File: dpse2.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (148 lines) | stat: -rw-r--r-- 4,879 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      SUBROUTINE DPSE2
C
C     THIS ROUTINE COMPUTES THE TWO 6 X 6 MATRICES K(NPVT,NPVT) AND
C     K(NPVT,J), PRESSURE STIFFNESS MATRICES FOR A CPSE2 PRESSURE
C     STIFFNESS ELEMENT (ROD, 2 GRID POINTS)
C
C     DOUBLE PRECISION VERSION
C
C     WRITTEN BY E. R. CHRISTENSEN/SVERDRUP  7/91, VERSION 1.0
C     INSTALLED IN NASTRAN AS ELEMENT DPSE2 BY G.CHAN/UNISYS, 2/92
C
C     REFERENCE - E. CHRISTENEN: 'ADVACED SOLID ROCKET MOTOR (ASRM)
C                 MATH MODELS - PRESSURE STIFFNESS EFFECTS ANALYSIS',
C                 NASA TD 612-001-02, AUGUST 1991
C
C     LIMITATION -
C     (1) ALL GRID POINTS USED BY ANY OF THE CPSE2/3/4 ELEMENTS MUST BE
C         IN BASIC COORDINATE SYSTEM!!!
C     (2) CONSTANT PRESSURE APPLIED OVER AN ENCLOSED VOLUMN ENCOMPASSED
C         BY THE CPSE2/3/4 ELEMENTRS
C     (3) PRESSURE ACTS NORMALLY TO THE CPSE2/3/4 SURFACES
C
C     SEE NASTRAN DEMONSTRATION PROBLEM -  T13021A
C
C     ECPT FOR THE PRESSURE STIFFNESS
C     CPSE2 ELEMENT                                CARD
C                                                  TYPE  TYPE   TABLE
C                                                 ------ ----- ------
C     ECPT( 1) ELEMENT ID.                         CPSE2   I     ECT
C     ECPT( 2) SCALAR INDEX NUMBER FOR GRD.PT. A   CPSE2   I     ECT
C     ECPT( 3) SCALAR INDEX NUMBER FOR GRD.PT. B   CPSE2   I     ECT
C     ECPT( 4) PRESSURE P                          PPSE    R     EPT
C     ECPT( 5) NOT USED                            PPSE    R     EPT
C     ECPT( 6) NOT USED                            PPSE    R     EPT
C     ECPT( 7) NOT USED                            PPSE    R     EPT
C     ECPT( 8) COOR. SYS. ID. NO. FOR GRD.PT. A    GRID    I    BGPDT
C     ECPT( 9) X-COORDINATE OF GRD.PT. A (IN BASIC COOR)   R    BGPDT
C     ECPT(10) Y-COORDINATE OF GRD.PT. A (IN BASIC COOR)   R    BGPDT
C     ECPT(11) Z-COORDINATE OF GRD.PT. A (IN BASIC COOR)   R    BGPDT
C     ECPT(12) COOR. SYS. ID. NO. FOR GRD.PT. B            I    BGPDT
C     ECPT(13) X-COORDINATE OF GRD.PT. B (IN BASIC COOR)   R    BGPDT
C     ECPT(14) Y-COORDINATE OF GRD.PT. B (IN BASIC COOR)   R    BGPDT
C     ECPT(15) Z-COORDINATE OF GRD.PT. B (IN BASIC COOR)   R    BGPDT
C     ECPT(16) ELEMENT TEMPERATURE
C     ECPT(17) THRU ECPT(24) = DUM2 AND DUM6, NOT USED IN THIS ROUTINE
C
      DOUBLE PRECISION KE,TA,TB,D,X,Y,Z,XL,ALPHA
      DIMENSION        IECPT(3)
C     COMMON /SYSTEM/  IBUF,NOUT
      COMMON /DS1AAA/  NPVT,ICSTM,NCSTM
      COMMON /DS1AET/  ECPT(16),DUM2(2),DUM6(6)
      COMMON /DS1ADP/  KE(36),TA(9),TB(9),D(18),X,Y,Z,XL,ALPHA
      EQUIVALENCE      (ECPT(1),IECPT(1))
C
      IELEM = IECPT(1)
      IF (IECPT(2) .EQ. NPVT) GO TO 10
      IF (IECPT(3) .NE. NPVT) CALL MESAGE (-30,34,IECPT(1))
      ITEMP = IECPT(2)
      IECPT(2) = IECPT(3)
      IECPT(3) = ITEMP
      KA  = 12
      KB  =  8
      ALPHA = -1.0D0
      GO TO 20
   10 KA  =  8
      KB  =  12
      ALPHA = 1.0D0
C
C     AT THIS POINT KA POINTS TO THE COOR. SYS. ID. OF THE PIVOT GRID
C     POINT. SIMILARLY FOR KB AND THE NON-PIVOT GRID POINT.
