1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
SUBROUTINE GRBVEC
C
C THIS SUBROUITNE IS THE MAIN DRIVER FOR THE VECGRB MODULE
C WHICH GENERATES
C
C (1) THE GEOMETRIC RIGID BODY VECTORS ABOUT THE INDICATED GRID
C POINT OR ORIGIN.
C THIS SET OF VECTORS CONSISTS OF UNIT DISPLACEMENTS IN ZERO
C COORDINATE SYSTEM ABOUT THE SPECIFIED GRID IN GLOBAL COORD.
C FOR EASE OF ASSEMBLY THE VECTOR IS GENERATED IN THE TRANSPOSED
C FORM, THAT IS, WITH SIX ROW, ONE FOR EACH OF THE SIX UNIT
C MOTIONS AND G-SET COLUMNS, ONE FOR EACH DOF'S CORRESPONDING
C MOTION. THIS SET OF VECTORS WOULD BE EXACTLY EQUAL TO A UNIT
C DISPLACEMENT CHECK IF ALL THE GRIDS HAD STIFFNESS BUT WERE
C NOT GROUNDED.
C
C (2) A g-SET SIZED CSTM FROM BASIC TO GOLBAL
C
C DMAP SEQUENCE -
C
C VECGRB BGPDT,EQEXIN,CSTM/OUTVEC/P1/P2/P3 $
C
C WHERE P1 = 1, GENERATE CSTM FROM BASIC TO GLOBAL
C = 2, GENERATE PHIRBT
C P2 = REFERENCE GRID FOR PHIRB (0=BASIC, DEFAULT)
C P3 = CURRENTLY NOT USED
C
C EXAMPLES -
C
C (1) G-SET EQUILIBRIUM CHECK
C THIS CHECK MULTIPLIES THE STIFFNESS MATRIX TIMES THE GEOMETRIC
C RIGID BODY SHAPES PENERATED BY VECRGB. THE FORCES OBATINED FROM
C THIS MULTIPLICATION SHOULD BE ZERO.
C
C VECGRB BGPDT,CSTM,EQEXIN/PHIRBT/2/0 $ CREATE TRANSPOSE OF RIGID
C TRNSP PHIRBT/PHIRB $ BODY VECTORS, THEN TRNSP
C MPYAD KGG,PHIRB,/KPHIG/0 $ MULTIPLY BY STIFFNESS.
C MPYAD PHIRBT,KPHIG,/KPHG6/0 $ SUM FORCES AND PRINT
C MATPRN KPHG6,,,, // $ 6X6 SUMMATION. PRINT ALL
C MATGPR GPL,USET,SIL,KPHIG//*G*/*G*// $ FORCES OVER 0.0001
C .0001 $
C
C (2) COORDINATE SYSTEM TRANSFORMATION
C
C VECRGB BGPDT,CSTM,EQEXIN/BCSTM/1 $ TRANSFORM GLOBAL KGG TO
C TRNSP BCSTM/BCSTMT/ $ BASIC
C MPYAD BCSTM,KGG,/BGKGG/0 $
C MPYAD BGKGG,BCSTMT,/BBKGG/0 $
C
C THIS SUBROUTINE WAS ORIGINALLY CALLED CSTMX, AND WAS WRITTEN BY
C P.KIRCHMAN/SWALES, 2/1993, WITH THE DMAP MODULE OF THE SAME NAME
C
C THE DMAP MODLUE IS RENAMED TO GEOMETRIC RIGID BODY VECTOR, VECGRB,
C AND THE SUBROUTINE GRBVEC. THE ORIGINAL SUBROUTINE WAS RE-CODED BY
C G.CHAN/UNISIS, USING NASTRAN TRADITIONAL FORTRAN STYLE, AND THE
C SUBSTITUTION OF GMMATD ROUTINE FOR DP3X3M. ALSO, THE ORDER OF 2ND
C AND 3RD INPUT DATA BLOCKS IS INTERCHANGED.
