1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
SUBROUTINE EM2D (ITYPE,ISTART,JTYPE,NCOUNT,IDO,IWORDS,NBDYS,ALL,
1 NELOUT)
C
C COMPUTES ADDITIONAL E AND M LOADS FOR TWO DIMENSIONAL ELEMENTS
C
C THIS ROUTINE HANDLES THE FOLLOWING 2-D ELEMENTS
C
C TRIA1 -6- TRMEM -9- QDMEM-16- TRIA2-17- QUAD2-18- QUAD1-19-
C TRIARG-36- TRAPRG-37 IS2D8-80-
C
LOGICAL ONLYC
INTEGER OTPE,ALL,POINTR(9,9),TYPOLD,SCR6
REAL L(3,4),W(4)
DIMENSION BUF(50),JBUF(50),XLACC(3),IZ(1),NAM(2),NECPT(10),
1 R(3,8),IP(3),HC(3),XLOAD(3),D12(3),D13(3),XN(18),
2 G(9),DXX(3),ZI(3),ZJ(3),ZK(3),ET(9),XNG(9),HCX(3),
3 HCY(3),HCZ(3),ISC(5),SC(5),PT(3),H(3),Z14(3),
4 XZ(16),VEC(3),VVEC(3),HCI(24),F(8),GH(3),DN(8),
5 DNXI(1),DNETA(1),DNC(16),DNL(16),DNX(1),DNY(1),
6 XI(8),ETA(8),XJB(4),XXJB(2,2),IWS(2,3),HCXYZ(3),
7 DDNL(24),DDNLB(24)
CHARACTER UFM*23
COMMON /XMSSG / UFM
COMMON /SYSTEM/ IBUF,OTPE,IDUM(78)
COMMON /BLANK / NROWSP
COMMON /EMECPT/ ECPT(200)
COMMON /ZZZZZZ/ Z(1)
COMMON /MATIN / MATID,INFLAG,ELTEMP,STRESS,SINTH,COSTH
COMMON /HMTOUT/ XMAT(6)
EQUIVALENCE (BUF(1),JBUF(1)),(SC(1),ISC(1)),(Z(1),IZ(1)),
1 (ECPT(1),NECPT(1)),(I1,IP(1)),(I2,IP(2)),
2 (I3,IP(3)),(DNC(1),DNXI(1)),(DNC(9),DNETA(1)),
3 (DNL(1),DNX(1)),(DNL(9),DNY(1))
DATA XI / -1., 1., 1.,-1., 0., 1., 0.,-1./
DATA ETA / -1.,-1., 1., 1.,-1., 0., 1., 0./
DATA TWOPI3/ 2.094395103 /
DATA NAM / 4HEM2D,4H /
DATA TYPOLD/ 0 /, SCR6 / 306/
C
C EST STARTING POINTERS
C
C ISIL = 1ST SIL NUMBER
C ITH = MATERIAL ANGLE
C MID = MATERIAL ID
C IA = AREA FACTOR (TO COMPUTE VOLUME)
C ISYS = 1ST OUTPUT CORRDINATE SYSYTEM NUMBER
C NGRIDS = NUMBER OF GRID POINTS
C ITEMP = ELEMENT TEMPERATURE
C NEL = NUMBER OF TRIANGLES USED TO FORM ELEMENT
C
C ITYPE ISIL ITH MID IA ISYS NGRIDS ITEMP NEL
C
DATA POINTR/ 6, 2, 5, 6, 7, 15, 3, 27, 1,
1 9, 2, 5, 6, 7, 9, 3, 21, 1,
2 16, 2, 6, 7, 8, 10, 4, 26, 4,
3 17, 2, 5, 6, 7, 9, 3, 21, 1,
4 18, 2, 6, 7, 8, 10, 4, 26, 4,
5 19, 2, 6, 7, 8, 16, 4, 32, 4,
6 36, 2, 5, 6, 0, 7, 3, 19, 1,
7 37, 2, 6, 7, 0, 8, 4, 24, 4,
8 80, 2, 11, 12, 13, 14, 8, 46, 1/
C
ONLYC = .FALSE.
IF (ITYPE .EQ. 80) GO TO 10
L(1,1) = 1./3.
L(2,1) = L(1,1)
L(3,1) = L(1,1)
L(1,2) = .6
L(2,2) = .2
L(3,2) = .2
L(1,3) = .2
L(2,3) = .6
L(3,3) = .2
L(1,4) = .2
L(2,4) = .2
L(3,4) = .6
W(1) =-27./48.
W(2) = 25./48.
