6I8, /1X,32A4, /1X,32A4, /1X,32A4)
      IF (FMTTD) GO TO 730
      FILE = SCR1
      CALL OPEN (*1300,SCR1,Z(BUF2),WRTREW)
      FILE = OFPX
  730 CALL READ (*970,*870,OFPX,A,NWDS,0,FLAG)
      A(1) = A(1)/10
      IF (EFS) GO TO 790
      IF (DEBUG) WRITE (NOUT,740) A(1)
  740 FORMAT (10X,'EXT.GRID/@740 =',I8)
      IF (BASC) GO TO 1200
  750 IF (COOR .LE. 0) GO TO 790
C
C     TRANSFORM THE DISPLACEMENT VECTOR FROM GLOBAL TO BASIC
C     UPON RETURN FROM 800, TRANSFORMATION MATRIX IN T
C
      DO 760 I = 3,NWDS
  760 RX(I)  = RA(I)
      CMPLX  = 0
  770 CALL GMMATS (T,3,3,0, RX(3),3,1,0, RA(3+CMPLX))
      CALL GMMATS (T,3,3,0, RX(6),3,1,0, RA(6+CMPLX))
      IF (NWDS.NE.14 .OR. CMPLX.EQ.6) GO TO 790
      CMPLX = 6
      DO 780 I = 3,8
  780 RX(I) = RX(I+CMPLX)
      GO TO 770
C
C     WRITE THE 8 (OR 14) DATA WORDS OUT TO SCR1 FILE IF OUTTP IS
C     UNFORMATTED, OR WRITE TO OUTTP DIRECTLY IF OUTTP IS FORMATTED
C
  790 IF (FMTTD) GO TO 800
      CALL WRITE (SCR1,A,NWDS,0)
      GO TO 730
  800 IF (EFS) GO TO 830
      WRITE  (OUTTP,810,ERR=1390) A(1),A(2),(RA(K),K=3,8)
  810 FORMAT (1X,2I8,6(1P,E12.5))
      IF (NWDS .EQ. 14) WRITE (OUTTP,820,ERR=1390) (RA(K),K=9,14)
  820 FORMAT (17X,6(1P,E12.5))
      GO TO 730
C
C     ELEMENT STRESS AND ELEMENT FORCE HAVE MIXED DATA, CHANGE THEM ALL
C     TO BCD WORDS, AND WRITE THEM OUT TO OUTTP UNDER A4 FORMAT
C     MAXIMUM OF 132 COLUMNS PER LINE.
C     NOTE - LAST DATA VALUE ON OUTPUT LINE MAY SPILL INTO NEXT RECORD.
C
  830 L = 0
      K = 0
  840 K = K + 1
      IF (F(K) .EQ. -9) GO TO 850
      IF (L+3 .GT. LIMRX) GO TO 1340
      CALL IFB2AR (F(K),A(K),IX,L)
      GO TO 840
  850 WRITE  (OUTTP,860,ERR=1390) (IX(K),K=1,L)
  860 FORMAT (1X,33A4)
      GO TO 730
C
C
C     JUST FINISH ONE VECTOR
C
C     UNFORMATTED TAPE -
C     TRANSFER THIS VECTOR FROM SCR1 TO OUTTP IN ONE LONG RECORD
C     (NO ZERO RECORD)
C     LOOP BACK FOR NEXT VECTOR
C
  870 IF (FMTTD) GO TO 890
      CALL WRITE (SCR1,0,0,1)
      CALL CLOSE (SCR1,REW)
      FILE = SCR1
      CALL OPEN (*1300,SCR1,Z(BUF2),RDREW)
      CALL READ (*880,*880,SCR1,Z(IOUGV+1),NZ-IOUGV,1,K)
      CALL MESAGE (-8,FILE,SUB)
  880 CALL CLOSE (SCR1,REW)
      Z(IOUGV) = K
      KIOUGV   = K + IOUGV
      WRITE (OUTTP) (Z(J),J=IOUGV,KIOUGV)
      GO TO 510
C
C     FORMATTED TAPE -
C     (DISPLACEMENTS ALREDY WRITTEN OUT IN SHORT RECORDS)
C     WRITE A ZERO RECORD
C     AND LOOP BACK FOR NEXT VECTOR
C
  890 IF (EFS) GO TO 920
      DO 900 I = 1,6
  900 RX(I) = 0.0
