1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
SUBROUTINE OPT2A (IP,EL,IEL,PR,IPR,RR)
C
LOGICAL FIRST,UNSAFE
INTEGER COUNT,ETYP,IEL(1),IP(2,1),IPR(1),IZ(10),NAME(2),
1 OES1,OUTTAP,PEST,PSTRES,PTELT,ZCOR,OLDTYP,EID(20),
2 PLUS(5),IY(1)
REAL EL(1),PR(1),RR(1),Y(1),PARM(8)
CHARACTER UFM*23,UWM*25,UIM*29
COMMON /XMSSG / UFM,UWM,UIM
COMMON /BLANK / SKP(2),COUNT,SKQ(2),KORE,SKR(2),NWDSE,NWDSP,SKS,
1 OES1,SKT(3),NELW,NPRW,SKU,NTOTL,CONV
COMMON /OPTPW2/ ZCOR,Z(16)
COMMON /ZZZZZZ/ CORE(1)
COMMON /NAMES / NRD,NOEOR,NWRT,NEXT
COMMON /SYSTEM/ SYSBUF,OUTTAP
C EQUIVALENT ARE (EL,IEL), (PR,IPR)
EQUIVALENCE (Z(1),IZ(1)), (CORE(1),PARM(1),MAX),
1 (IY(1),Y(1),PARM(8))
DATA NAME / 4H OPT,4H2A /
DATA PLUS / 4H , 4H+ , 4H++ , 4H+++ , 4H++++ /
C
NELR = 0
NE = 0
PTELT = 0
IDEL = 0
KEL = KORE
KCONV = 0
CONV = 1.0
ICP = NTOTL - 4
FIRST =.TRUE.
C
C READ HEADER, ODD RECORDS
C
GO TO 10
5 CALL FREAD (OES1,0,0,NEXT)
10 CALL READ (*630,*100,OES1,Z(1),10,NEXT,I)
ETYP = IZ(3)
NESW = IZ(10)
OLDTYP= PTELT
PTELT = IY(ETYP)
IF (PTELT .GT. 0) GO TO 15
C
C ELEMENT TYPE NOT TO OPTIMIZE
C
GO TO 5
15 IF (PTELT.GE.OLDTYP .OR. OLDTYP.EQ.0) GO TO 20
IF (KEL .NE. -1) KEL = KORE
IF (NE .EQ. 0) GO TO 16
CALL PAGE2 (1)
WRITE (OUTTAP,580) (EID(J),J=1,NE)
NE = 0
16 WRITE (OUTTAP,17)
17 FORMAT (/5X,15HNEXT SUBCASE...)
C
C SET POINTERS TO ELEMENT TYPE AND PROPERTIES IN CORE.
C L = LOCATION OF FIRST, M = MAX LOCATION
C
20 LEL = IP(1,PTELT)
MEL = IP(1,PTELT+1) - 1
IF (MEL .LE. LEL) GO TO 5
LOCE = LEL
LOCP1 = IP(2,PTELT) - 1
IF (NESW .GT. ZCOR) GO TO 70
C
C SEQUENTIALLY READ ONE ELEMENT FROM EVEN NUMBERED RECORDS.
C LOCE IS CURRENT ELEMENT TO COMPARE TO.
C
30 CALL READ (*90,*10,OES1,Z(1),NESW,NOEOR,I)
IDES = IZ(1)/10
50 IF (IDES .EQ. IEL(LOCE)) GO TO 110
C
C SCAN THE CORE FILE UNTIL ELEMENT ID .GT. IDES
C
IF (IDES .LT. IEL(LOCE)) GO TO 30
C
C CORE ELEMENT NOT TO BE OPTIMIZED
C
LOCE = LOCE + NWDSE
IF (LOCE .LT. MEL) GO TO 50
C
C END OF ELEMENT SEARCH FOR THIS TYPE (EOR NOT READ)
C
GO TO 5
C
C ELEMENT TYPE EXCEEDS CORE
C
70 IER = -8
IFLE = NESW - ZCOR
GO TO 105
C
C ILLEGAL EOF, EOR
C
90 IER = -2
GO TO 101
100 IER = -3
101 IFLE = OES1
C
105 CALL MESAGE (IER,IFLE,NAME)
C
C PROCES THIS ELEMENT
C
110 CONTINUE
NELR = NELR + 1
LOCP = IEL(LOCE+4) + LOCP1
PEST = IPR(LOCP+1)/100
MEST = IPR(LOCP+1) - PEST*100
RC = 1.0
X1A = 0.0
X2A = 0.0
E1 = 999.
