1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
SUBROUTINE DQUAD (ITYPE)
C
C THIS ROUTINE GENERATES THE FOLLOWING
C
C FOUR 6X6 DIFFERENTIAL STIFFNESS MATRICES FOR ONE PIVOT POINT OF
C A QUADRILATERAL
C
C
C CALLS FROM THIS ROUTINE ARE MADE TO
C DTRBSC - BASIC BENDING TRI. ROUTINE.
C DTRMEM - TRIANGULAR MEMBRANE ROUTINE
C TRANSD - SUPPLIES 3X3 TRANSFORMATIONS
C GMMATD - GENERAL MATRIX MULITPLY AND TRANSPOSE ROUTINE
C DS1B - INSERTION ROUTINE
C
C
C ITYPE = 1 2 4
C ECPT INDEX QUAD1 QUAD2 TRMEM QUAD4
C ********** ******* ******* ******* ********
C 1 EL. ID. EL. ID. EL. ID. EL. ID
C 2 SIL1 SIL1 SIL1 SIL1
C 3 SIL2 SIL2 SIL2 SIL2
C 4 SIL3 SIL3 SIL3 SIL3
C 5 SIL4 SIL4 THETA SIL4
C 6 THETA THETA MAT. ID. MEM.T1
C 7 MAT. ID. 1 MAT. ID. T MEM.T2
C 8 T1 T NSM MEM.T3
C 9 MAT. ID. 2 NSM CID1 MEM.T4
C 10 INERTIA I CID1 X1 THETA
C 11 MAT ID 3 X1 Y1 FLAG FOR 10
C 12 T2 Y1 Z1 GRD OFFSET
C 13 NSM Z1 CID2 MAT. ID 1
C 14 Z1 CID2 X2 THICKNESS
C 15 Z2 X2 Y2 MAT. ID 2
C 16 CID1 Y2 Z2 INERTIA I
C 17 X1 Z2 CID3 MAT. ID 3
C 18 Y1 CID3 X3 TS/T
C 19 Z1 X3 Y3 NSM
C 20 CID2 Y3 Z3 Z1
C 21 X2 Z3 EL TEMP Z2
C 22 Y2 CID4 EL DEFORM MAT. ID 4
C 23 Z2 X4 LOAD TEMP THETA
C 24 CID3 Y4 U1 FLAG FOR 23
C 25 X3 Z4 V1 INTEGRATION
C 26 Y3 EL TEMP W1 STRESS ANGLE
C 27 Z3 EL DEFORM U2 FLAG FOR 26
C 28 CID4 LOAD TEMP V2 ZOFF1
C 29 X4 U1 W2 CID1
C 30 Y4 V1 U3 X1
C 31 Z4 W1 V3 Y1
C 32 EL TEMP U2 W3 Z1
C 33 EL DEFORM V2 CID2
C 34 LOAD TEMP W2 X2
C 35 U1 U3 Y2
C 36 V1 V3 Z2
C 37 W1 W3 CID3
C 38 U2 U4 X3
C 39 V2 V4 Y3
C 40 W2 W4 Z3
C 41 U3 CID4
C 42 V3 X4
C 43 W3 Y4
C 44 U4 Z4
C 45 V4 EL TEMP
C 46 W4
C 47
C 48 U1
C 49 V1
C 50 W1
C 51 U2
C 52 V2
C 53 W2
C 54 U3
C 55 V3
C 56 W3
C 57 U4
C 58 V4
C 59 W4
C
INTEGER SUBSCA ,SUBSCB ,SUBSCC
DOUBLE PRECISION
1 KOUT ,TITE ,DPDUM ,
2 TJTE ,DPDUM2 ,IVECT ,
3 D1 ,JVECT ,D2 ,
4 KVECT ,A1 ,KSUM ,
5 T ,XSUBB ,V ,
6 XSUBC ,VV ,YSUBC ,
7 PROD9 ,TEMP ,TEMP9 ,
8 U1 ,H ,U2 ,
9 E ,A ,TEMP18 ,
O REQUIV ,R ,SIGXY ,
1 SIGX ,SIGY
DIMENSION M(12) ,NECPT(100) ,REQUIV(8) ,
1 VQ1(3),VQ2(3) ,VQ3(3),VQ4(3) ,A(1)
CHARACTER UFM*23 ,UWM*25 ,UIM*29 ,
1 SFM*25
COMMON /XMSSG / UFM ,UWM ,UIM ,
1 SFM
COMMON /CONDAS/ CONSTS(5)
COMMON /SYSTEM/ IBUFF ,NOUT ,NOGO
