File: dquad.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (425 lines) | stat: -rw-r--r-- 15,435 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
      SUBROUTINE DQUAD (ITYPE)
C
C     THIS ROUTINE GENERATES THE FOLLOWING
C
C     FOUR 6X6 DIFFERENTIAL STIFFNESS MATRICES FOR ONE PIVOT POINT OF
C     A QUADRILATERAL
C
C
C     CALLS FROM THIS ROUTINE ARE MADE TO
C           DTRBSC - BASIC BENDING TRI. ROUTINE.
C           DTRMEM - TRIANGULAR MEMBRANE ROUTINE
C           TRANSD - SUPPLIES 3X3 TRANSFORMATIONS
C           GMMATD - GENERAL MATRIX MULITPLY AND TRANSPOSE ROUTINE
C           DS1B   - INSERTION ROUTINE
C
C
C        ITYPE    = 1             2                       4
C     ECPT INDEX    QUAD1         QUAD2        TRMEM      QUAD4
C     **********    *******       *******      *******    ********
C          1        EL. ID.       EL. ID.      EL. ID.    EL. ID
C          2        SIL1          SIL1         SIL1       SIL1
C          3        SIL2          SIL2         SIL2       SIL2
C          4        SIL3          SIL3         SIL3       SIL3
C          5        SIL4          SIL4         THETA      SIL4
C          6        THETA         THETA        MAT. ID.   MEM.T1
C          7        MAT. ID. 1    MAT. ID.     T          MEM.T2
C          8        T1            T            NSM        MEM.T3
C          9        MAT. ID. 2    NSM          CID1       MEM.T4
C         10        INERTIA I     CID1         X1         THETA
C         11        MAT ID  3     X1           Y1         FLAG FOR 10
C         12        T2            Y1           Z1         GRD OFFSET
C         13        NSM           Z1           CID2       MAT. ID 1
C         14        Z1            CID2         X2         THICKNESS
C         15        Z2            X2           Y2         MAT. ID 2
C         16        CID1          Y2           Z2         INERTIA I
C         17        X1            Z2           CID3       MAT. ID 3
C         18        Y1            CID3         X3         TS/T
C         19        Z1            X3           Y3         NSM
C         20        CID2          Y3           Z3         Z1
C         21        X2            Z3           EL TEMP    Z2
C         22        Y2            CID4         EL DEFORM  MAT. ID 4
C         23        Z2            X4           LOAD TEMP  THETA
C         24        CID3          Y4           U1         FLAG FOR 23
C         25        X3            Z4           V1         INTEGRATION
C         26        Y3            EL TEMP      W1         STRESS ANGLE
C         27        Z3            EL DEFORM    U2         FLAG FOR 26
C         28        CID4          LOAD TEMP    V2         ZOFF1
C         29        X4            U1           W2         CID1
C         30        Y4            V1           U3         X1
C         31        Z4            W1           V3         Y1
C         32        EL TEMP       U2           W3         Z1
C         33        EL DEFORM     V2                      CID2
C         34        LOAD TEMP     W2                      X2
C         35        U1            U3                      Y2
C         36        V1            V3                      Z2
C         37        W1            W3                      CID3
C         38        U2            U4                      X3
C         39        V2            V4                      Y3
C         40        W2            W4                      Z3