W(3) = W(2)
W(4) = W(2)
NOPTS = 4
10 CONTINUE
ISC(1) = NECPT(1)
ISC(2) = 1
IF (ITYPE .EQ. 80) ISC(2) = 9
C
C FIND ELEMENT TYPE TO PICK UP POINTERS
C
IF (ITYPE .EQ. TYPOLD) GO TO 40
TYPOLD = ITYPE
DO 20 I = 1,9
JEL = I
IF (ITYPE-POINTR(1,I)) 1600,30,20
20 CONTINUE
GO TO 1600
C
30 ISIL = POINTR(2,JEL)
ITH = POINTR(3,JEL)
MID = POINTR(4,JEL)
IA = POINTR(5,JEL)
ISYS = POINTR(6,JEL)
NGRIDS= POINTR(7,JEL)
ITEMP = POINTR(8,JEL)
NEL = POINTR(9,JEL)
C
C CHECK TO SEE IF THIS ELEMENT CONTAINS A GRID POINT ON A PERMBDY
C CARD. IF SO, OR IF NO PERMBDY CARD EXISTS, COMPUTE LOADS FOR THE
C ELEMENT. IF NOT, COMPUTE HC CENTROIDAL VALUE ONLY. (ONLYC=.TRUE.)
C THE PERMBDY SILS START AT Z(ISTART-NBDYS-1)
C
40 IF (NBDYS .EQ. 0) GO TO 60
C
DO 50 I = 1,NGRIDS
NG = NECPT(ISIL+I-1)
DO 50 J = 1,NBDYS
IF (NG .EQ. IZ(ISTART-NBDYS-NELOUT+J-1)) GO TO 60
50 CONTINUE
C
C ELEMENT HAS NO GRIDS ON PERMBDY
C
ONLYC = .TRUE.
NOPTS = 0
60 IF (ONLYC .AND. JTYPE.EQ.24) RETURN
C
C IF ONLYC=TRUE, CHECK TO SEE IF THE ELEMENT HAD AN ELFORCE REQUEST.
C IF SO, CONTINUE. IF NOT, JUST WRITE ZEROS TO HCCEN,SCR6) AND
C RETURN.
C
IF(.NOT.ONLYC) GO TO 80
IF(ALL .EQ. 1) GO TO 80
IF(NELOUT .EQ. 0) GO TO 110
C
DO 70 I = 1,NELOUT
IF (NECPT(1) .EQ. IZ(ISTART-NELOUT+I-1)) GO TO 80
70 CONTINUE
GO TO 110
C
C CHECK FOR ZERO LOAD
C
80 IF (JTYPE.NE.20 .AND. JTYPE.NE.24) GO TO 210
H1 = 0.
H2 = 0.
H3 = 0.
G1 = 0.
G2 = 0.
G3 = 0.
DO 90 I = 1,NGRIDS
ISUB = ISTART + 3*NECPT(ISIL+I-1) - 3
IF (JTYPE .EQ. 24) ISUB = ISTART + 3*NCOUNT - 3
H1 = H1 + ABS(Z(ISUB ))
H2 = H2 + ABS(Z(ISUB+1))
H3 = H3 + ABS(Z(ISUB+2))
G1 = G1 + Z(ISUB )
G2 = G2 + Z(ISUB+1)
G3 = G3 + Z(ISUB+2)
IF (JTYPE .EQ. 24) GO TO 100
90 CONTINUE
100 HL = H1 + H2 + H3
IF (HL .NE. 0.) GO TO 200
IF (JTYPE .EQ. 24) RETURN
C
C ALL ZEROS - WRITE TO SCR6
C
110 SC(3) = 0.
SC(4) = 0.
SC(5) = 0.
CALL WRITE (SCR6,SC,2,0)
ISC2 = ISC(2)
DO 120 I = 1,ISC2
CALL WRITE (SCR6,SC(3),3,0)
120 CONTINUE
RETURN
C
200 IF (JTYPE .EQ. 24) GO TO 210
C
C AVERAGE SPCFLD
C
AHCX = G1/FLOAT(NGRIDS)
AHCY = G2/FLOAT(NGRIDS)
AHCZ = G3/FLOAT(NGRIDS)
C
210 IF (ONLYC) GO TO 310
C
C PICK UP MATERIAL INFO
C INFLAG = 3 MEANS A 3 X 3 MATERIAL MATRIX WILL BE RETURNED. THE
C REASON FOR DOING THIS FOR A 2-D ELEMENT IS THAT HC CAN HAVE A
C COMPONENT NORMAL TO THE PLANE OF THE ELEMENT. PARTIAL DERIVATIVE
C W.R.T Z IS 0. BUT IF THE MATERIAL IS ANISOTROPIC, THEN A
C CONTRIBUTION TO THE SCALAR LOAD IS POSSIBLE IF MATERIAL CONTAINS
C A NON-ZERO X-Z TERM. FOR ISOTROPIC MATERIALS, THE NORMAL COMPONENT
C OF HC WILL BE IGNORED W.R.T ITS CONTRIBUTION TO THE LOAD. IF ALL
C TERMS OF MATERIAL MATRIX W.R.T.Z ARE 0, AND IF ANISOTROPIC ANGLE
C IS NOT 0, THEN WE MUST TRANSFORM MATERIALS TO ELEMENT SYSTEM HERE.