C
C THE ORIGINAL CSTMX IS INCLUDED IN THE 1993 RELEASE. IT IS ONLY
C FOR BACKUP PURPOSE. CSTMX WILL BE DELETED IN NEXT NASTRAN RELEASE
C (THE ORIGINAL CSTMX ROUTINE PRODUCED HUNDREDS OF FORTRAN ERRORS
C ON CDC MACHINE WITH FTN5 COMPILER. 3/93)
C
IMPLICIT INTEGER (A-Z)
LOGICAL RBV
INTEGER TRL(7),NAME(2),SUB(2)
REAL RX(1)
DOUBLE PRECISION RBVR(3),V3(3),ZERO,ONE,XG,YG,ZG,RAD,XL,TU(9),
1 T1(9),T2(9),T(9),RVEC(9),RBVEC(9),V(3),VOUT(6)
CHARACTER UFM*23,UWM*25,UIM*29,SFM*25
COMMON /XMSSG / UFM,UWM,UIM,SFM
COMMON /BLANK / P1,P2,P3
COMMON /ZZZZZZ/ IX(1)
COMMON /SYSTEM/ IBUFF,NOUT
COMMON /PACKX / TIN,TOU,II,JJ,INCR
EQUIVALENCE (IX(1),RX(1))
DATA BGPDT , EQEXIN, CSTM / 101,102,103 /,
1 OUTVEC/ 201 /, SUB / 4HGRBV,4HC /
DATA ZERO , ONE / 0.0D+0, 1.0D+0 /
DATA CSTMX , EQE,XIN, BGP,DT /
1 4HCSTM, 4HEQEX,4HIN , 4HBGPD,4HT /
C
C CHECK FOR THE PRESENCE OF OUTPUT DATA BLOCK
C
TRL(1) = OUTVEC
CALL RDTRL (TRL)
IF (TRL(1) .LE. 0) GO TO 1000
C
C INITIALIZATION
C
LCOR = KORSZ(IX(1)) - IBUFF
BUF1 = LCOR - 1
TU(1) = ONE
TU(2) = ZERO
TU(3) = ZERO
TU(4) = ZERO
TU(5) = ONE
TU(6) = ZERO
TU(7) = ZERO
TU(8) = ZERO
TU(9) = ONE
C
C CHECK THE PRESENCE OF BGPDT AND CSTM FILES
C
TRL(1)= BGPDT
CALL RDTRL (TRL)
IF (TRL(1) .LE. 0) GO TO 1020
NENT = TRL(2)
TRL(1)= CSTM
CALL RDTRL (TRL)
NCST = TRL(3)
IF (TRL(1) .LE. 0) NCST = 0
NENT4 = NENT*4
NCST14= NCST*14
IF (NENT4+NCST14 .GT. LCOR) GO TO 1100
RBV = P1 .EQ. 2
C
C CHECK IF THIRD INPUT FILE IS PRESENT, THEN OPEN EQEXIN FILE AND
C READ THE FIRST TABLE INTO CORE IF APPROPRIEATE
C
GRDPNT = 0
IF (P1.NE.2 .OR. P2.EQ.0) GO TO 60
TRL(1) = EQEXIN
CALL RDTRL (TRL)
IF (TRL(1) .LE. 0) GO TO 1020
FILE = EQEXIN
CALL FNAME (EQEXIN,NAME)
IF (NAME(1).NE.EQE .OR. NAME(2).NE.XIN) GO TO 1040
CALL OPEN (*1200,EQEXIN,IX(BUF1),0)
CALL FWDREC (*1300,EQEXIN)
CALL READ (*1300,*20,EQEXIN,IX(1),BUF1-1,1,FLAG)
CALL MESAGE (-8,0,SUB)
20 TRL2 = TRL(2)*2
IF (FLAG .NE. TRL2) GO TO 1320
J = 1
DO 30 I = 1,TRL2,2
IF (P2 .NE. IX(J)) GO TO 30
GRDPNT = IX(J+1)
GO TO 50
30 J = J + 2
GRDPNT = 0
WRITE (NOUT,40) UWM,P2
40 FORMAT (A25,' - ID ',I8,' IS NOT A GRID POINT. THE ORIGIN WILL ',
1 'BE USED.')