COMMON /MATIN / MATID ,INFLAG ,ELTEMP ,
1 STRESS ,SINTH ,COSTH
COMMON /MATOUT/ G11 ,G12 ,G13 ,
1 G22 ,G23 ,G33 ,
2 RHO ,ALPHA1 ,ALPHA2 ,
3 ALP12 ,T SUB 0 ,G SUB E ,
4 SIGTEN ,SIGCOM ,SIGSHE ,
5 G2X211 ,G2X212 ,G2X222
COMMON /DS1AAA/ NPVT ,ICSTM ,NCSTM
COMMON /DS1AET/ ECPT(100)
COMMON /DS1ADP/ KOUT(36) ,TITE(18) ,TJTE(18) ,
1 TEMP18(18) ,D1(3) ,D2(3) ,
2 A1(3) ,V(2) ,VV(2) ,
3 PROD9(9) ,TEMP9(9) ,H ,
4 U1 ,U2 ,DPDUM(1) ,
5 TEMP ,DPDUM2(43) ,E(18) ,
6 SIGX ,SIGY ,SIGXY ,
7 XSUBB ,XSUBC ,YSUBC ,
8 KSUM(36) ,T(9) ,IVECT(3) ,
9 JVECT(3) ,KVECT(3) ,R(2,4) ,
O SP1(2) ,THETA ,SINANG ,
1 COSANG ,KM ,NBEGIN ,
2 JNOT ,NPIVOT ,NSUBC ,
3 ISING ,SUBSCA ,SUBSCB ,
4 SUBSCC ,NPOINT ,IPVT
EQUIVALENCE (CONSTS(4),DEGRA) , (NECPT(1),ECPT(1)) ,
2 (REQUIV(1),R(1,1)), (VQ1(1),ECPT(17)) ,
4 (VQ2(1),ECPT(21)) , (VQ3(1),ECPT(25)) ,
6 (VQ4(1),ECPT(29)) , (A(1),KOUT(1))
DATA M / 2, 4, 1, 3, 1, 2, 4, 2, 3, 1, 3, 4 /
C
C
C IF ITYPE = 2, QUAD2 EST DATA IS MOVED AND STORED IN QUAD1 FORMAT
C IF ITYPE = 4, QUAD4 EST DATA IS MOVED AND STORED IN QUAD1 FORMAT
C
IF (ITYPE .EQ. 4) GO TO 15
IF (ITYPE .NE. 2) GO TO 20
C
DO 10 I = 10,40
NPOINT = 50 - I
10 ECPT(NPOINT+6) = ECPT(NPOINT)
C
ECPT( 9) = ECPT(7)
ECPT(10) =(ECPT(8)**3.0)/12.0
ECPT(11) = ECPT(7)
ECPT(12) = ECPT(8)
GO TO 20
C
C QUAD4
C
C IF NECPT(11)=0, ECPT(10) IS THE MATERIAL PROPERTY ORIENTAION
C ANGLE THETA. IF IT IS NOT, NECPT(10) IS MATERIAL COORDINATE
C SYSTEM ID. IN THIS CASE, WE CAN NOT CONTINUE
C
15 IF (NECPT(11) .NE. 0) GO TO 350
ECPT(6) = ECPT(10)
ECPT(7) = ECPT(13)
ECPT(8) = ECPT(14)
ECPT(9) = ECPT(15)
ECPT(10)= ECPT(16)
ECPT(11)= ECPT(17)
ECPT(12)= ECPT(14)
DO 17 I = 16,46
17 ECPT(I) = ECPT(I+13)
20 IF (ECPT(8) .EQ. 0.0) RETURN
C
C CALL BUG (4HQDET,5,ECPT,52-6*ITYPE)
C
C DETERMINE PIVOT POINT NUMBER
C
DO 30 I = 1,4
IF (NPVT .NE. NECPT(I+1)) GO TO 30
NPIVOT = I
GO TO 40
30 CONTINUE
RETURN
C
40 THETA = ECPT(6)*DEGRA
SINANG = SIN(THETA)
COSANG = COS(THETA)
C
IF (NPIVOT-2) 50,50,60
50 JNOT = NPIVOT + 2
GO TO 70
60 JNOT = NPIVOT - 2
C
C FORMATION OF THE R-MATRIX CONTAINING COORDINATES OF THE
C SUB TRIANGLES. (2X4) FOR QUADRILATERAL PLATE...
C FORMATION ALSO OF THE I,J, AND K VECTORS USED IN THE E-MATRIX.