C
INFLAG = 3
IF (JTYPE .EQ. 24) GO TO 260
MATID = NECPT(MID)
ELTEMP = ECPT(ITEMP)
ANGLE = ECPT(ITH)*0.017453293
SINTH = SIN(ANGLE)
COSTH = COS(ANGLE)
CALL HMAT (NECPT(1))
C
C CHECK FOR 3-D ANISOTROPY
C
IF (XMAT(3).EQ.0. .AND. XMAT(5).EQ.0.) GO TO 230
C
220 G(1) = XMAT(1)
G(2) = XMAT(2)
G(3) = XMAT(3)
G(5) = XMAT(4)
G(6) = XMAT(5)
G(9) = XMAT(6)
GO TO 240
C
C CHECK FOR 2-D ANISOTROPY
C
230 IF (ABS(ANGLE) .LE. .0001) GO TO 220
C
C 2-D ANISOTROPY
C
CSQ = COSTH*COSTH
SSQ = SINTH*SINTH
CS = COSTH*SINTH
G(1) = CSQ*XMAT(1) - 2.*CS*XMAT(2) + SSQ*XMAT(4)
G(2) = CS*(XMAT(1) - XMAT(4)) + (CSQ-SSQ)*XMAT(2)
G(3) = 0.
G(5) = SSQ*XMAT(1) + 2.*CS*XMAT(2) + CSQ*XMAT(4)
G(6) = 0.
G(9) = XMAT(6)
C
240 IF (ITYPE.NE.36 .AND. ITYPE.NE.37) GO TO 250
C
C SWITCH Y-Z MATERIALS FOR TRAPRG AND TRIARG
C
TEMP = G(5)
G(5) = G(9)
G(9) = TEMP
TEMP = G(2)
G(2) = G(3)
G(3) = TEMP
C
C FILL IN SYMMETRIC PART
C
250 G(4) = G(2)
G(7) = G(3)
G(8) = G(6)
C
C SINCE QUADRILATERALS ARE COVERED BY 4 OVERLAPPING TRIANGLES,
C MUST DIVIDE QUAD RESULTS BY 2
C
260 XMUL = 1.
IF (NGRIDS .EQ. 4) XMUL = .5
C
C PICK UP COORDINATES OF GRID POINTS
C
DO 300 I = 1,NGRIDS
ISUBI = ISYS + 4*I - 4
DO 300 J = 1,3
ISUB = ISUBI + J
R(J,I)= ECPT(ISUB)
300 CONTINUE
310 IF (ITYPE .EQ. 80) GO TO 900
C
C COMPUTE COORDINATES OF CENTROID (OR, AT LEAST, AVERAGE ELEMENT
C COORDS)
C
XXC = 0.
YYC = 0.
ZZC = 0.
DO 320 I = 1,NGRIDS
XXC = XXC + R(1,I)
YYC = YYC + R(2,I)
ZZC = ZZC + R(3,I)
320 CONTINUE
XXC = XXC/FLOAT(NGRIDS)
YYC = YYC/FLOAT(NGRIDS)
ZZC = ZZC/FLOAT(NGRIDS)
C
C NOW COMPUTE PROPER LOADS FOR EACH TRIANGLE
C
DO 800 IEL = 1,NEL
IF (ONLYC) GO TO 500
C
C 1ST SET UP AN ARRAY TO PICK UP GRID POINTS IN A PARTICULAR ORDER.