      WRITE  (OUTTP,910,ERR=1390) (RX(I),I=1,6)
  910 FORMAT (1X,2(6X,2H-0),6(1P,E12.5))
      IF (NWDS .EQ. 14) WRITE (OUTTP,820,ERR=1390) (RX(I),I=1,6)
      GO TO 510
C
C     WRITE A ZERO RECORD FOR EL.STRESS OR EL.FORCE TYPE OF DATA
C
  920 L = 0
      DO 960 I = 1,NWDS
      IX(L+2) = BLANK
      FI = F(I)
      GO TO (930,940,950), FI
  930 IX(L+1) = IZERO
      L = L + 2
      GO TO 960
  940 IX(L+1) = BZERO
      IX(L+3) = BLANK
      L = L + 3
      GO TO 960
  950 L = L + 1
  960 CONTINUE
      WRITE (OUTTP,860,ERR=1390) (IX(I),I=1,L)
      GO TO 510
C
C     END OF CURRENT OFP FILE
C     ADD AN ENDING RECORD TO OUTTP FILE AND ENDFILE
C
  970 CALL CLOSE (SCR1,REW)
  980 CALL CLOSE (OFPX,REW)
C
      DYY(OFPSET)  = DXX
      SUBN(OFPSET) = NSUB
      CASE = 0
      FREQ = 0.0
      Z(1) = 0
      J    = 0
      Z(J+2) = END1
      Z(J+3) = END2
      Z(J+4) = BLANK
      DO 985 J = 5,10
  985 Z(J) = 0
      DO 990 J = 11,106
  990 Z(J) = BLANK
      IF (.NOT.FMTTD) WRITE (OUTTP) CASE,FREQ,(Z(J),J=1,106)
      IF (     FMTTD) WRITE (OUTTP,720,ERR=1390) CAMO,CASE,FREQ,
     1                      (Z(J),J=1,106)
 1000 IF (OFP .LT. 3) GO TO 500
C
C     JOB DONE. WRITE A USER FRIENDLY MESSAGE OUT
C
      ENDFILE OUTTP
      REWIND  OUTTP
      SET = OFPSET
      IF (.NOT.NOBGPT) SET = SET + 1
      IF (.NOT.NOGEOM) SET = SET + 1
      J = BLANK
      IF (SET .GT. 1) J = LS
      K = 3 + 2*SET
      CALL PAGE2 (K)
      IF (OUTTP .GT. 12) GO TO 1010
      NAM(1) = INPX(3)
      NAM(2) = OUTTP - 10
      GO TO 1020
 1010 NAM(1) = INPX(1)
      NAM(2) = OUTTP - 14
      IF (OUTTP.NE.14 .AND. OUTTP.NE.25) GO TO 1020
      WRITE (NOUT,1030) UIM,SET,J,INPX(2)
      GO TO 1040
 1020 WRITE  (NOUT,1030) UIM,SET,J,NAM(1),NAM(2)
 1030 FORMAT (A29,' -', /5X,'DATABASE MODULE TRANSFERRED THE FOLLOWING',
     1       I3,' SET',A1,' OF DATA TO OUTPUT FILE ',A4,I1)
 1040 WRITE  (NOUT,1050) OUTTP,FMT
 1050 FORMAT (1H+,85X,'(FORTRAN UNIT',I3,1H),4A4)
      SET = 0
      IF (NOBGPT) GO TO 1070
      SET = SET + 1
      WRITE  (NOUT,1060) SET
 1060 FORMAT (/4X,I2,'. GRID POINT DATA - EXTERNAL NUMBERS AND BASIC ',
     1        'RECTANGULAR COORDINATES')
 1070 IF (NOGEOM) GO TO 1090
      SET = SET + 1
      WRITE  (NOUT,1080) SET
 1080 FORMAT (/4X,I2,'. ELEMENT CONNECTIVITY DATA - ALL GRID POINTS ',
     1        'ARE EXTERNAL NUMBERS')
 1090 IF (OFPSET .EQ. 0) GO TO 1190
      JSO = 1
      DO 1180 J = 1,OFPSET
      SET  = SET + 1
      NSUB = SUBN(J)
