1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
SUBROUTINE IHEX(TEMPS,PG,TYPE)
C
C ELEMENT THERMAL LOAD GENERATOR FOR ISOPARAMETRIC SOLID ELEMENTS
C
C TYPE = 1 CIHEX1
C TYPE = 2 CIHEX2
C TYPE = 3 CIHEX3
C
C***********************************************************************
C THE EST ENTRIES ARE
C
C NAME ---------INDEX--------- DESCRIPTION
C IHEX1 IHEX2 IHEX3
C
C EID 1 1 1 ELEMENT ID NO.
C SIL 2-9 2-21 2-33 SCALAR INDEX LIST
C MID 10 22 34 MATERIAL ID NO.
C CID 11 23 35 MATERIAL COORD. SYSTEM ID NO.
C NIP 12 24 36 NO. INTEGRATION POINTS PER EDGE
C MAXAR 13 25 37 MAX ASPECT RATIO
C ALFA 14 26 38 MAX ANGLE FOR NORMALS
C BETA 15 27 39 MAX ANGLE FOR MIDSIDE POINTS
C BGPDT 16-47 28-107 40-167 BASIC GRID POINT DATA
C GPT 48-55 108-127 168-199 GRID POINT TEMPERATURES
C***********************************************************************
C
LOGICAL TDEP ,MTDEP ,ANIS ,RECT
C
INTEGER TYPE ,OTPT ,EID ,IEST(1) ,BGPDT ,
2 BCORD ,GPT ,JZ(32) ,SIL ,CID ,
3 UFM(6)
INTEGER IB(46)
C
DOUBLE PRECISION SHP ,DSHP ,JACOB ,DETJ
1, S ,SFACT ,A(6) ,E1 ,E2
2, E3 ,PARG(96) ,CN(3,32) ,TEMP ,ELTEMP
3, ALPVEC ,GMAT(36) ,GAUSS(8) ,DALPHA(6)
C
REAL TEMPS(1) ,PG(1) ,PSGL(96)
C
COMMON/TRIMEX/ EST(200)
COMMON/MATIN/ MID ,INFLAG ,ELTEMP
COMMON/MATOUT/ SE ,G ,SNU ,RHO ,
2 TALPHA,TREF,CDAMP,SPACE(18),
3 MTDEP
COMMON/MATISO/ BUFM6(46)
COMMON/SYSTEM/ SYSBUF ,OTPT ,SYS1(7) ,MTEMP ,
2 SYS2(45),HEAT
C
COMMON/SSGWRK/ SHP(32) ,DSHP(3,32) ,JACOB(3,3) ,S(4)
1, H(4)
C
EQUIVALENCE (EID,EST(1),IEST(1)),(JZ(1),SHP(1))
EQUIVALENCE (PSGL(1),PARG(1))
EQUIVALENCE (IB(1),BUFM6(1))
C
DATA GAUSS/ 0.577350269189626D0 ,0.555555555555556D0
1, 0.774596669241483D0 ,0.888888888888889D0
2, 0.347854845137454D0 ,0.861136311594053D0
3, 0.652145154862546D0 ,0.339981043584856D0/
DATA UFM /4H0***,4H USE,4HR FA,4HTAL ,4HMESS,4HAGE /
C
C*****
C COMPUTE EST POINTERS
C*****
NGP = 12*TYPE - 4
MID = 10 + 12*(TYPE - 1)
CID=IEST(MID+1)
NIP=IEST(MID+2)
IF (NIP .LT. 2 .OR. NIP .GT. 4) NIP=TYPE/2+2
BGPDT = MID + 6
GPT=BGPDT+4*NGP
DO 110 I=1,NGP
110 JZ(I) = IEST(BGPDT + 4*I - 4)
BCORD=GPT-3
DO 120 I=2,NGP
DO 120 J=1,3
K = BGPDT + 4*(NGP - I) + 4 - J
BCORD = BCORD - 1
EST(BCORD) = EST(K)
120 CONTINUE
DO 130 I=2,NGP
130 IEST(BGPDT+I-1) = JZ(I)
MID=IEST(NGP+2)
C
C ABSCISSAE AND WEIGHT COEFFICIENTS FOR GAUSSIAN QUADRATURE
C
I=NIP-1
GO TO (131,132,133),I
131 H(1)=1.0
S(1)=GAUSS(1)
H(2)=H(1)
S(2)=-S(1)
GO TO 134
132 H(1)=GAUSS(2)
S(1)=GAUSS(3)
H(2)=GAUSS(4)
S(2)=0.0
H(3)=H(1)
S(3)=-S(1)
GO TO 134
133 H(1)=GAUSS(5)
S(1)=GAUSS(6)
H(2)=GAUSS(7)
S(2)=GAUSS(8)
H(3)=H(2)
S(3)=-S(2)
H(4)=H(1)
S(4)=-S(1)
134 CONTINUE
C
C=======================================================================
C THIS SECTION OF CODE MUST BE UPDATED WHEN GENERAL ANISOTROPIC
C MATERIAL IS ADDED
C
C TEST FOR ANISOTROPIC MATERIAL
C
ANIS = .FALSE.