C FOR TRIANGLES, IT IS 1,2,3. FOR QUADRILATERALS, FORM 4 TRIANGLES
C BY TAKING GRIDS 1,2,3, 2,3,4, 3,4,1, AND 4,1,2
C
DO 330 I = 1,3
IP(I) = I + IEL - 1
IF (IP(I) .GT. 4) IP(I) = IP(I) - 4
330 CONTINUE
C
C COMPUTE VECTORS FROM 1ST GRID TO 2ND AND FROM 1ST TO 3RD
C
DO 340 I = 1,3
D12(I) = R(I,I2) - R(I,I1)
340 D13(I) = R(I,I3) - R(I,I1)
C
C SET UP GRADIENTS FOR AXISYMMETRIC ELEMENTS SEPARATELY
C
IF (ITYPE.NE.36 .AND. ITYPE.NE.37) GO TO 360
C
C THE LENGTH OF THE CROSS PRODUCT VECTOR IS TWICE THE AREA OF THE
C TRIANG
C
CALL SAXB (D12(1),D13(1),D12(1))
AREA = .5*SQRT(D12(1)**2 + D12(2)**2 + D12(3)**2)
VOL = AREA*TWOPI3*(R(1,I1) + R(1,I2) + R(1,I3))
C
C NOW SET UP GRADIENT OF THE SHAPE FUNCTION AT EACH GRID POINT.
C SET UP A 3 X3 MATRIX ROW-STORED FOR GMMATS
C
D = (R(1,I2)-R(1,I1))*R(3,I3) + (R(1,I1)-R(1,I3))*R(3,I2) +
1 (R(1,I3)-R(1,I2))*R(3,I1)
XN(1) = R(3,I2) - R(3,I3)
XN(2) = 0.
XN(3) = R(1,I3) - R(1,I2)
XN(4) = R(3,I3) - R(3,I1)
XN(5) = 0.
XN(6) = R(1,I1) - R(1,I3)
XN(7) = R(3,I1) - R(3,I2)
XN(8) = 0.
XN(9) = R(1,I2) - R(1,I1)
C
DO 350 I = 1,9
XN(I) = XN(I)/D
350 CONTINUE
C
C FOR ALL EXCEPT REMFLUX, MULT. GRADIENTS INTO MATERIALS
C
IF (JTYPE .NE. 24) CALL GMMATS (XN(1),3,3,0,G,3,3,0,XN(10))
GO TO 420
C
C FIRST, CONVERT COORDINATES TO ELEMNT COORDINATE SYSTEM
C
360 ZLEN = SQRT(D12(1)**2 + D12(2)**2 + D12(3)**2)
DO 370 I = 1,3
370 ZI(I) = D12(I)/ZLEN
C
CALL SAXB (ZI(1),D13(1),DXX(1))
C
X2 = ZLEN
X3 = D13(1)*ZI(1) + D13(2)*ZI(2) + D13(3)*ZI(3)
Y3 = SQRT(DXX(1)**2 + DXX(2)**2 + DXX(3)**2)
C
AREA = .5*X2*Y3
VOL = AREA*ECPT(IA)
C
C GET J AND K VECTORS FOR LATER USE
C
DO 380 I = 1,3
380 ZK(I) = DXX(I)/Y3
C
CALL SAXB (ZK(1),ZI(1),ZJ(1))
ZLEN = SQRT(ZJ(1)**2 + ZJ(2)**2 + ZJ(3)**2)
DO 390 I = 1,3
390 ZJ(I) = ZJ(I)/ZLEN
DO 400 I = 1,3
ET(I ) = ZI(I)
ET(I+3) = ZJ(I)
400 ET(I+6) = ZK(I)
C
C SHAPE FUNCTION GRADIENTS
C
XN(1) = -1./X2
XN(2) = (X3-X2)/(X2*Y3)
XN(3) = 0.
XN(4) = -XN(1)
XN(5) = -X3/(X2*Y3)
XN(6) = 0.
XN(7) = 0.
XN(8) = 1./Y3
XN(9) = 0.
C
C TRANSFORM SHAPE FN GRADIENTS FROM LOCAL TO BASIC
C
CALL GMMATS (ET,3,3,1,XN(1),3,3,1,XNG(1))
C
C FOR ALL EXCEPT REMFLUX, MULT. GRADIENTS OF SHAPE FNS INTO
C MATERIALS
C
IF (JTYPE .EQ. 24) GO TO 410
CALL GMMATS (XNG(1),3,3,1,G,3,3,0,XN(10))
GO TO 420
410 XN(1) = XNG(1)
XN(2) = XNG(4)
XN(3) = XNG(7)
XN(4) = XNG(2)
XN(5) = XNG(5)
XN(6) = XNG(8)
XN(7) = XNG(3)
XN(8) = XNG(6)
XN(9) = XNG(9)
420 IF (JTYPE .EQ. 24) GO TO 740
C
C START INTEGRATION PROCEDURE- 4 POINTS FOR CUBIC PLUS ONE AT
C CENTROID
C
500 KTYPE = JTYPE - 19
XLACC(1) = 0.
XLACC(2) = 0.
XLACC(3) = 0.