50 CALL CLOSE (EQEXIN,1)
C
C OPEN AND READ BGPDT TABLE INTO BEGINNING OF CORE
C
60 FILE = BGPDT
CALL FNAME (BGPDT,NAME)
IF (NAME(1).NE.BGP .AND. NAME(2).NE.DT) GO TO 1040
CALL OPEN (*1200,BGPDT,IX(BUF1),0)
CALL FWDREC (*1300,BGPDT)
CALL READ (*1300,*70,BGPDT,IX(1),BUF1-1,1,FLAG)
CALL MESAGE (-8,0,SUB)
70 IF (FLAG .NE. NENT4) GO TO 1330
CALL CLOSE (BGPDT,1)
C
C OPEN AND READ CSTM FIRST TABLE INOT CORE AFTER BGPDT
C
IF (NCST .EQ. 0) GO TO 90
FILE = CSTM
CALL FNAME (CSTM,NAME)
IF (NAME(1) .NE. CSTMX) GO TO 1040
CALL OPEN (*1200,CSTM,IX(BUF1),0)
CALL FWDREC (*1300,CSTM)
CALL READ (*1300,*80,CSTM,IX(NENT4+1),BUF1-NENT4-1,1,FLAG)
CALL MESAGE (-8,0,SUB)
80 IF (FLAG .NE. NCST14) GO TO 1340
CALL CLOSE (CSTM,1)
C
C USE BGPDT INFO TO FIGURE OUT THE g-SET SIZE FOR OUTPUT
C
90 SIZE = 0
I = 1
DO 100 J = 1,NENT
IF (IX(I) .LT. 0) SIZE = SIZE + 1
IF (IX(I) .GE. 0) SIZE = SIZE + 6
100 I = I + 4
C
C STORE RIGID BODY REFERENCE VECTOR
C
RBVR(1) = 0.
RBVR(2) = 0.
RBVR(3) = 0.
IF (.NOT.RBV .OR. GRDPNT.EQ.0) GO TO 110
RBVR(1) = RX(GRDPNT*4-2)
RBVR(2) = RX(GRDPNT*4-1)
RBVR(3) = RX(GRDPNT*4 )
C
C OPNE OUTPUT FILE AND FILL OUTPUT TRAILER
C
110 CALL FNAME (OUTVEC,NAME)
CALL OPEN (*1200,OUTVEC,IX(BUF1),1)
CALL WRITE (OUTVEC,NAME,2,1)
IF ( RBV) CALL MAKMCB (TRL(1),OUTVEC,6,2,2)
IF (.NOT.RBV) CALL MAKMCB (TRL(1),OUTVEC,SIZE,2,2)
C
C INITIALIZE PACK COMMONS
C
TIN = 2
TOU = 2
INCR = 1
COL = 1
C
C BEGIN LOOP FOR NUMBER OF ENTRIES IN BGPDT
C
E4 = 0
DO 440 ENTRY = 1,NENT
E4 = E4 + 4
OCID= IX(E4-3)
XG = RX(E4-2)
YG = RX(E4-1)
ZG = RX(E4 )
C
C RBVEC IS A VECTOR BASED ON UNIT ROTATIONS OF A VECTOR FROM THE
C REFERENCE GRID TO THE GRID IN QUESTION. THE TRANSFORMATION IS
C FROM BASIC ROTATIONS TO BASIC TRANSLATIONS.