      WRITE  (NOUT,1100) SET,DYY(J),ONAME(JSO),ONAME(JSO+1)
 1100 FORMAT (/4X,I2,2H. ,A8,' DATA FROM INPUT FILE ',2A4)
      IF (EFS) GO TO 1120
      IF (     BASC) WRITE (NOUT,1110)
      IF (.NOT.BASC) WRITE (NOUT,1115)
 1110 FORMAT (1H+,46X,', CONVERTED TO BASIC RECT. COORDINATES,')
 1115 FORMAT (1H+,46X,', IN NASTRAN GLOBAL COORDINATE SYSTEM,')
      IF (DSPL.EQ.7 .OR. DSPL.EQ.14) GO TO 1140
 1120 IF (.NOT.EFS) WRITE (NOUT,1125) NSUB
      IF (     EFS) WRITE (NOUT,1130) NSUB
 1125 FORMAT (1H+,87X,I4,' SUBCASES')
 1130 FORMAT (1H+,46X,I4,' SUBCASES')
      GO TO 1160
 1140 WRITE  (NOUT,1150) NSUB
 1150 FORMAT (1H+,87X,I4,' FRQUENCIES')
 1160 IF (NOBGPT .AND. NOGEOM) WRITE (NOUT,1170)
 1170 FORMAT (/6X,'1. NONE')
 1180 JSO = JSO + 2
      RETURN
C
 1190 WRITE (NOUT,1170)
      RETURN
C
C     INTERNAL ROUTINE TO SEARCH FOR THE EXTERNAL GRID POINT AND RETURN
C     THE DISPLACEMENT COORDINATE ID ASSOCIATE WITH THAT POINT, AND SET
C     THE POINTER TO WHERE THE COORDINATE TRANSFORMATION MATRIX DATA
C     BEGINS.
C     EXTERNAL GRID VS. COORD SYSTEM ID TABLE IN Z(1) THRU Z(NEQ), IN
C     EXTERNAL GRID SORT
C     THE COORDINATE TRANSFORMATION MATRICES IN Z(ICSTM) THRU Z(NCSTM),
C     (14 WORDS PER MATRIX, FROM GLOBAL TO BASIC)
C
 1200 GRID = A(1)
      KLO  = 0
      KHI  = NBG5
      LASTK= 0
 1210 K = (KLO+KHI+1)/2
      IF (LASTK .EQ. K) CALL MESAGE (-61,0,0)
      LASTK = K
      K5  = K*5
      IF (GRID-Z(K5-4)) 1220,1240,1230
 1220 KHI = K
      GO TO 1210
 1230 KLO = K
      GO TO 1210
 1240 COOR = Z(K5-3)
      IF (COOR .LE. 0) GO TO 750
      CALL TRANSS (Z(K5-3),T)
      IF (.NOT.DEBUG) GO TO 750
      WRITE  (NOUT,1250) GRID,COOR,T
 1250 FORMAT (20X,'EXT GRID, COORD.ID AND TRANSF.MATRIX/@1250 =',2I8,
     1        /,(25X,3E13.5))
      GO TO 750
C
C     ILLEGITIMATE DATA IN OUGV FILE, ADVANCE TO NEXT RECORD
C
 1260 CALL FWDREC (*980,OUGV)
      CALL FWDREC (*980,OUGV)
      GO TO 510
C
C     ERRORS
C
 1300 J = -1
      GO TO 1400
 1310 J = -2
      GO TO 1400
 1320 WRITE  (NOUT,1325) UIM,ONAME(JSO),ONAME(JSO+1)
 1325 FORMAT (A29,', DATABASE MODULE SKIPS OUTPUTING ',2A4,
     1       ' FILE (OR PART OF THE FILE), DUE TO')
      WRITE  (NOUT,1330) NWDS
 1330 FORMAT (5X,'THE REQUEST OF AN ILLEGITIMATE DATA BLOCK.', 7X,
     1       'NO. OF WORDS =',I6)
      GO TO 1380
 1340 WRITE  (NOUT,1325) UIM,ONAME(JSO),ONAME(JSO+1)
      WRITE  (NOUT,1345) LIMRX
 1345 FORMAT (5X,'THE RX WORKING ARRAY OF',I5,' WORDS IN DBASE ',
     1       'SUBROUTINE IS NOT BIG ENOUGH TO RECEIVE OFP DATA.')
