1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
SUBROUTINE PLTMRG
C
C MODULE PLTMRG WRITES GINO DATA BLOCKS WHICH ARE USED AS INPUT TO
C THE PLOT MODULE FOR PLOTTING A SUBSTRUCTURE.
C
C APRIL 1974
C
LOGICAL IDENT
INTEGER BUF ,SYSBUF ,Z(3) ,CASESS ,PCDB ,
1 PLTP ,GPS ,ELS ,BGP ,CASEP ,
2 EQEX ,SCR1 ,SRD ,PLTS ,FILE ,
3 EQSS ,SUBR(2) ,CASECC(2),BUF1 ,ELID ,
4 BUF2 ,BUF3 ,BUF4 ,BUF5 ,RC ,
5 BAR ,QUAD4 ,TRIA3 ,OFFSET
REAL RZ
COMMON /BLANK / NAME(2) ,NGPTOT ,LSIL ,NPSET ,
1 NM(2) ,BUF(7)
COMMON /SYSTEM/ SYSBUF
COMMON /NAMES / RD ,RDREW ,WRT ,WRTREW ,
1 REW ,NOREW
COMMON /ZZZZZZ/ RZ(1)
EQUIVALENCE (Z(1),RZ(1))
DATA PLTS , EQSS ,SUBR ,CASECC /
1 4HPLTS, 4HEQSS ,4HPLTM ,4HRG ,4HCASE ,4HCC /
DATA CASESS, PCDB ,PLTP ,GPS ,ELS /
1 101 , 102 ,201 ,202 ,203 /,
2 BGP , CASEP ,EQEX ,SCR1 ,SRD /
3 204 , 205 ,206 ,301 ,1 /,
4 BAR , QUAD4 ,TRIA3 /
5 2HBR , 2HQ4 ,2HT3 /
C
C INITIALIZE
C
NCORE = KORSZ(Z)
BUF1 = NCORE- SYSBUF + 1
BUF2 = BUF1 - SYSBUF
BUF3 = BUF2 - SYSBUF
BUF4 = BUF3 - SYSBUF
BUF5 = BUF4 - SYSBUF
NCORE = BUF5 - 1
NGPTOT= 0
LSIL = 0
NPSET =-1
IF (NCORE .LE. 0) GO TO 9008
CALL SOFOPN (Z(BUF3),Z(BUF4),Z(BUF5))
C
C STRIP SUBSTRUCTURE RECORDS FROM CASESS AND WRITE CASEP (CASECC)
C
FILE = CASESS
CALL OPEN (*9001,CASESS,Z(BUF1),RDREW)
FILE = CASEP
CALL OPEN (*9001,CASEP,Z(BUF2),WRTREW)
CALL FNAME (CASEP,BUF)
CALL WRITE (CASEP,BUF,2,1)
FILE = CASESS
10 CALL READ (*9002,*9003,CASESS,Z,2,1,NWDS)
IF (Z(1).NE.CASECC(1) .OR. Z(2).NE.CASECC(2)) GO TO 10
20 CALL READ (*40,*30,CASESS,Z,NCORE,1,NWDS)
GO TO 9008
30 CALL WRITE (CASEP,Z,NWDS,1)
GO TO 20
40 CALL CLSTAB (CASEP,REW)
CALL CLOSE (CASESS,REW)
C
C BASIC GRID POINT DATA
C
NM(1) = NAME(1)
NM(2) = NAME(2)
ITEM = PLTS
CALL SFETCH (NAME,PLTS,SRD,RC)
IF (RC .NE. 1) GO TO 6100
C
C READ SUBSTRUCTURE NAMES AND TRANSFORMATION DATA INTO OPEN CORE.
C
CALL SUREAD (Z,3,NWDS,RC)
IF (RC .NE. 1) GO TO 6106
NSS = Z(3)
IF (14*NSS .GT. NCORE) GO TO 9008
CALL SUREAD (Z,14*NSS,NWDS,RC)
IF (RC .NE. 1) GO TO 6106
ICORE = 14*NSS + 1
C
C READ THE BASIC GRID POINT DATA FROM THE PLTS ITEM OF EACH BASIC
C SUBSTRUCTURE COMPRISING THE PSEUDOSTRUCTURE TO BE PLOTTED.