NOPTSP = NOPTS + 1
DO 720 NPTS = 1,NOPTSP
C
C DO CENTROID FOR ONLY 1ST TRIANGLE
C
IF (NPTS.EQ.NOPTSP .AND. IEL.GT.1) GO TO 720
C
C COMPUTE BASIC COORDS OF INTEGRATION POINT
C
IF (NPTS .NE. NOPTSP) GO TO 510
C
C CENTROID
C
XX = XXC
YY = YYC
ZZ = ZZC
IF (JTYPE .NE. 20) GO TO 520
C
C AVERAGE SPCFLD
C
HC(1) = AHCX
HC(2) = AHCY
HC(3) = AHCZ
GO TO 610
510 XX = L(1,NPTS)*R(1,I1) + L(2,NPTS)*R(1,I2) + L(3,NPTS)*R(1,I3)
YY = L(1,NPTS)*R(2,I1) + L(2,NPTS)*R(2,I2) + L(3,NPTS)*R(2,I3)
ZZ = L(1,NPTS)*R(3,I1) + L(2,NPTS)*R(3,I2) + L(3,NPTS)*R(3,I3)
520 HC(1) = 0.
HC(2) = 0.
HC(3) = 0.
C
C COMPUTE HC AT THIS POINT FOR ALL LOADS OF THIS TYPE
C
DO 600 IJK = 1,IDO
IF (JTYPE .EQ. 20) GO TO 540
ISUB = ISTART + (IJK-1)*IWORDS - 1
DO 530 I = 1,IWORDS
530 BUF(I) = Z(ISUB+I)
GO TO (540,560,570,580), KTYPE
540 DO 550 I = 1,3
IPI = IP(I)
NSIL = NECPT(ISIL+IPI-1)
IPT = ISTART + 3*NSIL - 3
HCX(I) = Z(IPT )
HCY(I) = Z(IPT+1)
HCZ(I) = Z(IPT+2)
550 CONTINUE
HC1 = L(1,NPTS)*HCX(1) + L(2,NPTS)*HCX(2) + L(3,NPTS)*HCX(3)
HC2 = L(1,NPTS)*HCY(1) + L(2,NPTS)*HCY(2) + L(3,NPTS)*HCY(3)
HC3 = L(1,NPTS)*HCZ(1) + L(2,NPTS)*HCZ(2) + L(3,NPTS)*HCZ(3)
GO TO 590
C
C CEMLOOP, GEMLOOP, MDIPOLE
C
560 CALL AXLOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 590
570 CALL GELOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 590
580 CALL DIPOLE (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
590 HC(1) = HC(1) + HC1
HC(2) = HC(2) + HC2
HC(3) = HC(3) + HC3
600 CONTINUE
C
610 IF (NPTS .NE. NOPTSP) GO TO 700
SC(3) = HC(1)
SC(4) = HC(2)
SC(5) = HC(3)
CALL WRITE (SCR6,SC,5,0)
GO TO 720
C
C WE HAVE HC AT THIS INTEG. PT. MULT. BY WEIGHT AND ACCUMULATE
C
700 DO 710 I = 1,3
710 XLACC(I) = XLACC(I) + HC(I)*W(NPTS)
C
C GET ANOTHER INTEGRATION POINT
C
720 CONTINUE
C
IF (ONLYC) RETURN
DO 730 I = 1,3
730 HC(I) = XLACC(I)
GO TO 750
C
C REMFLUX
C
740 IPT = ISTART + 3*NCOUNT - 3
HC(1) = Z(IPT )
HC(2) = Z(IPT+1)
HC(3) = Z(IPT+2)
C
C TAKE XMUL MULTIPLIER INTO ACCOUNT
C
750 DO 760 I = 1,3
760 HC(I) = HC(I)*XMUL
C
C MAKE FINAL COMPUTATION. MULTIPLY PRODUCT OF SHAPE FUNCTION
C GRADIENTS AND MATERIAL MATRIX INTO HC AND MULTIPLY BY VOLUME
C
ISUB = 10
IF (JTYPE .EQ. 24) ISUB = 1
CALL GMMATS (XN(ISUB),3,3,0,HC,3,1,0,XLOAD(1))
C
C ADD THIS ELEMENT LOAD VECTOR IN OVERALL VECTOR. USE NSIL AND IP TO
C POI
C
DO 790 J = 1,3
IPI = IP(J)
NSIL = NECPT(ISIL+IPI-1)
C
C IF PERMBDY EXISTS AND IF GRID IS NOT ON IT, IGNORE ITS LOAD
C
IF (NBDYS .EQ. 0) GO TO 780
DO 770 I = 1,NBDYS
IF (NSIL .NE. IZ(ISTART-NBDYS-NELOUT+I-1)) GO TO 770
GO TO 780
770 CONTINUE
GO TO 790
780 Z(NSIL) = Z(NSIL) - XLOAD(J)*VOL
790 CONTINUE
C
C DONE FOR THIS TRIANGLE. GO BACK FOR ANOTHER
C
800 CONTINUE
RETURN
C
C IS2D8
C
C SET UP QUADRATURE POINTS AND WEIGHTS
C
900 IF (ONLYC) GO TO 1000
PT(1) = -0.57735027
PT(2) = -PT(1)
H(1) = 1.