INFLAG=10
C
C TEST FOR RECTANGULAR COORDINATE SYSTEM IN WHICH THE ANISOTROPIC
C MATERIAL IS DEFINED
C
RECT = .TRUE.
C=======================================================================
C
C FETCH MATERIAL AND SET TEMPERATURE DEPENDENCE FLAG
C
TDEP=.TRUE.
DO 140 I=2,NGP
IF (EST(GPT) .NE. EST(GPT+I-1)) GO TO 150
140 CONTINUE
TDEP=.FALSE.
150 ELTEMP=EST(GPT)
CALL MAT(EID)
IF (.NOT. MTDEP) TDEP=.FALSE.
IF (IB(46).EQ.6) ANIS=.TRUE.
TREF=BUFM6(44)
C*****
C IF ISOTROPIC TEMPERATURE INDEPENDENT MATERIAL, COMPUTE CONSTANTS
C*****
IF (TDEP) GO TO 800
IF (ANIS) GO TO 700
IF (IB(46).NE.0) GO TO 640
CALL PAGE2(2)
WRITE(OTPT,7300) UFM,MID,EID
NOGO = 1
RETURN
640 E1=BUFM6(1)
E2=BUFM6(2)
E3=BUFM6(22)
TALPHA=BUFM6(38)
GO TO 800
C
C=======================================================================
C CODE TO TRANSFORM GENERAL ANISOTROPIC MATERIAL PROPERTIES TO
C BASIC COORDINATE SYSTEM MUST BE ADDED HERE
C=======================================================================
C
700 DO 710 IJK=1,36
710 GMAT(IJK)=BUFM6(IJK)
800 NTLP = 3*NGP
DO 900 I=1,NTLP
900 PARG(I) = 0.0
C*****
C BEGIN INTEGRATION LOOP NOW
C*****
DO 2000 I=1,NIP
DO 2000 J=1,NIP
DO 2000 K=1,NIP
C*****
C GENERATE SHAPE FUNCTIONS AND JACOBIAN MATRIX INVERSE
C*****
CALL IHEXSD(TYPE,SHP,DSHP,JACOB,DETJ,EID,S(I),S(J),S(K),
2 EST(BCORD))
IF (DETJ .NE. 0.0D0) GO TO 1010
C
C JACOBIAN MATRIX WAS SINGULAR
C
CALL MESAGE(-61,0,0)
C*****
C COMPUTE PARTIAL DERIVATIVE OF SHAPE FUNCTIONS WITH RESPECT
C TO BASIC COORDINATES
C*****
1010 CALL GMMATD(DSHP,NGP,3,0,JACOB,3,3,0,CN)
C*****
C COMPUTE LOADING TEMPERATURE AT THIS INTEGRATION POINT
C*****
TEMP=0.0D0
DO 1012 L=1,NGP
1012 TEMP=TEMP+SHP(L)*DBLE(TEMPS(L))
TEMP=TEMP-DBLE(TREF)
C*****
C IF MATERIAL IS TEMPERATURE DEPENDENT, COMPUTE TEMPERATURE AT THIS
C INTEGRATION POINT AND FETCH MATERIAL PROPERTIES
C*****
IF(.NOT.TDEP) GO TO 1030
ELTEMP=0.0D0
DO 1020 L=1,NGP
1020 ELTEMP=ELTEMP+SHP(L)*DBLE(EST(GPT+L-1))
CALL MAT(EID)
IF (ANIS) GO TO 1040
IF (IB(46).NE.0) GO TO 1025
CALL PAGE2(2)