C TRANSFORM THE COORDINATES TO THE BASIC COORDINATE SYSTEM OF THE
C PSEUDOSTRUCTURE AND WRITE THEM ON BGP (BGPDT).
C
FILE = BGP
CALL OPEN (*9001,BGP,Z(BUF1),WRTREW)
CALL FNAME (BGP,BUF)
CALL WRITE (BGP,BUF,2,1)
J = 1
120 NM(1) = Z(J )
NM(2) = Z(J+1)
NGP = 0
CALL SFETCH (NM,PLTS,SRD,RC)
IF (RC .EQ. 1) GO TO 130
CALL SMSG (RC-2,PLTS,NM)
GO TO 170
130 I = 1
CALL SJUMP (I)
IDENT = .FALSE.
DO 140 I = 1,3
IF (Z(J+I+1) .NE. 0) GO TO 150
IF (Z(J+I+5) .NE. 0) GO TO 150
IF (Z(J+I+9) .NE. 0) GO TO 150
IF (ABS(RZ(J+4*I+1)-1.0) .GT. 1.0E-4) GO TO 150
140 CONTINUE
IDENT = .TRUE.
150 CALL SUREAD (BUF,4,NWDS,RC)
IF (RC .EQ. 2) GO TO 170
NGP = NGP + 1
IF (IDENT .OR. BUF(1).LT.0) GO TO 160
BUF(5) = Z(J+2)
BUF(6) = Z(J+3)
BUF(7) = Z(J+4)
CALL GMMATS (Z(J+5),3,3,-2,BUF(2),3,1,0,BUF(5))
CALL WRITE (BGP,BUF,1,0)
CALL WRITE (BGP,BUF(5),3,0)
GO TO 150
160 CALL WRITE (BGP,BUF,4,0)
GO TO 150
170 NGPTOT = NGPTOT+NGP
Z(J+2) = NGP
J = J + 14
IF (J .LT. ICORE) GO TO 120
CALL WRITE (BGP,0,0,1)
CALL CLOSE (BGP,REW)
BUF(1) = BGP
BUF(2) = NGPTOT
DO 180 I = 3,7
180 BUF(I) = 0
CALL WRTTRL (BUF)
C
C ALLOCATE 5 WORDS PER COMPONENT BASIC SUBSTRUCTURE AT THE TOP OF
C OPEN CORE. THIS ARRAY IS HEREINAFTER REFERRED TO AS *SDATA*
C
C SAVE THE BASIC SUBSTRUCTURE NAMES AND THE NUMBER OF STRUCTURAL
C GRID POINTS IN EACH IN SDATA. DO NOT SAVE SUBSTRUCTURES FOR
C WHICH NO PLTS ITEM WAS FOUND.
C
J = 1
DO 190 I = 1,NSS
IF (Z(14*I-11) .EQ. 0) GO TO 190
Z(J ) = Z(14*I-13)
Z(J+1) = Z(14*I-12)
Z(J+2) = Z(14*I-11)
J = J + 5
190 CONTINUE
IF (J .LE. 1) GO TO 9200
NSS = J/5
ISX = NSS*5
ICORE = J
LCORE = NCORE - J + 1
C
C COMPUTE EQEX (EQEXIN)
C
C
C READ THE EQEXIN DATA FROM THE PLTS ITEM OF EACH BASIC SUBSTRUCTURE
C USE THREE WORDS IN OPEN CORE FOR EACH GRID POINT (1) EXTERNAL
C ID, (2) INTERNAL ID, (3) SUBSTRUCTURE SEQUENCE NUMBER IN SDATA.
C INCREMENT THE INTERNAL IDS BY THE NUMBER OF GRID POINTS ON THE
C PRECEDING SUBSTRUCTURES.