H(2) = 1.
IF (NECPT(10) .EQ. 2) GO TO 910
PT(1) = -0.77459667
PT(2) = 0.
PT(3) = -PT(1)
H(1) = 5./9.
H(2) = 8./9.
H(3) = H(1)
C
C COMPUTE I,J,K VECTORS- I IS 1 TO 2
C
910 DO 920 I = 1,3
ZI(I) = R(I,2) - R(I,1)
920 Z14(I)= R(I,4) - R(I,1)
ZLEN = SQRT(ZI(1)**2 + ZI(2)**2 + ZI(3)**2)
DO 930 I = 1,3
930 ZI(I) = ZI(I)/ZLEN
C
C GET K BY CROSSING I INTO VECTOR FROM 1 TO 4
C
ZK(1) = ZI(2)*Z14(3) - ZI(3)*Z14(2)
ZK(2) = ZI(3)*Z14(1) - ZI(1)*Z14(3)
ZK(3) = ZI(1)*Z14(2) - ZI(2)*Z14(1)
ZKLEN = SQRT(ZK(1)**2 + ZK(2)**2 + ZK(3)**2)
DO 940 I = 1,3
940 ZK(I) = ZK(I)/ZKLEN
C
C GET J BY CROSSING K INTO I AND STORE INTO TRANSFORMATION MATRIX
C
ZJ(1) = ZK(2)*ZI(3) - ZK(3)*ZI(2)
ZJ(2) = ZK(3)*ZI(1) - ZK(1)*ZI(3)
ZJ(3) = ZK(1)*ZI(2) - ZK(2)*ZI(1)
ZJLEN = SQRT(ZJ(1)**2 + ZJ(2)**2 + ZJ(3)**2)
DO 950 I = 1,3
950 ZJ(I) = ZJ(I)/ZJLEN
C
DO 960 I = 1,3
ET(I ) = ZI(I)
ET(I+3) = ZJ(I)
960 ET(I+6) = ZK(I)
C
C COMPUTE ELMENT COORDS FOR 1 AND 2
C
XZ(1) = 0.
XZ(2) = 0.
XZ(3) = ZLEN
XZ(4) = 0.
C
C FOR 3-8, X IS DOT PRODUCT OF VECTOR FROM 1 TO GRID WITH I.
C Y IS THE LENFTH OF THE VECTOR RESULTING FROM CROSSING I INTO
C VECTOR FROM 1 TO GRID
C
DO 980 I = 3,8
IXX = 2*I - 1
DO 970 J = 1,3
970 VEC(J) = R(J,I) - R(J,1)
XZ(IXX) = VEC(1)*ZI(1) + VEC(2)*ZI(2) + VEC(3)*ZI(3)
VVEC(1) = ZI(2)*VEC(3) - ZI(3)*VEC(2)
VVEC(2) = ZI(3)*VEC(1) - ZI(1)*VEC(3)
VVEC(3) = ZI(1)*VEC(2) - ZI(2)*VEC(1)
XZ(IXX+1) = SQRT(VVEC(1)**2 + VVEC(2)**2 + VVEC(3)**2)
980 CONTINUE
C
DO 990 I = 1,8
990 F(I) = 0.
C
C GET HC AT EACH GRID
C
IF (JTYPE .NE. 24) GO TO 1000
C
C REMFLUX
C
ISUB = ISTART + 3*NCOUNT - 3
GH(1) = Z(ISUB )
GH(2) = Z(ISUB+1)
GH(3) = Z(ISUB+2)
GO TO 1020
C
C IF SPCFLD, PICK UP GRID VALUES HERE. IF NOT, PICK UP INTEGRATION
C POINT VALUES LATER
C
1000 IF (JTYPE .NE. 20) GO TO 1020
DO 1010 I = 1,NGRIDS
ISIL = 3*NECPT(I+1)
HCI(3*I-2) = Z(ISTART+ISIL-3)
HCI(3*I-1) = Z(ISTART+ISIL-2)
HCI(3*I ) = Z(ISTART+ISIL-1)
1010 CONTINUE
1020 INIP = NECPT(10)
KTYPE = JTYPE - 20
IF (ONLYC) GO TO 1340
C
C START INTEGRATION
C
DO 1300 III = 1,INIP
DO 1300 JJJ = 1,INIP
C
C COMPUTE DERIVATIVES WITH RESPECT TO XI AND ETA
C EACH GRID POINT
C
DO 1030 N = 1,4
DN(N) = .25*(1.+PT(III)*XI(N))*(1.+PT(JJJ)*ETA(N))*
1 (PT(III)*XI(N)+PT(JJJ)*ETA(N)-1.)