      GO TO 1360
 1350 WRITE  (NOUT,1325) UIM,ONAME(JSO),ONAME(JSO+1)
      WRITE  (NOUT,1355) LIMAF
 1355 FORMAT (5X,'THE A AND F WORKING ARRAYS OF',I4,' WORDS IN DBASE ',
     1       'SUBROUTINE ARE NOT BIG ENOUGH TO RECEIVE OFP DATA.')
 1360 WRITE  (NOUT,1365)
 1365 FORMAT (5X,'SUGGESTION - USE OUTPUT5 OR OUTPUT2 TO CAPTURE THE ',
     1       'REQUESTED DATA BLOCK')
      GO TO 1260
 1370 WRITE  (NOUT,1325) UIM,ONAME(JSO),ONAME(JSO+1)
      WRITE  (NOUT,1375)
 1375 FORMAT (5X,'ELEMENT STRESSES OR FORCES CAN NOT BE OUTPUT IN ',
     1       'BASIC COORDINATES AS REQUESTED')
 1380 CALL CLOSE (OFPX,REW)
      GO TO 1000
 1390 WRITE  (NOUT,1395)
 1395 FORMAT ('0*** SYSTEM FATAL ERROR WRITING FORMATTED TAPE IN DATA',
     1        'BASE MODULE')
      IF (MACH .EQ. 3) WRITE (NOUT,1396)
 1396 FORMAT (5X,'IBM USER - CHECK FILE ASSIGNMENT FOR DCB PARAMETER ',
     1       'OF 133 BYTES')
      J = -37
 1400 CALL MESAGE (J,FILE,SUB)
      RETURN
C     END
C
C
C     THE FOLLOWING PROGRAM WAS USED TO CHECKOUT THE UNFORMATTED TAPE
C     GENERATED BY DBASE. IT CAN BE SERVED AS A GUIDE TO OTHER USER WHO
C     WANTS TO ABSTRACT DATA FROM THAT TAPE.
C
C
C+    PROGRAM RDBASE
C
C     THIS FORTRAN PROGRAM READS THE UNFORMATTED OUTPUT FILE INP1
C     (FORTRAN UNIT 15) GENERATED BY DATABASE MODULE
C
C     (1) GRID POINTS DATA ARE READ AND SAVED IN GRID-ARRAY
C     (2) ELEMENTS DATA ARE READ AND SAVED IN ELM-ARRAY,
C         WITH ELEMENT NAMES AND POINTERS IN SAVE-ARRAY
C     (3) DISPLACEMENTS (VELOCITIES, ACCELERATIONS, LOADS, GRID-POINT
C         FORCE, OR EIGENVECTORS) DATA ARE READ AND SAVED IN DIS-ARRAY,
C         WITH SUBASES AND POINTERS IN SAVD-ARRAY
C
C     TO READ ELEMENT FORCES OR ELEMENT STRESSES, (3) ABOVE NEEDS SOME
C     CHANGES. PARTICULARLY WE NEED THE INFORMATION IN CODE TO GIVE US
C     THE TYPE OF EACH DATA WORD IN THE DATA LINE.