C         41        U3                                    CID4
C         42        V3                                    X4
C         43        W3                                    Y4
C         44        U4                                    Z4
C         45        V4                                    EL TEMP
C         46        W4
C         47
C         48                                              U1
C         49                                              V1
C         50                                              W1
C         51                                              U2
C         52                                              V2
C         53                                              W2
C         54                                              U3
C         55                                              V3
C         56                                              W3
C         57                                              U4
C         58                                              V4
C         59                                              W4
C
      INTEGER         SUBSCA        ,SUBSCB        ,SUBSCC
      DOUBLE PRECISION
     1                KOUT          ,TITE          ,DPDUM        ,
     2                TJTE          ,DPDUM2        ,IVECT        ,
     3                D1            ,JVECT         ,D2           ,
     4                KVECT         ,A1            ,KSUM         ,
     5                T             ,XSUBB         ,V            ,
     6                XSUBC         ,VV            ,YSUBC        ,
     7                PROD9         ,TEMP          ,TEMP9        ,
     8                U1            ,H             ,U2           ,
     9                E             ,A             ,TEMP18       ,
     O                REQUIV        ,R             ,SIGXY        ,
     1                SIGX          ,SIGY
      DIMENSION       M(12)         ,NECPT(100)    ,REQUIV(8)    ,
     1                VQ1(3),VQ2(3) ,VQ3(3),VQ4(3) ,A(1)
      CHARACTER       UFM*23        ,UWM*25        ,UIM*29       ,
     1                SFM*25
      COMMON /XMSSG / UFM           ,UWM           ,UIM          ,
     1                SFM
      COMMON /CONDAS/ CONSTS(5)
      COMMON /SYSTEM/ IBUFF         ,NOUT          ,NOGO
      COMMON /MATIN / MATID         ,INFLAG        ,ELTEMP       ,
     1                STRESS        ,SINTH         ,COSTH
      COMMON /MATOUT/ G11           ,G12           ,G13          ,
     1                G22           ,G23           ,G33          ,
     2                RHO           ,ALPHA1        ,ALPHA2       ,
     3                ALP12         ,T SUB 0       ,G SUB E      ,
     4                SIGTEN        ,SIGCOM        ,SIGSHE       ,
     5                G2X211        ,G2X212        ,G2X222
      COMMON /DS1AAA/ NPVT          ,ICSTM         ,NCSTM
      COMMON /DS1AET/ ECPT(100)
      COMMON /DS1ADP/ KOUT(36)      ,TITE(18)      ,TJTE(18)     ,
     1                TEMP18(18)    ,D1(3)         ,D2(3)        ,
     2                A1(3)         ,V(2)          ,VV(2)        ,
     3                PROD9(9)      ,TEMP9(9)      ,H            ,
     4                U1            ,U2            ,DPDUM(1)     ,
     5                TEMP          ,DPDUM2(43)    ,E(18)        ,
     6                SIGX          ,SIGY          ,SIGXY        ,