C
IF (.NOT.RBV) GO TO 130
RVEC(1) = ZERO
RVEC(2) = (ZG-RBVR(3))
RVEC(3) =-(YG-RBVR(2))
RVEC(4) =-(ZG-RBVR(3))
RVEC(5) = ZERO
RVEC(6) = (XG-RBVR(1))
RVEC(7) = (YG-RBVR(2))
RVEC(8) =-(XG-RBVR(1))
RVEC(9) = ZERO
C
C IF THIS ENTRY IS A SCALAR AND A RIGID BODY VECTOR HAS BEEN
C REQUESTED, STORE A ZERO COLUMN
C
130 IF (OCID.NE.-1 .OR. .NOT.RBV) GO TO 140
II = 1
JJ = 1
CALL PACK (ZERO,OUTVEC,TRL)
COL = COL + 1
GO TO 440
C
C IF THIS ENTRY IS A SCALAR AND A CSTM HAS BEEN REQUESTED, SIMPLY
C PLACE A ONE ON THE DIAGONAL AND CONTINUE
C
140 IF (OCID .NE. -1) GO TO 150
II = COL
JJ = COL
CALL PACK (ONE,OUTVEC,TRL)
COL = COL + 1
GO TO 440
C
C IF THIS ENTRY IS ALREADY IN BASIC COORDINATES, STORE AN IDENTITY
C IN THE APPOPRIATE SIX BY SIX
C
150 IF (OCID.NE.0 .OR. .NOT.RBV) GO TO 190
II = 1
JJ = 1
DO 170 I = 1,3
I3 = 0
DO 160 J = 1,3
VOUT(J ) = TU(J+I*3)
160 VOUT(J+3) = RVEC(J+I*3)
I3 = I3 + 3
II = 1
JJ = 6
CALL PACK (VOUT,OUTVEC,TRL)
170 COL = COL + 1
DO 180 I = 1,3
II = I + 3
JJ = I + 3
CALL PACK (ONE,OUTVEC,TRL)
180 CONTINUE
GO TO 440
C
190 IF (OCID .NE. 0) GO TO 210
DO 200 I = 1,6
II = COL
JJ = COL
CALL PACK (ONE,OUTVEC,TRL)
200 COL = COL + 1
GO TO 440
C
C CSTM MUST BE MISSING
C
210 IF (NCST .NE. 0) GO TO 220
TRL(1) = CSTM
GO TO 1020
C
C SET UP VECTORS AND MATRICES COMMON TO ALL COORDINATE SYSTEM
C TRANSFORMATIONS
C
C FIND COORDINATE SYSTEM
C
220 DO 230 ICST = 1,NCST
IF (IX(ICST*14-13+NENT4) .EQ. OCID) GO TO 240
230 CONTINUE
GO TO 1400
C
C GET COORDINATE SYSTEM TYPE AND
C TRANSFORMATION FROM BASIC TO COORDINATE SYSTEM ORIGIN TRIAD
C
240 OCIDT = IX(ICST*14-12+NENT4)
T1(1) = RX(ICST*14- 8+NENT4)
T1(4) = RX(ICST*14- 7+NENT4)
T1(7) = RX(ICST*14- 6+NENT4)
T1(2) = RX(ICST*14- 5+NENT4)
T1(5) = RX(ICST*14- 4+NENT4)
T1(8) = RX(ICST*14- 3+NENT4)
T1(3) = RX(ICST*14- 2+NENT4)
T1(6) = RX(ICST*14- 1+NENT4)
T1(9) = RX(ICST*14 +NENT4)
C
IK = ICST*14 + NENT4
V3(1) = RX(ENTRY*4-2) - RX(IK-11)
V3(2) = RX(ENTRY*4-1) - RX(IK-10)
V3(3) = RX(ENTRY*4 ) - RX(IK- 9)
C
V(1) = RX(IK-8)*V3(1) + RX(IK-5)*V3(2) + RX(IK-2)*V3(3)
V(2) = RX(IK-7)*V3(1) + RX(IK-4)*V3(2) + RX(IK-1)*V3(3)
V(3) = RX(IK-6)*V3(1) + RX(IK-3)*V3(2) + RX(IK )*V3(3)
C
C SPECIAL CHECKS FOR ZERO RADIUS CYLINDRICAL OR SPHERICAL COORDINATE
C SYSTEM. IF SO TREAT AS RECTANGULAR.