C     ASSUME CODE(1) = 11222222
C            CODE(2) = 31222000
C     THIS MEANS
C            THE 1ST, 2ND, AND 10TH DATA WORDS ARE INTEGERS;
C            9TH DATA WORD IS BCD; AND
C            3RD THRU 8TH, 11TH, 12TH AND 13TH WORDS ARE REAL NUMBERS
C
C
C     ANY OF ABOVE 3 SETS OF DATA NEED NOT EXIST IN ORIGINAL INP1 FILE
C
C     WRITTEN BY G.CHAN/UNISYS, JAN. 1989
C
C+    IMPLICIT INTEGER (A-Z)
C+    INTEGER          GRID(5,500),ELM(35,300),DIS(11200),SAVE(4,10),
C+   1                 SAVD(3,20),NAME(2),TITLE(32),SUBTTL(32),
C+   2                 LABL(32),CODE(6)
C+    REAL             GRIR(5,1),RIS(1),FREQ
C+    DOUBLE PRECISION GED,GD,EL,DS,ENDD,COORD
C+    EQUIVALENCE      (GRID(1),GRIR(1)),(DIS(1),RIS(1))
C+    DATA             INTAP, NOUT, MAXGRD, MAXELM, MAXDIS, MAXWDS    /
C+   1                 15,    6,    500,    300,    11200,  35        /
C+    DATA             GD,         EL,         DS,          END1      /
C+   1                 8HGRID PTS, 8HELEMENTS, 8HDISPLCNT,  4H -EN    /
C
C+    REWIND INTAP
C
C     READ DATA IDENTICATION RECORD
C
C+ 10 READ (INTAP,END=500) GED
C+    IF (NOUT .EQ. 6) WRITE (NOUT,20) GED
C+ 20 FORMAT (1X,A8,'--------')
C+    IF (GED .EQ. GD) GO TO 100
C+    IF (GED .EQ. EL) GO TO 200
C+    IF (GED .EQ. DS) GO TO 310
C+    STOP 'DATA TYPE UNKNOWN'
C
C     PROCESS GRID DATA
C     =================
C
C     READ GRID POINT DATA, ONE LONG RECORD OF MIXED INTEGERS AND REALS
C
C+100 READ (INTAP,END=500) L,(GRID(J,1),J=1,L)
C+    IF (NOUT .NE. 6) GO TO 10
C+    NGRID = L/5
C+    IF (NGRID .GT. MAXGRD) STOP 'GRID DIMENSION TOO SMALL'
C+    WRITE  (NOUT,110) NGRID
C+110 FORMAT (1X,I8,'=TOTAL NO. OF GRID POINTS')
C+    DO 130 I = 1,NGRID
C+    WRITE (NOUT,120) GRID(1,I),GRID(2,I),GRIR(3,I),GRIR(4,I),GRIR(5,I)
C+120 FORMAT (1X,2I8,3(1P,E12.5))
C+130 CONTINUE
C+    GO TO 10
C
C     PROCESS ELEMENT DATA
C     ====================
C
C+200 JS = 0
C+    JE = 0
C+
C+    READ ELEMENT HEADER RECORD, 8 WORDS
C+
C+210 READ (INTAP,END=500) NAME,TYPE,SYMBOL,GRIDS,TOTAL,WDS,LINE
C+    IF (NAME(1).EQ.END1 .AND. TYPE.EQ.0) GO TO 250
C+    IF (WDS .GT. MAXWDS) STOP 'ELM ROW DIMENSION TOO SMALL'
C+    IF (JE  .GT. MAXELM) STOP 'ELM COL DIMENSION TOO SMALL'
C+    JB = JE + 1
C+    JE = JE + TOTAL
C
C     READ ELEMENT DATA, ONE LONG RECORD PER ELEMENT TYPE (ALL INTEGERS)
C
C+    READ (INTAP) ((ELM(I,J),I=1,WDS),J=JB,JE)
C+    JS = JS + 1
C+    IF (JS .GE. 10) STOP 'SAVE DIMENSION TOO SMALL'
C
C     SAVE ELEMENT NAMES AND BEGINNING POINTERS IN SAVE-ARRAY