     7                XSUBB         ,XSUBC         ,YSUBC        ,
     8                KSUM(36)      ,T(9)          ,IVECT(3)     ,
     9                JVECT(3)      ,KVECT(3)      ,R(2,4)       ,
     O                SP1(2)        ,THETA         ,SINANG       ,
     1                COSANG        ,KM            ,NBEGIN       ,
     2                JNOT          ,NPIVOT        ,NSUBC        ,
     3                ISING         ,SUBSCA        ,SUBSCB       ,
     4                SUBSCC        ,NPOINT        ,IPVT
      EQUIVALENCE     (CONSTS(4),DEGRA) , (NECPT(1),ECPT(1))     ,
     2                (REQUIV(1),R(1,1)), (VQ1(1),ECPT(17))      ,
     4                (VQ2(1),ECPT(21)) , (VQ3(1),ECPT(25))      ,
     6                (VQ4(1),ECPT(29)) , (A(1),KOUT(1))
      DATA     M   /  2, 4, 1,   3, 1, 2,   4, 2, 3,   1, 3, 4   /
C
C
C     IF ITYPE = 2, QUAD2 EST DATA IS MOVED AND STORED IN QUAD1 FORMAT
C     IF ITYPE = 4, QUAD4 EST DATA IS MOVED AND STORED IN QUAD1 FORMAT
C
      IF (ITYPE .EQ. 4) GO TO 15
      IF (ITYPE .NE. 2) GO TO 20
C
      DO 10 I = 10,40
      NPOINT = 50 - I
   10 ECPT(NPOINT+6) = ECPT(NPOINT)
C
      ECPT( 9) = ECPT(7)
      ECPT(10) =(ECPT(8)**3.0)/12.0
      ECPT(11) = ECPT(7)
      ECPT(12) = ECPT(8)
      GO TO 20
C
C     QUAD4
C
C     IF NECPT(11)=0, ECPT(10) IS THE MATERIAL PROPERTY ORIENTAION
C     ANGLE THETA. IF IT IS NOT, NECPT(10) IS MATERIAL COORDINATE
C     SYSTEM ID. IN THIS CASE, WE CAN NOT CONTINUE
C
   15 IF (NECPT(11) .NE. 0) GO TO 350
      ECPT(6) = ECPT(10)
      ECPT(7) = ECPT(13)
      ECPT(8) = ECPT(14)
      ECPT(9) = ECPT(15)
      ECPT(10)= ECPT(16)
      ECPT(11)= ECPT(17)
      ECPT(12)= ECPT(14)
      DO 17 I = 16,46
   17 ECPT(I) = ECPT(I+13)
   20 IF (ECPT(8) .EQ. 0.0) RETURN
C
C     CALL BUG (4HQDET,5,ECPT,52-6*ITYPE)
C
C     DETERMINE PIVOT POINT NUMBER
C
      DO 30 I = 1,4
      IF (NPVT .NE. NECPT(I+1)) GO TO 30
      NPIVOT = I
      GO TO 40
   30 CONTINUE
      RETURN
C
   40 THETA  = ECPT(6)*DEGRA
      SINANG = SIN(THETA)
      COSANG = COS(THETA)
C
      IF (NPIVOT-2) 50,50,60
   50 JNOT = NPIVOT + 2
      GO TO 70
   60 JNOT = NPIVOT - 2
C
C     FORMATION OF THE R-MATRIX CONTAINING COORDINATES OF THE
C     SUB TRIANGLES.  (2X4) FOR QUADRILATERAL PLATE...
C     FORMATION ALSO OF THE I,J, AND K VECTORS USED IN THE E-MATRIX.
C
C     ZERO OUT R-MATRIX
C
   70 DO 80 I = 1,8
   80 REQUIV(I) = 0.0D0
C
      DO 90 I = 1,3
      D1(I) = DBLE(VQ3(I)) - DBLE(VQ1(I))
      D2(I) = DBLE(VQ4(I)) - DBLE(VQ2(I))
   90 A1(I) = DBLE(VQ2(I)) - DBLE(VQ1(I))
C
C     NON-NORMALIZED K-VECTOR = D1 CROSS D2
C
      KVECT(1) = D1(2)*D2(3) - D2(2)*D1(3)
      KVECT(2) = D1(3)*D2(1) - D2(3)*D1(1)
      KVECT(3) = D1(1)*D2(2) - D2(1)*D1(2)
C
C     NORMALIZE K-VECTOR
C
      TEMP = DSQRT(KVECT(1)**2 + KVECT(2)**2 + KVECT(3)**2)
      IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
      DO 100 I = 1,3
  100 KVECT(I) = KVECT(I)/TEMP
C
C     COMPUTE H = (A1 DOT KVECT) / 2
C
      TEMP = (A1(1)*KVECT(1) + A1(2)*KVECT(2) + A1(3)*KVECT(3))/2.0D0
C
C     I-VECTOR =(A1) - H*(KVECT)    NON-NORMALIZED
C
      DO 110 I = 1,3
  110 IVECT(I) = A1(I) - TEMP*KVECT(I)
C
C     NORMALIZE I-VECTOR
C
      TEMP = DSQRT(IVECT(1)**2 + IVECT(2)**2 + IVECT(3)**2)
      IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
      DO 120 I = 1,3
  120 IVECT(I) = IVECT(I)/TEMP