DNXI(N) = .25*XI(N)*(1.+PT(JJJ)*ETA(N))*
1 (2.*PT(III)*XI(N)+PT(JJJ)*ETA(N))
DNETA(N)= .25*ETA(N)*(1.+PT(III)*XI(N))*
1 (PT(III)*XI(N)+2.*PT(JJJ)*ETA(N))
1030 CONTINUE
DO 1040 N = 5,7,2
C
DN(N) = .5*(1.-PT(III)*PT(III))*(1.+PT(JJJ)*ETA(N))
DNXI(N) = -PT(III)*(1.+PT(JJJ)*ETA(N))
DNETA(N)= .5*(1.-PT(III)*PT(III))*ETA(N)
1040 CONTINUE
C
DO 1050 N = 6,8,2
DN(N) = .5*(1.+PT(III)*XI(N))*(1.-PT(JJJ)*PT(JJJ))
DNXI(N) = .5*XI(N)*(1.-PT(JJJ)*PT(JJJ))
DNETA(N)= -PT(JJJ)*(1.+PT(III)*XI(N))
1050 CONTINUE
C
C COMPUTE JACOBEAN
C
C N1XI N2XI N3XI N4XI N5XI N6XI N7XI N8XI
C DNC = N1ETA N2ETA N3ETA N4ETA N5ETA N6ETA N7ETA N8ETA
C
C X1 Y1
C X2 Y2
C X3 Y3
C XX = X4 Y4
C X5 Y5
C X6 Y6
C X7 Y7
C X8 Y8
C
CALL GMMATS (DNC,2,8,0,XZ,8,2,0,XJB)
C
C XJB IS ROW-STORED-IT MUST BE COLUMN-STORED AND DOUBLY DIMENSIONED
C FOR INVERSION
C
K = 0
DO 1060 I = 1,2
DO 1060 J = 1,2
K = K + 1
1060 XXJB(I,J) = XJB(K)
C
C COMPUTE INVERSE AND DETERMINANT OF JACOBEAN
C
CALL INVERS (2,XXJB,2,DUMARG,0,DETERM,ISING,IWS)
C
C COMPUTE DERIVATIVES WITH RESPECT TO X AND Y
C
K = 0
DO 1070 I = 1,2
DO 1070 J = 1,2
K = K + 1
1070 XJB(K) = XXJB(I,J)
CALL GMMATS (XJB,2,2,0,DNC,2,8,0,DNL)
C
C N1X N2X N3X N4X N5X N6X N7X N8X
C DNL = N1Y N2Y N3Y N4Y N5Y N6Y N7Y N8Y
C
IF (JTYPE .EQ. 24) GO TO 1190
C
C INITIALIZE HC AT PRESENT UNTEGRATION POINT
C
DO 1080 I = 1,3
1080 HCXYZ(I) = 0.
IF (JTYPE .EQ. 20) GO TO 1160
C
C FOR LOOPS AND DIPOLES, COMPITE BASIC COORDS. FOR THIS INTEGRATION
C PT
C
XX = 0.
YY = 0.
ZZ = 0.
DO 1090 M = 1,NGRIDS
XX = XX + DN(M)*R(1,M)
YY = YY + DN(M)*R(2,M)
1090 ZZ = ZZ + DN(M)*R(3,M)
C
DO 1150 IJK = 1,IDO
ISUB = ISTART + (IJK-1)*IWORDS - 1
DO 1100 M = 1,IWORDS
1100 BUF(M) = Z(ISUB+M)
GO TO (1110,1120,1130), KTYPE
1110 CALL AXLOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 1140
1120 CALL GELOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 1140
1130 CALL DIPOLE (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
1140 HCXYZ(1) = HCXYZ(1) + HC1
HCXYZ(2) = HCXYZ(2) + HC2
HCXYZ(3) = HCXYZ(3) + HC3
1150 CONTINUE
GO TO 1180
C
C SPCFLD
C
1160 DO 1170 M = 1,NGRIDS
HCXYZ(1) = HCXYZ(1) + DN(M)*HCI(3*M-2)
HCXYZ(2) = HCXYZ(2) + DN(M)*HCI(3*M-1)