WRITE(OTPT,7300) UFM,MID,EID
NOGO = 1
RETURN
1025 E1=BUFM6(1)
E2=BUFM6(2)
E3=BUFM6(22)
TALPHA=BUFM6(38)
GO TO 1100
C*****
C IF MATERIAL IS ANISOTROPIC AND NOT DEFINED IN RECTANGULAR COOR-
C DINATE SYSTEM, MUST TRANSFORM TO BASIC COORDINATE SYSTEM AT THIS
C INTEGRATION POINT
C*****
1030 IF(.NOT. ANIS) GO TO 1100
IF (RECT) GO TO 1500
1040 CONTINUE
DO 1041 IJK=1,36
1041 GMAT(IJK)=BUFM6(IJK)
C
C=======================================================================
C INSERT GLOBAL TO BASIC TRANSFORMATION OPERATIONS HERE FOR
C ANISOTROPIC MATERIAL MATRIX
GO TO 1500
C=======================================================================
C*****
C COMPUTE CONTRIBUTION TO THERMAL LOAD VECTOR FOR ISOTROPIC MATERIAL
C*****
1100 ALPVEC=DBLE(TALPHA)*(E1+2.0*E2)
SFACT=H(I)*H(J)*H(K)*DETJ*ALPVEC*TEMP
L = 0
DO 1400 II=1,NGP
DO 1400 JJ=1,3
L = L + 1
PARG(L) = SFACT*CN(JJ,II) + PARG(L)
1400 CONTINUE
GO TO 2000
C=======================================================================
1500 CONTINUE
C ADD LOAD COMPUTATIONS FOR ANISOTROPIC MATERIAL HERE
C=======================================================================
C
SFACT=H(I)*H(J)*H(K)*DETJ*TEMP
DO 1560 IJK=1,6
1560 DALPHA(IJK)=BUFM6(IJK+37)
C
CALL GMMATD(GMAT,6,6,0,DALPHA,6,1,0,A(1))
L=0
DO 1600 II=1,NGP
L=L+1
PARG(L)=PARG(L)+SFACT*(CN(1,II)*A(1)+CN(2,II)*A(4)+CN(3,II)*A(6))
L=L+1
PARG(L)=PARG(L)+SFACT*(CN(2,II)*A(2)+CN(1,II)*A(4)+CN(3,II)*A(5))
L=L+1
PARG(L)=PARG(L)+SFACT*(CN(3,II)*A(3)+CN(2,II)*A(5)+CN(1,II)*A(6))
1600 CONTINUE
2000 CONTINUE
DO 2100 I=1,NTLP
2100 PSGL(I)=PARG(I)
C*****
C INSERT THERMAL LOAD INTO GLOBAL LOAD VECTOR (PG ARRAY)
C*****
C
DO 3000 I=1,NGP
SIL = IEST(I+1)
IBGP = BGPDT + I - 1
IF (IEST(IBGP) .EQ. 0) GO TO 2500
CALL BASGLB(PSGL(3*I-2),PSGL(3*I-2),EST(BCORD+3*I-3),IEST(IBGP))
2500 DO 2600 J=1,3
PG(SIL+J-1)=PG(SIL+J-1)+PSGL(3*I-3+J)
2600 CONTINUE
3000 CONTINUE
C
C
7300 FORMAT(6A4,69H4005. AN ILLEGAL VALUE OF -NU- HAS BEEN SPECIFIED UN
2DER MATERIAL ID =,I10,17H FOR ELEMENT ID =,I10)
RETURN
END
|