C
RAD = SQRT(V(1)**2 + V(2)**2)
IF (RAD .EQ. 0.) OCIDT = 1
C
C PERFORM INDIVIDUAL COORDINATE SYSTEM TRANSFORMATION AND GENERATE
C T2
C
GO TO (250,330,340), OCIDT
C
C RECTANGULAR, T = T1
C
250 IF (.NOT.RBV) GO TO 290
INDEX = 1
CALL GMMATD (RVEC,3,3,0, T1,3,3,0, RBVEC)
C
C ADD RIGID BODY INFORMATION TO LOWER OFF DIAGONAL 3X3 IF REQUESTED
C
DO 280 I = 1,3
I3 = 0
DO 270 J = 1,3
VOUT(J ) = T1(J+I3)
270 VOUT(J+3) = RBVEC(J+I3)
I3 = I3 + 3
II = 1
JJ = 6
CALL PACK (VOUT,OUTVEC,TRL)
280 COL = COL + 1
GO TO 310
C
C OR SIMPLY PACK THE TRANSFORMATION
C
290 INDEX = COL
DO 300 I = 1,3
II = INDEX
JJ = INDEX + 2
CALL PACK (T1(I*3-2),OUTVEC,TRL)
300 COL = COL + 1
C
C STORE LOWER 3X3, AND GET NEXT GRID
C
310 DO 320 I = 1,3
II = INDEX + 3
JJ = INDEX + 5
CALL PACK (T1(I*3-2),OUTVEC,TRL)
320 COL = COL + 1
GO TO 440
C
C CYLINDRICAL
C
330 T2(1) = V(1)/RAD
T2(4) =-V(2)/RAD
T2(7) = ZERO
T2(2) =-T2(4)
T2(5) = T2(1)
T2(8) = ZERO
T2(3) = ZERO
T2(6) = ZERO
T2(9) = ONE
GO TO 350
C
C SPHERICAL
C
340 XL = SQRT(V(1)*V(1) + V(2)*V(2) + V(3)*V(3))
IF (XL .LE. 0.0) GO TO 1060
T2(1) = V(1)/XL
T2(4) =(V(1)*V(3))/(RAD*XL)
T2(7) =-V(2)/RAD
T2(2) = V(2)/XL
T2(5) =(V(2)*V(3))/(RAD*XL)
T2(8) = V(1)/RAD
T2(3) = V(3)/XL
T2(6) =-RAD/XL
T2(9) = ZERO
C
350 CALL GMMATD (T1,3,3,0, T2,3,3,0, T)
IF (.NOT.RBV) GO TO 400
C
C ADD RIGID BODY INFORMATION TO LOWER OFF DIAGONAL 3X3 IF REQUESTED
C THEN PACK
C
INDEX = 1
CALL GMMATD (RVEC,3,3,0, T,3,3,0, RBVEC)
DO 390 I = 1,3
I3 = 0
DO 380 J = 1,3
VOUT(J ) = T(J+I3)
380 VOUT(J+3) = RBVEC(J+I3)
I3 = I3 + 3
II = 1
JJ = 6
CALL PACK (VOUT,OUTVEC,TRL)
390 COL = COL + 1
GO TO 420
C
C OR SIMPLY PACK THE TRANSFORMATION
C
400 INDEX = COL
DO 410 I = 1,3
II = INDEX
JJ = INDEX + 2
CALL PACK (T(I*3-2),OUTVEC,TRL)
410 COL = COL + 1
C
C STORE LOWER 3X3
C
420 DO 430 I = 1,3
II = INDEX + 3
JJ = INDEX + 5
CALL PACK (T(I*3-2),OUTVEC,TRL)
430 COL = COL + 1
C
440 CONTINUE
C
CALL CLOSE (OUTVEC,1)
CALL WRTTRL (TRL)
RETURN
C
C ERRORS
C
1000 WRITE (NOUT,1010) UFM
1010 FORMAT (A23,'. MISSING REQUIRED OUTPUT FILE')
GO TO 1500
1020 WRITE (NOUT,1030) UFM,TRL(1)
1030 FORMAT (A23,'. MISSING REQUIRED INPUT FILE',I4)
GO TO 1500
1040 WRITE (NOUT,1050) UFM,NAME
1050 FORMAT (A23,'. INPUT FILE ',2A4,' ERROR')
GO TO 1500
1060 WRITE (NOUT,1070) UFM
1070 FORMAT (A23,' FROM GRBVEC. ZERO RADIAL LENGTH, ERROR AT 340')
GO TO 1500
1100 J = -8
GO TO 1490
1200 J = -1
GO TO 1490
1300 J = -2
GO TO 1490
1320 J = TRL2
GO TO 1350
1330 J = NENT4
GO TO 1350
1340 J = NCST14
1350 WRITE (NOUT,1360) SFM,NAME,J,FLAG
1360 FORMAT (A25,'. EXPECTED RECORD LENGTH DOES NOT MATCH ACTUAL ',
1 ' RECORD LENGTH ON INPUT FILE ',2A4, /5X,2I10)
GO TO 1500
1400 WRITE (NOUT,1410) UFM,OCID
1410 FORMAT (A23,'. UNABLE TO FIND COORDINATE SYSTEM ',I8)
GO TO 1500
C
1490 CALL MESAGE (J,FILE,SUB)
1500 CALL MESAGE (-61,0,SUB)
RETURN
END
|