File: polypt.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (186 lines) | stat: -rw-r--r-- 4,419 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
      SUBROUTINE POLYPT( LOCTOF,STEDGE,TR, NGRIDF,FLEDGE,FL,LOCFOS, EPS,
     1  NPOLY,P)
C
C     POLYPT DETERMINES PERIMETER POINTS OF AREA COMMON TO STRUCTURAL
C        TRIANGLE BOUNDED BY TR POINTS AND FLUID ELEMENT BOUNDED BY
C        (3 OR 4) FL POINTS
C
      DOUBLE PRECISION P(2,7)
      DOUBLE PRECISION TR(3,3), FL(3,4), SS(2), P1(2), EPS(2)
      INTEGER   STEDGE(2,3), FLEDGE(2,4), KEDGE(2,5), JEDGE(2,7)
     1, LOCTOF(3), LOCFOS(4)
C
      IP= 0
      NPOLY= 0
C
      DO 10 I=1,2
      DO 10 J=1,7
   10 P(I,J)= 0.D0
C
      DO 20 K=1,3
      IF ( LOCTOF(K) .LT. 0)  GO TO 40
   20 CONTINUE
C
C     STRUCTURAL TRIANGLE IS COMMON AREA WHEN NO STR PTS LIE OUTSIDE
C        FLUID ELEMENT BOUNDRY
      IP= 3
      DO 30 K=1,3
      DO 30 I=1,2
   30 P(I,K)= TR(I,K)
      GO TO 9000
C
   40 CONTINUE
C
      K= NGRIDF -1
      DO 50 I=1,2
      DO 45 J=1,K
      JEDGE(I,J)= FLEDGE(I,J)
   45 JEDGE(I,J+NGRIDF)= FLEDGE(I,J)
   50 JEDGE(I,NGRIDF)= FLEDGE(I,NGRIDF)
C
      DO 60 I=1,2
      DO 55 J=1,2
      KEDGE(I,J)= STEDGE(I,J)
   55 KEDGE(I,J+3)= STEDGE(I,J)
   60 KEDGE(I,3)= STEDGE(I,3)
C
C
      DO 100 K=1,3
      K1= KEDGE(1,K)
      K2= KEDGE(2,K)
      DO 100 J=1,NGRIDF
      J1= JEDGE(1,J)
      J2= JEDGE(2,J)
      CALL PTINTR( TR(1,K1),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
      IF (INTER .EQ. 1)  GO TO 200
  100 CONTINUE
C
C - - AREAS ARE DISJOINT
      GO TO 9000
C
C
  200 JLAST= J
      JJ1= J
      JJ2= J +NGRIDF -1
      KLAST= K
      KK1= K +1
      KK2= K+2
C
      IF (LOCTOF(K1) .EQ. 1)  GO TO 1800
C     1ST TRI POINT IS OUTSIDE FLUID BOUNDRY
      P1(2)= SS(2)
      P1(1)= SS(1)
      AP1= (P1(1)-TR(1,K1))**2 +(P1(2)-TR(2,K1))**2
      JP1= JLAST
      JJ1= JLAST+1
C
      DO 300 J=JJ1,JJ2
      J1= JEDGE(1,J)
      J2= JEDGE(2,J)
      CALL PTINTR( TR(1,K1),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
      IF (INTER .EQ. 1)  GO TO 400
  300 CONTINUE
C
      IP= IP+1
      P(1,IP)= P1(1)
      P(2,IP)= P1(2)
      GO TO 1000
C
  400 AP2= (SS(1)-TR(1,K1))**2 + (SS(2)-TR(2,K1))**2
      IF (AP1 .LT. AP2)  GO TO 500
C
      P(1,IP+1)= SS(1)
      P(2,IP+1)= SS(2)
      P(1,IP+2)= P1(1)
      P(2,IP+2)= P1(2)
      IP= IP+2
      JLAST= JP1
      GO TO 600
C
  500 P(1,IP+1)= P1(1)
      P(2,IP+1)= P1(2)
      P(1,IP+2)= SS(1)
      P(2,IP+2)= SS(2)
      IP= IP+2
      JLAST= J
C
  600 CONTINUE
      IF ( JLAST .GT. NGRIDF)  JLAST= JLAST -NGRIDF
      JJ1= JLAST
      JJ2= JJ1 +NGRIDF -1
      J2= JEDGE(2,JLAST)
      GO TO 2000
C
C     SEARCH ALONG LAST STRUCTURAL TRIANGLE EDGE FOR NEXT PTINTR
C
 1000 IF ( LOCTOF(K2) .LT. 0)  GO TO 1100
      IF (TR(1,K2) .EQ. P(1,1)  .AND. TR(2,K2) .EQ. P(2,1))  GO TO 9000
      IP= IP+1
      P(1,IP)= TR(1,K2)
      P(2,IP)= TR(2,K2)
      KLAST= KLAST +1
      IF ( KLAST .EQ. KK2)   GO TO 9000
      K2= KEDGE(2,KLAST)
      GO TO 1000
C
 1100 CONTINUE
      JJ1= JLAST
      IF (JJ1 .GT. JJ2)  GO TO 9000
      DO 1150 J= JJ1,JJ2
      J1= JEDGE(1,J)
      J2= JEDGE(2,J)
      CALL PTINTR( P(1,IP),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
      IF ( INTER .EQ. 1)  GO TO 1200
 1150 CONTINUE
C
      GO TO 9000
C
 1200 IF (SS(1) .EQ. P(1,1)  .AND.  SS(2) .EQ. P(2,1))  GO TO 9000
      IP= IP +1
      P(1,IP)= SS(1)
      P(2,IP)= SS(2)
      JLAST= J
      GO TO 2000
C
 1800 P(1,IP+1)= TR(1,K1)
      P(2,IP+1)= TR(2,K1)
      P(1,IP+2)= SS(1)
      P(2,IP+2)= SS(2)
      IP= IP+2
C
C     SEARCH ALONG LAST FLUID EDGE FOR NEXT PTINTR
C
 2000 IF ( LOCFOS(J2) .LT. 0)  GO TO 2100
      IF (FL(1,J2) .EQ. P(1,1)  .AND.  FL(2,J2) .EQ. P(2,1))  GO TO 9000
      IP= IP+1
      P(1,IP)= FL(1,J2)
      P(2,IP)= FL(2,J2)
      JLAST= JLAST +1
      IF ( JLAST .GT. JJ2)   GO TO 9000
      J2= JEDGE(2,JLAST)
      GO TO 2000
C
 2100 CONTINUE
      KK1= KLAST
      IF (KK1 .GT. KK2)  GO TO 9000
      DO 2150 K=KK1,KK2
      K1= KEDGE(1,K)
      K2= KEDGE(2,K)
      CALL PTINTR( P(1,IP),FL(1,J2), TR(1,K1),TR(1,K2), SS, INTER, EPS)
      IF ( INTER .EQ. 1)  GO TO 2200
 2150 CONTINUE
C
      GO TO 9000
C
 2200 IF (SS(1) .EQ. P(1,1)  .AND.  SS(2) .EQ. P(2,1))  GO TO 9000
      IP= IP +1
      P(1,IP)= SS(1)
      P(2,IP)= SS(2)
      KLAST= K
      GO TO 1000
C
C
 9000 CONTINUE
      NPOLY= IP
      RETURN
      END