C
C ZERO OUT R-MATRIX
C
70 DO 80 I = 1,8
80 REQUIV(I) = 0.0D0
C
DO 90 I = 1,3
D1(I) = DBLE(VQ3(I)) - DBLE(VQ1(I))
D2(I) = DBLE(VQ4(I)) - DBLE(VQ2(I))
90 A1(I) = DBLE(VQ2(I)) - DBLE(VQ1(I))
C
C NON-NORMALIZED K-VECTOR = D1 CROSS D2
C
KVECT(1) = D1(2)*D2(3) - D2(2)*D1(3)
KVECT(2) = D1(3)*D2(1) - D2(3)*D1(1)
KVECT(3) = D1(1)*D2(2) - D2(1)*D1(2)
C
C NORMALIZE K-VECTOR
C
TEMP = DSQRT(KVECT(1)**2 + KVECT(2)**2 + KVECT(3)**2)
IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
DO 100 I = 1,3
100 KVECT(I) = KVECT(I)/TEMP
C
C COMPUTE H = (A1 DOT KVECT) / 2
C
TEMP = (A1(1)*KVECT(1) + A1(2)*KVECT(2) + A1(3)*KVECT(3))/2.0D0
C
C I-VECTOR =(A1) - H*(KVECT) NON-NORMALIZED
C
DO 110 I = 1,3
110 IVECT(I) = A1(I) - TEMP*KVECT(I)
C
C NORMALIZE I-VECTOR
C
TEMP = DSQRT(IVECT(1)**2 + IVECT(2)**2 + IVECT(3)**2)
IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
DO 120 I = 1,3
120 IVECT(I) = IVECT(I)/TEMP
C
C J-VECTOR = K CROSS I, AND X3 CALCULATION
C
JVECT(1) = KVECT(2)*IVECT(3) - IVECT(2)*KVECT(3)
JVECT(2) = KVECT(3)*IVECT(1) - IVECT(3)*KVECT(1)
JVECT(3) = KVECT(1)*IVECT(2) - IVECT(1)*KVECT(2)
C
C NORMALIZE J VECTOR TO MAKE SURE
C
TEMP = DSQRT(JVECT(1)**2 + JVECT(2)**2 + JVECT(3)**2)
IF (TEMP .EQ. 0.0D0) CALL MESAGE (-30,26,ECPT(1))
DO 130 I = 1,3
130 JVECT(I) = JVECT(I)/TEMP
C
C X3 GOES INTO R(1,3) = D1 DOT IVECT
C
R(1,3) = D1(1)*IVECT(1) + D1(2)*IVECT(2) + D1(3)*IVECT(3)
C
C X2 GOES INTO R(1,2) AND Y3 GOES INTO R(2,3)
C
R(1,2) = A1(1)*IVECT(1) + A1(2)*IVECT(2) + A1(3)*IVECT(3)
R(2,3) = D1(1)*JVECT(1) + D1(2)*JVECT(2) + D1(3)*JVECT(3)
C
C X4 GOES INTO R(1,4) AND Y4 GOES INTO R(2,4)
C
R(1,4) = D2(1)*IVECT(1) + D2(2)*IVECT(2) + D2(3)*IVECT(3) + R(1,2)
R(2,4) = D2(1)*JVECT(1) + D2(2)*JVECT(2) + D2(3)*JVECT(3)
C
C AT THIS POINT, THE COORDINATES OF THE PLATE IN THE ELEMENT
C SYSTEM ARE STORED IN THE R-MATRIX WHERE THE COLUMN DENOTES THE
C POINT AND THE ROW DENOTES THE X OR Y COORDINATE FOR ROW 1 OR
C ROW 2 RESPECTIVELY.
C
C SET UP THE M-MATRIX FOR MAPPING TRIANGLES, IN DATA STATEMENT.