C
C     NOW COMPUTE THE LENGTH OF THE CPSE2 ELEMENT.
C
C
C     WE STORE THE COORDINATES IN THE D ARRAY SO THAT ALL ARITHMETIC
C     WILL BE DOUBLE PRECISION
C
C     CHECK TO SEE THAT THE CPSE2 HAS A NONZERO LENGTH
C
   20 D(1) = ECPT(KA+1)
      D(2) = ECPT(KA+2)
      D(3) = ECPT(KA+3)
      D(4) = ECPT(KB+1)
      D(5) = ECPT(KB+2)
      D(6) = ECPT(KB+3)
      X    = D(1) - D(4)
      Y    = D(2) - D(5)
      Z    = D(3) - D(6)
      XL = DSQRT(X**2 + Y**2 + Z**2)
      IF (XL .EQ. 0.0D0) GO TO 70
C
C     COMPUTE THE 3 X 3 NON-ZERO SUBMATRIX OF KDGG(NPVT,NONPVT)
C
      D(1) = 0.0D0
      D(2) = ALPHA*ECPT(4)/2.0D0
      D(3) = D(2)
      D(4) =-D(2)
      D(5) = 0.0D0
      D(6) = D(2)
      D(7) = D(4)
      D(8) = D(4)
      D(9) = 0.0D0
C
C     ZERO OUT KE MATRIX
C
      DO 30 I = 1,36
   30 KE(I) = 0.0D0
C
C     FILL UP THE 6 X 6 KE
C
C     IF PIVOT GRID POINT IS IN BASIC COORDINATES, GO TO 40
C
      K1 = 1
      IF (IECPT(KA) .EQ. 0) GO TO 40
      CALL TRANSD (ECPT(KA),TA)
      CALL GMMATD (TA,3,3,1, D(1),3,3,0, D(10))
      K1  = 10
      KB1 = 10
      KB2 = 1
      GO TO 50
C
C     IF NON-PIVOT GRID POINT IS IN BASIC COORDINATES, GO TO 60
C
   40 KB1 = 1
      KB2 = 10
   50 IF (IECPT(KB) .EQ. 0) GO TO 60
      CALL TRANSD (ECPT(KB),TB)
      CALL GMMATD (D(KB1),3,3,0, TB,3,3,0, D(KB2))
      K1 = KB2
C
   60 KE( 1) = D(K1  )
      KE( 2) = D(K1+1)
      KE( 3) = D(K1+2)
      KE( 7) = D(K1+3)
      KE( 8) = D(K1+4)
      KE( 9) = D(K1+5)
      KE(13) = D(K1+6)
      KE(14) = D(K1+7)
      KE(15) = D(K1+8)
      CALL DS1B (KE,IECPT(3))
      RETURN
C
C     ERROR
C
   70 CALL MESAGE (30,26,IECPT(1))
      NOGO = 1
      RETURN
      END