C
K = ICORE
NGP = 0
DO 210 I = 1,NSS
NM(1) = Z(5*I-4)
NM(2) = Z(5*I-3)
CALL SFETCH (NM,PLTS,SRD,RC)
N = 2
CALL SJUMP (N)
RC = 3
IF (N .LT. 0) GO TO 6106
N = Z(5*I-2)
DO 200 J = 1,N
CALL SUREAD (Z(K),2,NWDS,RC)
IF (RC .NE. 1) GO TO 6106
Z(K+1) = Z(K+1) + NGP
Z(K+2) = I
K = K + 3
IF (K+2 .GT. NCORE) GO TO 9008
200 CONTINUE
NGP = NGP + N
210 CONTINUE
C
C SORT ON EXTERNAL IDS AND WRITE RECORD 1 OF EQEX.
C
CALL SORT (0,0,3,1,Z(ICORE),3*NGP)
FILE = EQEX
CALL OPEN (*9001,EQEX,Z(BUF1),WRTREW)
CALL FNAME (EQEX,BUF)
CALL WRITE (EQEX,BUF,2,1)
DO 220 I = 1,NGP
220 CALL WRITE (EQEX,Z(ICORE+3*I-3),2,0)
CALL WRITE (EQEX,0,0,1)
C
C SAVE THE TABLE IN OPEN CORE ON SCR1 TO USE IN COMPUTING RECORD 2
C OF EQEX
C
FILE = SCR1
CALL OPEN (*9001,SCR1,Z(BUF2),WRTREW)
CALL WRITE (SCR1,Z(ICORE),3*NGP,1)
CALL CLOSE (SCR1,REW)
CALL OPEN (*9001,SCR1,Z(BUF2),RDREW)
C
C READ GROUP 0 OF THE EQSS ITEM OF THE SUBSTRUCTURE TO BE PLOTTED
C INTO OPEN CORE AT ICORE. READ THE EXTERNAL AND INTERNAL IDS FOR
C EACH CONTRIBUTING BASIC SUBSTRUCTURE INTO OPEN CORE FOLLOWING
C GROUP 0. SAVE THE CORE POINTERS FOR EACH GROUP IN SDATA.
C
NM(1) = NAME(1)
NM(2) = NAME(2)
ITEM = EQSS
CALL SFETCH (NAME,EQSS,SRD,RC)
IF (RC .NE. 1) GO TO 6100
CALL SUREAD (Z(ICORE),LCORE,NWDS,RC)
IF (RC .NE. 2) GO TO 9008
K = ICORE + NWDS
N = Z(ICORE+2)
ISS = 1
DO 250 I = 1,N
IF (ISS .GT. ISX) GO TO 240
IF (Z(ICORE+2*I+2).NE.Z(ISS) .OR. Z(ICORE+2*I+3).NE.Z(ISS+1))
1 GO TO 240
Z(ISS+3) = K
230 IF (K+2 .GT. NCORE) GO TO 9008
CALL SUREAD (Z(K),3,NWDS,RC)
K = K + 2
IF (RC .EQ. 1) GO TO 230
Z(ISS+4) = (K-Z(ISS+3))/2
ISS = ISS + 5
GO TO 250
240 J = 1
CALL SJUMP (J)
250 CONTINUE
C
C READ SIL NUMBERS INTO OPEN CORE.
C
KSIL = K - 1
N = Z(ICORE+3)
IF (KSIL+N+1 .GT. NCORE) GO TO 9008
DO 260 I = 1,N
CALL SUREAD (Z(KSIL+I),2,NWDS,RC)
IF (RC .NE. 1) GO TO 6106
260 CONTINUE
LSIL = Z(KSIL+N)
C
C READ THE TABLE OF EXTERNAL ID (GP), INTERNAL ID (IP), AND SUB-
C STRUCTURE NUMBER (SSN) FROM SCR1 ONE ENTRY AT A TIME. LOCATE
C THE GP IN THE EQSS DATA INDICATED BY SSN AND LOOK UP THE SIL
C NUMBER. WRITE GP AND SIL ON EQEX. IF GP NOT FOUND, THEN SIL=-1.