C
C COMPUTE SUB-TRIANGLE COORDINATES
C
C ZERO OUT KSUM MATRICES
C
DO 150 I = 1,36
150 KSUM(I) = 0.0D0
C
ELTEMP = ECPT(32)
C
C MOVE ECPT INTO POSITIONS 51-93
C
DO 160 I = 1,46
160 ECPT(I+50) = ECPT(I)
C
C MOVE MISCELLANEOUS VARIABLES INTO TRMEM FORMAT
C
ECPT( 6) = ECPT( 7)
ECPT( 7) = ECPT( 8)
ECPT(21) = ECPT(32)
ECPT(22) = ECPT(33)
ECPT(23) = ECPT(34)
C
DO 240 J = 1,4
IF (J .EQ. JNOT) GO TO 240
KM = 3*J - 3
IPVT = 0
DO 190 I = 1,3
NPOINT = KM+I
NSUBC = M(NPOINT)
IF (NSUBC .EQ. NPIVOT) IPVT = I
NECPT(I+1) = NECPT(NSUBC+51)
DO 170 K = 1,4
NPOINT = 4*(NSUBC-1) + K + 65
SUBSCA = 4*(I-1) + K + 8
ECPT(SUBSCA) = ECPT(NPOINT)
170 CONTINUE
DO 180 K = 1,3
NPOINT = 3*(NSUBC-1) + K + 84
SUBSCA = 3*(I-1) + K + 23
ECPT(SUBSCA) = ECPT(NPOINT)
180 CONTINUE
190 CONTINUE
IF (IPVT .EQ. 0) GO TO 240
C
SUBSCA = M(KM+1)
SUBSCB = M(KM+2)
SUBSCC = M(KM+3)
C
DO 200 I = 1,2
V(I) = R(I,SUBSCB) - R(I,SUBSCA)
200 VV(I) = R(I,SUBSCC) - R(I,SUBSCA)
XSUBB = DSQRT(V(1)**2 + V(2)**2)
U1 = V(1)/XSUBB
U2 = V(2)/XSUBB
XSUBC = U1*VV(1) + U2*VV(2)
YSUBC = U1*VV(2) - U2*VV(1)
C
C SET UP OF T-MATRIX
C
T(1) = 1.0D0
T(2) = 0.0D0
T(3) = 0.0D0
T(4) = 0.0D0
T(5) = U1
T(6) = U2
T(7) = 0.0D0
T(8) =-U2
T(9) = U1
C
SINTH = SINANG*U1 - COSANG*U2
COSTH = COSANG*U1 + SINANG*U2
IF (ABS(SINTH) .LT. 1.0E-06) SINTH = 0.0
C
C AT THIS POINT, XSUBB, XSUBC, YSUBC ARE AT HAND FOR TRIANGLE -J-
C
CALL DTRMEM (3)
CALL DTRBSC (2,IPVT)
C
C NOW WE HAVE AT HAND K I=NPIVOT,J=1,2,3 THREE 6X6 MATRICES
C IJ
C STORED AT A(1) THROUGH A(27)
C
C MAP THE THE 3X3 S FOR THE PIVOT ROW INTO THE SUMMATION ARRAYS
C
DO 230 I = 1,3
NPOINT = 9*I - 8
C
CALL GMMATD (T,3,3,1, A(NPOINT),3,3,0, TEMP9)
CALL GMMATD (TEMP9,3,3,0, T,3,3,0, PROD9)
C
C ADD THIS PRODUCT IN NOW.
C
NPOINT = KM + I
NPOINT = 9*M(NPOINT) - 9
DO 220 K = 1,9
NPOINT = NPOINT + 1
220 KSUM(NPOINT) = KSUM(NPOINT) + PROD9(K)/2.0D0
230 CONTINUE
C
240 CONTINUE
C
C CALL BUG (4HQDKD,220,KSUM,72)
C
C FILL E-MATRIX
C
DO 250 I = 1,18
250 E(I) = 0.0D0
E( 1) = KVECT(1)
E( 4) = KVECT(2)
E( 7) = KVECT(3)
E(11) = IVECT(1)
E(14) = IVECT(2)
E(17) = IVECT(3)
E(12) = JVECT(1)
E(15) = JVECT(2)
E(18) = JVECT(3)
C
C T
C FORM T E STORE IN TITE-MATRIX (6X3)
C I
C
IF (NECPT(4*NPIVOT + 62) .EQ. 0) GO TO 260
CALL TRANSD (NECPT(4*NPIVOT+62),T)
CALL GMMATD (T,3,3,1, E( 1),3,3,0, TITE( 1))
CALL GMMATD (T,3,3,1, E(10),3,3,0, TITE(10))
GO TO 290
C
260 DO 270 K = 1,18
270 TITE(K) = E(K)
C
C RESTORE ECPT FOR CKECKOUT
C
DO 280 K = 1,46
280 ECPT(K) = ECPT(K+50)
C
290 DO 330 J = 1,4
C
C TRANSFORMATIONS AND INSERTION
C
IF (NECPT(4*J+62) .EQ. 0) GO TO 300
CALL TRANSD (NECPT(4*J+62),T)
CALL GMMATD (T,3,3,1, E(1),3,3,0, TJTE( 1))
CALL GMMATD (T,3,3,1, E(10),3,3,0, TJTE(10))
GO TO 320
C
300 DO 310 K = 1,18
310 TJTE(K) = E(K)
320 CALL GMMATD (KSUM(9*J-8),3,3,0, TJTE,6,3,1, TEMP18(1))
CALL GMMATD (TITE(1),6,3,0, TEMP18(1),3,6,0, KOUT(1))
CALL DS1B (KOUT,NECPT(J+51))
330 CONTINUE
RETURN
C
C COULD NOT CONTINUE
C
350 WRITE (NOUT,360) SFM
360 FORMAT (A25,', DEFFICIENT SOURCE CODE IN DQUAD TO HANDLE CQUAD4 ',
1 'ELEMENT WITH MATERIAL', /5X,
2 'PROPERTY COORD. SYSTEM. ANGLE MUST BE SPECIFIED')
NOGO = 1
RETURN
END
|