UNSAFE = .FALSE.
C
GO TO (160,160,180,150,150,150,140,140,140,120,
1 130,140,140,140,170,150,140,120,140,140), PTELT
C
C ROD, TUBE
C
120 LIMIT = 1
PSTRES = 4
ASSIGN 121 TO IRET
GO TO 500
121 LIMIT = 2
PSTRES = 2
ASSIGN 540 TO IRET
GO TO 500
C
C SHEAR
C
130 LIMIT = 1
PSTRES = 2
ASSIGN 540 TO IRET
GO TO 500
C
C TRBSC, TRPLT, QDPLT, TRIA1, TRIA2, TRIA3, QUAD1, QUAD2, QUAD4
C
140 IF (MEST .EQ. 1) GO TO 144
LIMIT = 2
PSTRES = 7
ASSIGN 141 TO IRET
GO TO 500
141 PSTRES = 8
ASSIGN 142 TO IRET
GO TO 500
142 PSTRES = 15
ASSIGN 143 TO IRET
GO TO 500
143 PSTRES = 16
ASSIGN 144 TO IRET
X1A = AMAX1(ABS(Z( 7)),ABS(Z( 8)))
X2A = AMAX1(ABS(Z(15)),ABS(Z(16)))
X1A = AMAX1(X1A,X2A)
K = 0
IF (X1A.EQ.ABS(Z(8)) .OR. X1A.EQ.ABS(Z(15))) K = 1
X1A = Z( 7+K)
X2A = Z(16-K)
GO TO 500
144 IF (MEST .EQ. 2) GO TO 540
LIMIT = 1
PSTRES = 9
ASSIGN 145 TO IRET
GO TO 500
145 PSTRES = 17
ASSIGN 540 TO IRET
GO TO 500
C
C TRMEM, QDMEM, QDMEM1, QDMEM2
C
150 IF (MEST .EQ. 1) GO TO 152
LIMIT = 2
PSTRES = 6
ASSIGN 151 TO IRET
GO TO 500
151 PSTRES = 7
ASSIGN 152 TO IRET
GO TO 500
152 IF (MEST .EQ. 2) GO TO 30
LIMIT = 1
PSTRES = 8
ASSIGN 540 TO IRET
GO TO 500
C
C BAR, ELBOW
C
160 LIMIT = 2
PSTRES = 7
X2A = ABS(Z(7))
ASSIGN 161 TO IRET
GO TO 500
161 PSTRES = 8
X1A = ABS(Z(8))
ASSIGN 162 TO IRET
GO TO 500
162 PSTRES = 14
ASSIGN 163 TO IRET
GO TO 500
163 PSTRES = 15
ASSIGN 540 TO IRET
GO TO 500
C
C TRIM6
C
170 IF (IEL(LOCE) .EQ. IDEL) GO TO 172
IDEL = IEL(LOCE)
ICP = ICP + 4
IF (KEL.NE.-1 .AND. ICP.GE.KEL) CALL MESAGE (-8,0,NAME)
IY(ICP) = LOCP
IY(ICP+4) =-1
172 K = 0
M1 =-1
DO 175 I = 1,3
M1 = M1 + 7
II = 3 + LOCE
S1S = 0.0
S3S = 0.0
IF (MEST .NE. 2) S3S = ABS(Z(M1+2)/EL(II))
II = II - 2
IF (Z(M1) .LT. 0.0) II = II + 1
IF (MEST .NE. 1) S1S = ABS(Z(M1)/EL(II))
II = 1 + LOCE
IF (Z(M1+1) .LT. 0.0) II = II + 1
S2S = ABS(Z(M1+1)/EL(II))
S13 = AMAX1(S1S,S2S)
S13 = AMAX1(S13,S3S)
Y(ICP+I) = AMAX1(Y(ICP+I),S13)
PR(LOCP+4) = AMAX1(PR(LOCP+4),S13)
E1 = ABS(S13) - 1.0