C
270 CALL READ (*9002,*290,SCR1,BUF,3,0,N)
I = BUF(3)
J = Z(5*I-1)
I5 = 5*I
CALL BISLOC (*280,BUF(1),Z(J),2,Z(I5),K)
I = Z(J+K) + KSIL
BUF(2) = 10*Z(I) + 1
CALL WRITE (EQEX,BUF,2,0)
GO TO 270
280 BUF(2) = -1
CALL WRITE (EQEX,BUF,2,0)
GO TO 270
290 CALL WRITE (EQEX,0,0,1)
CALL CLOSE (EQEX,REW)
CALL CLOSE (SCR1,REW)
BUF(1) = EQEX
BUF(2) = NGPTOT
DO 300 I = 3,7
300 BUF(I) = 0
CALL WRTTRL (BUF)
C
C INTERPRET PLOT SETS AND GENERATE PLTP (PLTPAR)
C
C
C AT PRESENT, ONLY ONE PLOT SET (DEFINED IN PHASE 1) IS ALLOWED.
C
C PHASE 2 PLOT SET DEFINITIONS ARE IGNORED.
C
C COPY PCDB TO PLTP
C
FILE = PCDB
CALL OPEN (*9001,PCDB,Z(BUF1),RDREW)
CALL FWDREC (*9002,PCDB)
FILE = PLTP
CALL OPEN (*9001,PLTP,Z(BUF2),WRTREW)
CALL FNAME (PLTP,BUF)
CALL WRITE (PLTP,BUF,2,1)
310 CALL READ (*330,*320,PCDB,Z(ICORE),LCORE,1,NWDS)
GO TO 9008
320 CALL WRITE (PLTP,Z(ICORE),NWDS,1)
GO TO 310
330 CALL CLOSE (PCDB,REW)
CALL CLOSE (PLTP,REW)
BUF(1) = PCDB
CALL RDTRL (BUF)
BUF(1) = PLTP
CALL WRTTRL (BUF)
DO 340 I = 1,NSS
Z(5*I-1) = 0
Z(5*I ) = 1
340 CONTINUE
NPSET = 1
C
C GPSETS
C
C
C LOCATE THE GPSETS DATA OF THE PLTS ITEM OF EACH BASIC SUBSTRUCTURE
C AND READ THE NUMBER OF GRID POINTS IN THE ELEMENT SET. STORE THIS
C AS THE FOURTH ENTRY IN SDATA
C
N = 3
NGPSET = 0
ITEM = PLTS
DO 1010 I = 1,NSS
NM(1) = Z(5*I-4)
NM(2) = Z(5*I-3)
CALL SFETCH (NM,PLTS,SRD,RC)
CALL SJUMP (N)
RC = 3
IF (N .LT. 0) GO TO 6106
CALL SUREAD (Z(5*I-1),1,NWDS,RC)
IF (RC .NE. 1) GO TO 6106
NGPSET = NGPSET + Z(5*I-1)
1010 CONTINUE
C
C WRITE RECORDS 0 AND 1 OF GPS AND FIRST WORD OF RECORD 2.
C
FILE = GPS
CALL OPEN (*9001,GPS,Z(BUF1),WRTREW)
CALL FNAME (GPS,BUF)
CALL WRITE (GPS,BUF,2,1)
CALL WRITE (GPS,1,1,1)
CALL WRITE (GPS,NGPSET,1,0)
C
C READ GPSETS DATA FROM THE PLTS ITEM OF EACH BASIC SUBSTRUCTURE.
C INCREMENT THE ABSOLUTE VALUE OF THE POINTERS IN IT BY THE NUMBER
C OF GRID POINTS IN THE ELEMENT SETS OF THE PRECEDING BASIC
C SUBSTRUCTURES. WRITE THE RESULT ON GPS (GPSETS).