1170 HCXYZ(3) = HCXYZ(3) + DN(M)*HCI(3*M)
C
C MULTIPLY MATERIAL INTO HC AT THIS INTEGRATION POINT
C
1180 CALL GMMATS (G,3,3,0,HCXYZ,3,1,0,GH)
1190 SFACT = H(III)*H(JJJ)*DETERM
C
C TRANSFORM DNL FROM LOCAL TO BASIC
C 1 ST EXPAND TO ADD IN ZEROS CORRESPONDING TO Z DIRECTION
C
DO 1200 I = 1,16
1200 DDNL(I) = DNL(I)
DO 1210 I = 17,24
1210 DDNL(I) = 0.
C
CALL GMMATS (ET,3,3,1,DDNL,3,8,0,DDNLB)
C
DO 1220 M = 1,NGRIDS
F(M) = F(M) + (DDNLB(M)*GH(1) + DDNLB(M+8)*GH(2) +
1 DDNLB(M+16)*GH(3))*SFACT
1220 CONTINUE
C
C GET ANOTHER INTEGRATION POINT
C
1300 CONTINUE
C
C ADD LOAD INTO LOAD ARRAY
C
DO 1330 M = 1,NGRIDS
ISIL = NECPT(M+1)
C
C IF PERMBDY EXISTS AND IF GRID IS NOT ON IT, IGNORE ITS LOAD
C
IF (NBDYS .EQ. 0) GO TO 1320
DO 1310 I = 1,NBDYS
IF (ISIL .NE. IZ(ISTART-NBDYS-NELOUT+I-1)) GO TO 1310
GO TO 1320
1310 CONTINUE
GO TO 1330
1320 Z(ISIL) = Z(ISIL)-F(M)*ECPT(IA)
1330 CONTINUE
C
C BEFORE LEAVING COMPUTE HC AT GRIDS AND CENTROID AND WRITE TO SCR6
C
1340 IF (JTYPE .EQ. 24) RETURN
CALL WRITE (SCR6,ISC,2,0)
C
C SET UP SHAPE FUNCTIONS AT CENTROID
C
DO 1350 I = 1,4
1350 DN(I) = -.25
DO 1360 I = 5,8
1360 DN(I) = .5
C
IF (JTYPE .NE. 20) GO TO 1400
C
C FOR SPCFLD HC VALUES AT GRIDS ARE IN CORE
C
CALL WRITE (SCR6,HCI,24,0)
C
DO 1370 I = 1,3
1370 HCXYZ(I) = 0.
DO 1380 M = 1,NGRIDS
HCXYZ(1) = HCXYZ(1) + DN(M)*HCI(3*M-2)
HCXYZ(2) = HCXYZ(2) + DN(M)*HCI(3*M-1)
HCXYZ(3) = HCXYZ(3) + DN(M)*HCI(3*M )
1380 CONTINUE
C
CALL WRITE (SCR6,HCXYZ,3,0)
RETURN
C
C NOT SPCFLD
C
1400 DO 1500 J = 1,9
IF (J .NE. 9) GO TO 1420
C
C CENTROID
C
XX = 0.
YY = 0.
ZZ = 0.
DO 1410 M = 1,8
XX = XX + DN(M)*R(1,M)
YY = YY + DN(M)*R(2,M)
1410 ZZ = ZZ + DN(M)*R(3,M)
GO TO 1430
1420 XX = R(1,J)
YY = R(2,J)
ZZ = R(3,J)
1430 HC(1) = 0.
HC(2) = 0.
HC(3) = 0.
DO 1490 IJK = 1,IDO
ISUB = ISTART + (IJK-1)*IWORDS - 1
DO 1440 I = 1,IWORDS
1440 BUF(I) = Z(ISUB+I)
GO TO (1450,1460,1470), KTYPE
1450 CALL AXLOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 1480
1460 CALL GELOOP (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
GO TO 1480
1470 CALL DIPOLE (BUF,JBUF,XX,YY,ZZ,HC1,HC2,HC3)
1480 HC(1) = HC(1) + HC1
HC(2) = HC(2) + HC2
HC(3) = HC(3) + HC3
1490 CONTINUE
C
CALL WRITE (SCR6,HC,3,0)
1500 CONTINUE
C
RETURN
C
1600 WRITE (OTPE,1610) UFM,NAM,ITYPE
1610 FORMAT (A23,', IN SUBROUTINE',2A4,' ELEMENT TYPE',I8,' IS NOT ',
1 'LEGAL')
CALL MESAGE (-61,0,0)
RETURN
END
|