IF (ABS(E1) .LE. PARM(2)) K = K + 1
175 CONTINUE
ASSIGN 540 TO IRET
IF (K-3) 550,520,520
C
C IS2D8
C
180 M1 = 1
S1S = 0.0
S2S = 0.0
S3S = 0.0
DO 185 M = 1,8
M1 = M1 + 5
II = 3 + LOCE
IF (MEST .NE. 2) S3S = AMAX1(S3S,ABS(Z(M1+2)/EL(II)))
II = II - 2
IF (Z(M1) .LT. 0.0) II = II + 1
IF (MEST .NE. 1) S1S = AMAX1(S1S,ABS(Z(M1)/EL(II)))
II = 1 + LOCE
IF (Z(M1+1) .LT. 0.0) II = II + 1
S2S = AMAX1(S2S,ABS(Z(M1+1)/EL(II)))
S13 = AMAX1(S1S,S2S)
S13 = AMAX1(S13,S3S)
185 CONTINUE
E1 = ABS(S13) - 1.0
PR(LOCP+4) = AMAX1(PR(LOCP+4),S13)
ASSIGN 540 TO IRET
GO TO 520
C
C FUNCTION E1 - RATIO STRESS MINUS LIMIT DIVIDED BY LIMIT,
C WITH RESET OF -ALPHA-
C LOCP = POINTER TO PID OF PROPERTY.
C LOCE = POINTER TO EID OF ELEMENT.
C LIMIT = 1=SHEAR, 2= COMPRESSION/TENSION.
C PSTRES = CORRESPONDING STRESS, POINTER TO Z ARRAY.
C
500 II = 3 + LOCE
IF (LIMIT .EQ. 1) GO TO 510
II = II - 2
IF (Z(PSTRES) .LT. 0.0) II = II + 1
510 IF (EL(II) .LE. 0.0) GO TO 530
C
C POSITIVE LIMIT
C
PR(LOCP+4) = AMAX1(PR(LOCP+4),ABS(Z(PSTRES)/EL(II)))
C
C I
C NEGATIVE E1, SAFE I POSITIVE E1, UNSAFE
C I
C --+------+------+------+------+------+------+------------------- E1
C UL 4P 3P 2P P 0 P (WHERE P=PARM(2),
C ++++ +++ ++ + I I UL=UNLOADED)
C OVER DESIGNED I REGION WHEREI UNDER DESIGNED
C REGION I AE1 .LE. P I REGION
C (UNSAFE=.FALSE.) I (UNSAFE=.TRUE.)
C
E1 = ABS(Z(PSTRES)/EL(II)) - 1.0
520 IF (E1 .GT. PARM(2)) UNSAFE = .TRUE.
IF (UNSAFE) KEL = -1
AE1 = AMIN1(AE1,ABS(E1))
530 GO TO IRET, (121,141,142,143,144,145,151,152,161,162,163,540)
C
540 X1 = ABS(X1A)
X2 = ABS(X2A)
IF (X1.EQ.0.0 .OR. X2.EQ.0.0) GO TO 550
X1A= AMIN1(X1A,X2A)
X1 = AMIN1(X1,X2)/AMAX1(X1,X2)
X1 = SIGN(X1,X1A)
IF (ABS(X1) .GT. 1.0E-8) RC = X1
C
C SAVE IN RR AN EMPIRICAL ALPHA MODIFIER FOR SPEEDY CONVERGENCE
C
550 IRR = (LOCP+NWDSP)/NWDSP
RR(IRR) = RC
C
IF (UNSAFE) GO TO 30
C
C PRINT ELEMENT IDS THAT HAVE CONVERGED, OR OVER DESIGNED
C
IF (.NOT.FIRST) GO TO 570
FIRST = .FALSE.