C
N = 3
NGPSET = 0
DO 1050 I = 1,NSS
CALL SFETCH (Z(5*I-4),PLTS,SRD,RC)
CALL SJUMP (N)
CALL SUREAD (Z(ICORE),LCORE,NWDS,RC)
IF (RC .NE. 2) GO TO 9008
NWDS = NWDS - 1
DO 1040 J = 1,NWDS
IF (Z(ICORE+J)) 1020,1040,1030
1020 Z(ICORE+J) = Z(ICORE+J) - NGPSET
GO TO 1040
1030 Z(ICORE+J) = Z(ICORE+J) + NGPSET
1040 CONTINUE
CALL WRITE (GPS,Z(ICORE+1),NWDS,0)
NGPSET = NGPSET + Z(5*I-1)
1050 CONTINUE
CALL CLSTAB (GPS,REW)
C
C ELSETS
C
C
C READ THE ELSETS DATA FROM THE PLTS ITEM OF EACH BASIC SUBSTRUCTURE
C INCREMENT ALL NON-ZERO GRID POINT CONNECTION INDICES BY THE NUMBER
C OF STRUCTURAL GRID POINTS OF THE PRECEDING SUBSTRUCTURES. WRITE
C THE RESULT ON ELS (ELSETS).
C
C NOTE THE ELEMENT TYPES WILL BE SCRAMBLED. LIKE ELEMENT TYPES
C FROM THE CONTRIBUTING BASIC SUBSTRUCTURES WILL NOT BE
C GROUPED TOGETHER.
C
C NOTE THE BAR HAS ADDITIONALLY 6 OFFSET DATA VALUES. QUAD4 AND
C TRIA3 HAS 1 OFFSET DATA EACH
C
FILE = ELS
CALL OPEN (*9001,ELS,Z(BUF1),WRTREW)
CALL FNAME (ELS,BUF)
CALL WRITE (ELS,BUF,2,1)
NGP = 0
C
C LOOP OVER BASIC SUBSTRUCTURES
C
DO 2050 I = 1,NSS
NM(1) = Z(5*I-4)
NM(2) = Z(5*I-3)
CALL SFETCH (NM,PLTS,SRD,RC)
N = 4
CALL SJUMP (N)
RC = 3
IF (N .LT. 0) GO TO 6106
C
C LOOP OVER ELEMENT TYPES
C
2010 CALL SUREAD (BUF,2,N,RC)
IF (RC .EQ. 2) GO TO 2040
IF (RC .NE. 1) GO TO 6106
CALL WRITE (ELS,BUF,2,0)
NGPEL = BUF(2)
OFFSET = 0
IF (BUF(1) .EQ. BAR) OFFSET = 6
IF (BUF(1).EQ.QUAD4 .OR. BUF(1).EQ.TRIA3) OFFSET = 1
C
C LOOP OVER ELEMENTS
C
2020 CALL SUREAD (ELID,1,N,RC)
IF (RC .NE. 1) GO TO 6106
CALL WRITE (ELS,ELID,1,0)
IF (ELID .LE. 0) GO TO 2010
CALL SUREAD (INDX,1,N,RC)
CALL WRITE (ELS,INDX,1,0)
CALL SUREAD (Z(ICORE),NGPEL+OFFSET,N,RC)
IF (RC .NE. 1) GO TO 6106
C
C LOOP OVER CONNECTIONS
C
K = ICORE
DO 2030 J = 1,NGPEL
IF (Z(K) .NE. 0) Z(K) = Z(K) + NGP
2030 K = K + 1
CALL WRITE (ELS,Z(ICORE),NGPEL+OFFSET,0)
GO TO 2020
2040 NGP = NGP + Z(5*I-2)
2050 CONTINUE
C
CALL WRITE (ELS,0,0,1)
CALL CLSTAB (ELS,REW)
C
C NORMAL MODULE COMPLETION
C
CALL SOFCLS
RETURN
C
C ABNORMAL MODULE COMPLETION
C
6100 IF (RC .EQ. 2) RC = 3
CALL SMSG (RC-2,ITEM,NM)
GO TO 9200
6106 CALL SMSG (RC+4,ITEM,NM)
GO TO 9200
9001 N = 1
GO TO 9100
9002 N = 2
GO TO 9100
9003 N = 3
GO TO 9100
9008 N = 8
9100 CALL MESAGE (N,FILE,SUBR)
CALL CLOSE (FILE,REW)
9200 CALL SOFCLS
NPSET = -1
RETURN
END
|