C
C     J-VECTOR = K CROSS I, AND X3 CALCULATION
C
      JVECT(1) = KVECT(2)*IVECT(3) - IVECT(2)*KVECT(3)
      JVECT(2) = KVECT(3)*IVECT(1) - IVECT(3)*KVECT(1)
      JVECT(3) = KVECT(1)*IVECT(2) - IVECT(1)*KVECT(2)
C
C     NORMALIZE J VECTOR TO MAKE SURE
C
      TEMP =  DSQRT(JVECT(1)**2 + JVECT(2)**2 + JVECT(3)**2)
      IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
      DO 130 I = 1,3
  130 JVECT(I) = JVECT(I)/TEMP
C
C     X3 GOES INTO R(1,3) = D1 DOT IVECT
C
      R(1,3) = D1(1)*IVECT(1) + D1(2)*IVECT(2) + D1(3)*IVECT(3)
C
C     X2 GOES INTO R(1,2) AND Y3 GOES INTO R(2,3)
C
      R(1,2) = A1(1)*IVECT(1) + A1(2)*IVECT(2) + A1(3)*IVECT(3)
      R(2,3) = D1(1)*JVECT(1) + D1(2)*JVECT(2) + D1(3)*JVECT(3)
C
C     X4 GOES INTO R(1,4) AND Y4 GOES INTO R(2,4)
C
      R(1,4) = D2(1)*IVECT(1) + D2(2)*IVECT(2) + D2(3)*IVECT(3) + R(1,2)
      R(2,4) = D2(1)*JVECT(1) + D2(2)*JVECT(2) + D2(3)*JVECT(3)
C
C     AT THIS POINT, THE COORDINATES OF THE PLATE IN THE ELEMENT
C     SYSTEM ARE STORED IN THE R-MATRIX WHERE THE COLUMN DENOTES THE
C     POINT AND THE ROW DENOTES THE X OR Y COORDINATE FOR ROW 1 OR
C     ROW 2 RESPECTIVELY.
C
C     SET UP THE M-MATRIX FOR MAPPING TRIANGLES, IN DATA STATEMENT.
C
C     COMPUTE SUB-TRIANGLE COORDINATES
C
C     ZERO OUT KSUM MATRICES
C
      DO 150 I = 1,36
  150 KSUM(I) = 0.0D0
C
      ELTEMP = ECPT(32)
C
C     MOVE ECPT INTO POSITIONS 51-93
C
      DO 160 I = 1,46
  160 ECPT(I+50) = ECPT(I)
C
C     MOVE MISCELLANEOUS VARIABLES INTO TRMEM FORMAT
C
      ECPT( 6) = ECPT( 7)
      ECPT( 7) = ECPT( 8)
      ECPT(21) = ECPT(32)
      ECPT(22) = ECPT(33)
      ECPT(23) = ECPT(34)
C
      DO 240 J = 1,4
      IF (J .EQ. JNOT) GO TO 240
      KM   = 3*J - 3
      IPVT = 0
      DO 190 I = 1,3
      NPOINT = KM+I
      NSUBC  = M(NPOINT)
      IF (NSUBC .EQ. NPIVOT) IPVT = I
      NECPT(I+1) = NECPT(NSUBC+51)
      DO 170 K = 1,4
      NPOINT = 4*(NSUBC-1) + K + 65
      SUBSCA = 4*(I-1) + K + 8
      ECPT(SUBSCA) = ECPT(NPOINT)
  170 CONTINUE
      DO 180 K = 1,3
      NPOINT = 3*(NSUBC-1) + K + 84
      SUBSCA = 3*(I-1) + K + 23
      ECPT(SUBSCA) = ECPT(NPOINT)
  180 CONTINUE
  190 CONTINUE
      IF (IPVT .EQ. 0) GO TO 240
C
      SUBSCA = M(KM+1)
      SUBSCB = M(KM+2)
      SUBSCC = M(KM+3)
C
      DO 200 I = 1,2
      V(I)  = R(I,SUBSCB) - R(I,SUBSCA)
  200 VV(I) = R(I,SUBSCC) - R(I,SUBSCA)
      XSUBB = DSQRT(V(1)**2 + V(2)**2)
      U1    = V(1)/XSUBB
      U2    = V(2)/XSUBB
      XSUBC = U1*VV(1) + U2*VV(2)
      YSUBC = U1*VV(2) - U2*VV(1)
C
C     SET UP OF T-MATRIX
C
      T(1) = 1.0D0
      T(2) = 0.0D0
      T(3) = 0.0D0
      T(4) = 0.0D0
      T(5) = U1
      T(6) = U2
      T(7) = 0.0D0
      T(8) =-U2
      T(9) = U1
C
      SINTH = SINANG*U1 - COSANG*U2
      COSTH = COSANG*U1 + SINANG*U2
      IF (ABS(SINTH) .LT. 1.0E-06) SINTH = 0.0
C
C     AT THIS POINT, XSUBB, XSUBC, YSUBC ARE AT HAND FOR TRIANGLE -J-
C
      CALL DTRMEM (3)
      CALL DTRBSC (2,IPVT)
C
C     NOW WE HAVE AT HAND  K   I=NPIVOT,J=1,2,3   THREE 6X6 MATRICES
C                           IJ
C                                STORED AT  A(1) THROUGH A(27)
C
C     MAP THE THE 3X3 S FOR THE PIVOT ROW INTO THE SUMMATION ARRAYS
C
      DO 230 I = 1,3
      NPOINT = 9*I - 8
C
      CALL GMMATD (T,3,3,1, A(NPOINT),3,3,0, TEMP9)
      CALL GMMATD (TEMP9,3,3,0, T,3,3,0, PROD9)
C
C     ADD THIS PRODUCT IN NOW.