C     FOR EASY IDENTIFICATION
C
C+    SAVE(1,JS) = NAME(1)
C+    SAVE(2,JS) = NAME(2)
C+    SAVE(3,JS) = JB
C+    SAVE(4,JS) = WDS
C+    IF (NOUT .NE. 6) GO TO 210
C+    WRITE  (NOUT,220) NAME,TYPE,SYMBOL,GRIDS,TOTAL,WDS,LINE
C+220 FORMAT (1X,'ELEMNT =',2A4,'  TYPE =',I4,2X,A2,' GRIDS =',I8,
C+   1           ' TOTAL =',I8,' WDS/EL=',I8,      ' LINE  =',I8)
C+    DO 240 J = JB,JE
C+    WRITE  (NOUT,230) (ELM(I,J),I=1,WDS)
C+230 FORMAT (1X,3I8,13I8, /,(1X,8X,15I8))
C+240 CONTINUE
C+    GO TO 210
C
C     WRAP UP SAVE-ARRAY
C
C+250 JS = JS + 1
C+    SAVE(1,JS) = END1
C+    SAVE(2,JS) = NAME(2)
C+    SAVE(3,JS) = JE + 1
C+    SAVE(4,JS) = 0
C+    IF (NOUT .NE. 6) GO TO 10
C+    WRITE (NOUT,260)
C+    WRITE (NOUT,270) ((SAVE(I,J),I=1,4),J=1,JS)
C+260 FORMAT (/30X,'THIS REFERENCE TABLE IS NOT PART OF INPUT FILE')
C+270 FORMAT (40X,2A4,3H @ ,I4,',  WORDS=',I3)
C+    GO TO 10
C
C     PROCESS DISPLACEMENT DATA
C     =========================
C
C
C+300 STOP 'ERROR IN READING DISPLACEMENT DATA'
C+
C+310 KB = 1
C+    KS = 0
C
C     READ DISPLACEMENT HEADER RECORD
C
C+320 KS = KS + 1
C+    IF (KS .GT. 20) STOP 'SAVD DEMINSION TOO SMALL'
C+    READ (INTAP,END=390) CASE,FREQ,NWDS,NAME,COORD,CODE,TITLE,SUBTTL,
C+                         LABEL
C+    IF (CASE+NWDS .EQ. 0) GO TO 390
C+    IF (NOUT      .NE. 6) GO TO 340
C+    WRITE  (NOUT,330) CASE,FREQ,NWDS,NAME,COORD,CODE(1),CODE(2),TITLE,
C+                      SUBTTL,LABEL
C+330 FORMAT ('  CASES =',I8,1P,E12.5,' WORDS =',I8,' INPUT =',2A4,
C+   1        '  COORD =',A8,'  CODE = ',2I8, /,(1X,32A4))
C
C     DISPLACEMENT RECORS HAVE EITHER 8 OR 14 WORDS EACH DATA POINT
C     WITH CODE(1)=11222222, CODE(2) THRU (6) ARE ZEROS.
C
C
C     ------------------------------------------------------------------
C     IF ELEMENT STRESS OR ELEMENT FORCE FILE IS READ HERE, NWDS IS A
C     VARIABLE, NOT NECESSARY 8 OR 14. ALL INTEGERS ARE IN 2A4 FORMAT
C     (8-DIGITS), ALL REAL NUMBERS IN 3A4 (12-DIGITS), AND BCD WORD IN
C     A4 (4-LETTERS). THERE ARE NA4 A4-WORDS FOR EACH ELEMENT THAT HOLD
C     NWDS DATA VALUES.  MAXIMUM RECORD LENGTH IS 132 COLUMNS. ONE OR
C     MORE RECORDS ARE NEEDED PER ELEMENT. LAST DATA VALUE OF A RECORD
C     MAY SPILL INTO NEXT RECORD. NA4 IS THE 6TH WORD OF CODE. THE DATA
C     TYPE OF THIS RECORD IS DESCRIBED IN CODE. 1 FOR INTEGER, 2 FOR
C     REAL NUMBER, AND 3 FOR A BCD WORD. THERE ARE 5 CODE WORDS, EACH
C     HOLDS 8 DIGITS, AND ARE ARRANGED FROM LEFT TO RIGHT.