CALL PAGE2 (-3)
WRITE (OUTTAP,560) UIM
560 FORMAT (A29,' 2304A, THE FOLLOWING ELEMENTS EITHER CONVERGED (NO',
1 ' PLUS) OR OVER-DESIGNED (PLUS(ES))',/5X,'IN ONE OR MORE ',
2 'SUBCASES, (EACH PLUS INDICATES AN INCREMENTAL PERCENTAGE'
3, ' OF OVER-DESIGN BASED ON CONVERGENCE CRITERION, EPS)',/)
570 XSTAR = (PR(LOCP+4)-1.0) - PARM(2)
J = IFIX(ABS(XSTAR)/PARM(2))
IF (J .GT. 3) J = 3
II = 1
IF (PR(LOCP+4) .LT. 1.0E-8) II = 0
IF (II .EQ. 0) J = 4
EID(NE+1) = IEL(LOCE)
EID(NE+2) = PLUS(J+1)
NE = NE + 2
IF (NE .LT. 20) GO TO 590
NE = 0
CALL PAGE2 (1)
WRITE (OUTTAP,580) EID
580 FORMAT (5X,10(I8,A4))
590 IF (KEL .EQ. -1) GO TO 30
KEL = KEL - 1
CWKBR 9/93 IZK = IZ(KEL)
IZK = IY(KEL)
IF (PR(LOCP+3) .LT. 1.0E-6) II = 0
IF (J.GT.0 .AND. IZK.EQ.-1 .AND. II.NE.0) KCONV = KCONV - 1
IF (II .EQ. 0) GO TO 600
IF (AE1 .GT. PARM(2)) GO TO 30
600 IF (IEL(LOCE) .EQ. IZK) GO TO 30
IF (AE1.LE.PARM(2) .AND. IZK.EQ.-1) GO TO 610
IF (II.EQ.0 .AND. IZK.EQ.-1) GO TO 30
CWKBR 9/93 IZ(KEL) = IEL(LOCE)
IY(KEL) = IEL(LOCE)
CWKBR 9/93 IF (II .EQ. 0) IZ(KEL) = -1
IF (II .EQ. 0) IY(KEL) = -1
KCONV = KCONV + 1
GO TO 30
CWKBR 9/93 610 IZ(KEL) = IEL(LOCE)
610 IY(KEL) = IEL(LOCE)
GO TO 30
C
C EOF
C
630 CONTINUE
IF (NE .GT. 0) WRITE (OUTTAP,580) (EID(J),J=1,NE)
C
C IF KEL=-1 HERE, OR
C IF NUMBER OF ELEMENTS CONVERGED, KORE-KEL, IS LESS THAN NUMBER OF
C ELEMENTS IN THE PROBLEM, NELW/NWDSE, CONVERGENCE IS INCOMPLETE
C
IF (KEL .EQ. -1) GO TO 650
IF (KCONV .LT. NELW/NWDSE) GO TO 650
CWKBR CALL PAGE (-4)
CALL PAGE2 (-4)
WRITE (OUTTAP,640) UIM
640 FORMAT (A29,' 2304B, CONVERGENCE ACHIEVED FOR ALL ELEMENTS ',
1 'REQUESTED, AND IN ALL SUBCASE(S)', /5X,
2 'FULLY-STRESSED DESIGN COMPLETED',/)
CONV = 2.0
GO TO 670
C
C IF NELR IS ZERO, NO ELEMENT MATCH MADE
C
650 IF (NELR .GT. 0) GO TO 670
CALL PAGE2 (-2)
WRITE (OUTTAP,660) UFM
660 FORMAT (A23,' 2295, NO ELEMENTS EXIST FOR OPTIMIZATION.')
COUNT = MAX + 1
C
670 RETURN
END
|