C
      NPOINT = KM + I
      NPOINT = 9*M(NPOINT) - 9
      DO 220 K = 1,9
      NPOINT = NPOINT + 1
  220 KSUM(NPOINT) = KSUM(NPOINT) + PROD9(K)/2.0D0
  230 CONTINUE
C
  240 CONTINUE
C
C     CALL BUG (4HQDKD,220,KSUM,72)
C
C     FILL E-MATRIX
C
      DO 250 I = 1,18
  250 E(I)  = 0.0D0
      E( 1) = KVECT(1)
      E( 4) = KVECT(2)
      E( 7) = KVECT(3)
      E(11) = IVECT(1)
      E(14) = IVECT(2)
      E(17) = IVECT(3)
      E(12) = JVECT(1)
      E(15) = JVECT(2)
      E(18) = JVECT(3)
C
C              T
C     FORM   T   E      STORE IN TITE-MATRIX (6X3)
C             I
C
      IF (NECPT(4*NPIVOT + 62) .EQ. 0) GO TO 260
      CALL TRANSD (NECPT(4*NPIVOT+62),T)
      CALL GMMATD (T,3,3,1, E( 1),3,3,0, TITE( 1))
      CALL GMMATD (T,3,3,1, E(10),3,3,0, TITE(10))
      GO TO 290
C
  260 DO 270 K = 1,18
  270 TITE(K) = E(K)
C
C     RESTORE ECPT FOR CKECKOUT
C
      DO 280 K = 1,46
  280 ECPT(K) = ECPT(K+50)
C
  290 DO 330 J = 1,4
C
C     TRANSFORMATIONS AND INSERTION
C
      IF (NECPT(4*J+62) .EQ. 0) GO TO 300
      CALL TRANSD (NECPT(4*J+62),T)
      CALL GMMATD (T,3,3,1, E(1),3,3,0,  TJTE( 1))
      CALL GMMATD (T,3,3,1, E(10),3,3,0, TJTE(10))
      GO TO 320
C
  300 DO 310 K = 1,18
  310 TJTE(K) = E(K)
  320 CALL GMMATD (KSUM(9*J-8),3,3,0, TJTE,6,3,1, TEMP18(1))
      CALL GMMATD (TITE(1),6,3,0, TEMP18(1),3,6,0, KOUT(1))
      CALL DS1B (KOUT,NECPT(J+51))
  330 CONTINUE
      RETURN
C
C     COULD NOT CONTINUE
C
  350 WRITE  (NOUT,360) SFM
  360 FORMAT (A25,', DEFFICIENT SOURCE CODE IN DQUAD TO HANDLE CQUAD4 ',
     1       'ELEMENT WITH MATERIAL', /5X,
     2       'PROPERTY COORD. SYSTEM. ANGLE MUST BE SPECIFIED')
      NOGO = 1
      RETURN
      END