1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
SUBROUTINE POLYPT( LOCTOF,STEDGE,TR, NGRIDF,FLEDGE,FL,LOCFOS, EPS,
1 NPOLY,P)
C
C POLYPT DETERMINES PERIMETER POINTS OF AREA COMMON TO STRUCTURAL
C TRIANGLE BOUNDED BY TR POINTS AND FLUID ELEMENT BOUNDED BY
C (3 OR 4) FL POINTS
C
DOUBLE PRECISION P(2,7)
DOUBLE PRECISION TR(3,3), FL(3,4), SS(2), P1(2), EPS(2)
INTEGER STEDGE(2,3), FLEDGE(2,4), KEDGE(2,5), JEDGE(2,7)
1, LOCTOF(3), LOCFOS(4)
C
IP= 0
NPOLY= 0
C
DO 10 I=1,2
DO 10 J=1,7
10 P(I,J)= 0.D0
C
DO 20 K=1,3
IF ( LOCTOF(K) .LT. 0) GO TO 40
20 CONTINUE
C
C STRUCTURAL TRIANGLE IS COMMON AREA WHEN NO STR PTS LIE OUTSIDE
C FLUID ELEMENT BOUNDRY
IP= 3
DO 30 K=1,3
DO 30 I=1,2
30 P(I,K)= TR(I,K)
GO TO 9000
C
40 CONTINUE
C
K= NGRIDF -1
DO 50 I=1,2
DO 45 J=1,K
JEDGE(I,J)= FLEDGE(I,J)
45 JEDGE(I,J+NGRIDF)= FLEDGE(I,J)
50 JEDGE(I,NGRIDF)= FLEDGE(I,NGRIDF)
C
DO 60 I=1,2
DO 55 J=1,2
KEDGE(I,J)= STEDGE(I,J)
55 KEDGE(I,J+3)= STEDGE(I,J)
60 KEDGE(I,3)= STEDGE(I,3)
C
C
DO 100 K=1,3
K1= KEDGE(1,K)
K2= KEDGE(2,K)
DO 100 J=1,NGRIDF
J1= JEDGE(1,J)
J2= JEDGE(2,J)
CALL PTINTR( TR(1,K1),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
IF (INTER .EQ. 1) GO TO 200
100 CONTINUE
C
C - - AREAS ARE DISJOINT
GO TO 9000
C
C
200 JLAST= J
JJ1= J
JJ2= J +NGRIDF -1
KLAST= K
KK1= K +1
KK2= K+2
C
IF (LOCTOF(K1) .EQ. 1) GO TO 1800
C 1ST TRI POINT IS OUTSIDE FLUID BOUNDRY
P1(2)= SS(2)
P1(1)= SS(1)
AP1= (P1(1)-TR(1,K1))**2 +(P1(2)-TR(2,K1))**2
JP1= JLAST
JJ1= JLAST+1
C
DO 300 J=JJ1,JJ2
J1= JEDGE(1,J)
J2= JEDGE(2,J)
CALL PTINTR( TR(1,K1),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
IF (INTER .EQ. 1) GO TO 400
300 CONTINUE
C
IP= IP+1
P(1,IP)= P1(1)
P(2,IP)= P1(2)
GO TO 1000
C
400 AP2= (SS(1)-TR(1,K1))**2 + (SS(2)-TR(2,K1))**2
IF (AP1 .LT. AP2) GO TO 500
C
P(1,IP+1)= SS(1)
P(2,IP+1)= SS(2)
P(1,IP+2)= P1(1)
P(2,IP+2)= P1(2)
IP= IP+2
JLAST= JP1
GO TO 600
C
500 P(1,IP+1)= P1(1)
P(2,IP+1)= P1(2)
P(1,IP+2)= SS(1)
P(2,IP+2)= SS(2)
IP= IP+2
JLAST= J
C
600 CONTINUE
IF ( JLAST .GT. NGRIDF) JLAST= JLAST -NGRIDF
JJ1= JLAST
JJ2= JJ1 +NGRIDF -1
J2= JEDGE(2,JLAST)
GO TO 2000
C
C SEARCH ALONG LAST STRUCTURAL TRIANGLE EDGE FOR NEXT PTINTR
C
1000 IF ( LOCTOF(K2) .LT. 0) GO TO 1100
IF (TR(1,K2) .EQ. P(1,1) .AND. TR(2,K2) .EQ. P(2,1)) GO TO 9000
IP= IP+1
P(1,IP)= TR(1,K2)
P(2,IP)= TR(2,K2)
KLAST= KLAST +1
IF ( KLAST .EQ. KK2) GO TO 9000
K2= KEDGE(2,KLAST)
GO TO 1000
C
1100 CONTINUE
JJ1= JLAST
IF (JJ1 .GT. JJ2) GO TO 9000
DO 1150 J= JJ1,JJ2
J1= JEDGE(1,J)
J2= JEDGE(2,J)
CALL PTINTR( P(1,IP),TR(1,K2), FL(1,J1),FL(1,J2), SS, INTER, EPS)
IF ( INTER .EQ. 1) GO TO 1200
1150 CONTINUE
C
GO TO 9000
C
1200 IF (SS(1) .EQ. P(1,1) .AND. SS(2) .EQ. P(2,1)) GO TO 9000
IP= IP +1
P(1,IP)= SS(1)
P(2,IP)= SS(2)
JLAST= J
GO TO 2000
C
1800 P(1,IP+1)= TR(1,K1)
P(2,IP+1)= TR(2,K1)
P(1,IP+2)= SS(1)
P(2,IP+2)= SS(2)
IP= IP+2
C
C SEARCH ALONG LAST FLUID EDGE FOR NEXT PTINTR
C
2000 IF ( LOCFOS(J2) .LT. 0) GO TO 2100
IF (FL(1,J2) .EQ. P(1,1) .AND. FL(2,J2) .EQ. P(2,1)) GO TO 9000
IP= IP+1
P(1,IP)= FL(1,J2)
P(2,IP)= FL(2,J2)
JLAST= JLAST +1
IF ( JLAST .GT. JJ2) GO TO 9000
J2= JEDGE(2,JLAST)
GO TO 2000
C
2100 CONTINUE
KK1= KLAST
IF (KK1 .GT. KK2) GO TO 9000
DO 2150 K=KK1,KK2
K1= KEDGE(1,K)
K2= KEDGE(2,K)
CALL PTINTR( P(1,IP),FL(1,J2), TR(1,K1),TR(1,K2), SS, INTER, EPS)
IF ( INTER .EQ. 1) GO TO 2200
2150 CONTINUE
C
GO TO 9000
C
2200 IF (SS(1) .EQ. P(1,1) .AND. SS(2) .EQ. P(2,1)) GO TO 9000
IP= IP +1
P(1,IP)= SS(1)
P(2,IP)= SS(2)
KLAST= K
GO TO 1000
C
C
9000 CONTINUE
NPOLY= IP
RETURN
END
|