C
C     FOR EXAMPLE -
C     CODE(1)=12212222, CODE(2)=22213200, CODE(3)=CODE(4)=CODE(5)=0
C     INDICATE
C     DATA VALUES 1, 4 AND 12 ARE INTEGERS, DATA VALUE 13 IS ABCD WORD,
C     THE REST ARE REAL NUMBERS.
C     IN THIS EXAMPLE, NWDS SHOULD BE 14,
C                      NA4  SHOULD = 3X2 + 10X3 + 1X1 = 37.
C     2 RECORDS ARE NEEDED, 1ST RECORD 132 CHARACTERS LONG, 2ND RECORD
C     16 CHARACTERS. THESE TWO RECORDS CAN BE READ BY ONE FORTRAN LINE
C
C         READ (INTAP,10) (SS(J),J=1,NA4)
C     10  FORMAT (33A4)                        OR BY
C
C         READ (INTAP,20) IS(1),RS(2),RS(3),IS(4),(RS(J),J=5,11),IS(12)
C         READ (INTAP,30) IS(13),RS(14)
C     20  FORMAT (I8,2F12.0,I8,7F12.0,I8)
C     30  FORMAT (A4,F12.0)
C     ------------------------------------------------------------------
C
C+340 IF (NWDS.NE.8 .AND. NWDS.NE.14) STOP 'WORD COUNT ERROR'
C+    IF (CODE(1) .NE. 11222222) STOP 'FORMAT CODE ERROR'
C
C     SAVE SUBCASE NUMBER AND BEGINNING POINTERS IN SAVD-ARRAY
C     FOR EASY IDENTIFICATION
C
C+    KBM1 = KB - 1
C+    SAVD(1,KS) = CASE
C+    SAVD(2,KS) = KB
C+    SAVD(3,KS) = NWDS
C
C     READ DISPLACEMENT RECORD, ONE LONG RECORD PER SUBCASE (OR FREQ.)
C     EACH GRID POINT DISPLACEMENT DATA IN EVERY 8 OR 14 WORDS,
C     2 INTEGERS + 6 (OR 12) REALS
C
C+350 READ (INTAP,ERR=300) L,(DIS(I+KBM1),I=1,L)
C+    KE = L + KBM1
C+    DO 380 K = KB,KE,NWDS
C+    WRITE (NOUT,360) DIS(K),DIS(K+1),(RIS(K+I),I=2, 7)
C+    IF (NWDS .EQ. 14) WRITE (NOUT,370) (RIS(K+I),I=8,13)
C+360 FORMAT (1X,2I8,6(1P,E12.5))
C+370 FORMAT (1X,16X,6(1P,E12.5))
C+380 CONTINUE
C+    KB = KE + 1
C+    GO TO 320
C
C     WRAP UP SAVD-ARRAY
C
C+390 SAVD(1,KS) = 0
C+    SAVD(2,KS) = KE + 1
C+    SAVD(3,KS) = 0
C+    IF (NOUT .NE. 6) GO TO 10
C+    WRITE (NOUT,260)
C+    WRITE (NOUT,400) (SAVD(1,K),SAVD(2,K),SAVD(3,K),K=1,KS)
C+400 FORMAT (40X,'CASE',I8,3H @ ,I4,',  WORDS=',I4)
C+    GO TO 10
C
C+500 REWIND INTAP
      END